New Insights from Metabolomics in Pediatric Renal Diseases
Abstract
:1. Introduction
2. Metabolomics in AKI
New Potential Biomarkers in Children with AKI
References | Study Design and Methods | Population (n) | Main Findings |
---|---|---|---|
Whang et al. [43] | Prospective, case-control study; UPLC-QTOF/MS | 27 septic children with AKI and 30 septic children without AKI | A metabolic set-up differentiating children with or without AKI was found |
Nguyen et al. [41] | Prospective, case-control study; SELDI-TOF-MS. | 106 patients −74 without AKI (mean age of 4.5 ± 5.3 yr.) −32 with AKI (mean age 3.6 ± 5.9 yr.) | Urinary aprotinin was an early predictor of AKI and adverse outcomes. |
Devarajan et al. [42] | Prospective, case-control study; SELDI-TOF MS. | 30 children undergoing −15 AKI (mean age of 4.0 ± 7.8 yr.) −15 controls (mean age 3.9 ± 5.3 yr.) | Urinary α1-microglobulin, α1-acid, glycoprotein, and albumin represent early and accurate biomarkers of AKI after cardiac surgery |
Beger et al. [23] | Prospective, case control study; UPLC/MS analysis MS/MS analysis | 40 children: −19 without AKI (mean age 4.3 ± 4.8 yr.) −21 with AKI (mean age 2.7 ± 3.7 yr.) | Urinary HVA-SO4 was a sensitive and predictive biomarker of AKI after pediatric cardiac surgery |
Muhle-Gall et al. [44] | Prospective, case-control study; NMR spectroscopy | 65 children with AKI, 53 healthy children, and 31 critically ill children without AKI. | A panel of four metabolites allowing AKI diagnosis was found. |
3. Metabolomics in Kidney Transplantation
4. Metabolomics Studies on Renal Dysplasia and ADPKD in Children
5. Metabolomics in Chronic Kidney Disease (CKD)
6. Metabolomics in Pediatric Vescicoureteral Reflux
7. Metabolomics in Kidney Stone Disease
8. Limitation of Metabolomics Studies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fanos, V.; Fanni, C.; Ottonello, G.; Noto, A.; Dessì, A.; Mussap, M. Metabolomics in Adult and Pediatric Nephrology. Molecules 2013, 18, 4844–4857. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, J.; Fan, J.; Chen, W.; Nikolic-Paterson, D.J.; Li, J. Omics technologies for kidney disease research. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2020, 303, 2729–2742. [Google Scholar] [CrossRef] [PubMed]
- Krieg, L.; Didt, K.; Karkossa, I.; Bernhart, S.H.; Kehr, S.; Subramanian, N.; Lindhorst, A.; Schaudinn, A.; Tabei, S.; Keller, M.; et al. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut 2021. [Google Scholar] [CrossRef] [PubMed]
- Di Sessa, A.; Riccio, S.; Pirozzi, E.; Verde, M.; Passaro, A.P.; Umano, G.R.; Guarino, S.; Miraglia Del Giudice, E.; Marzuillo, P. Advances in paediatric nonalcoholic fatty liver disease: Role of lipidomics. World J. Gastroenterol. 2021, 27, 3815–3824. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulou, M.; Gordillo, R.; Gancheva, S.; Strassburger, K.; Herder, C.; Esposito, I.; Schlensak, M.; Scherer, P.; Roden, M. Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty liver disease in humans. BMJ Open Diabetes Res. Care 2020, 8, e001860. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.H.; Gassa, A.D.; Mayer, G.; Zaza, G.; Brophy, P.D.; Gesualdo, L.; Pesce, F. The nephrologist of tomorrow: Towards a kidney-omic future. Pediatr. Nephrol. 2016, 32, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.H.; Brophy, P.D. Metabolomics in pediatric nephrology: Emerging concepts. Pediatr. Nephrol. 2015, 30, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-M.; Wang, Y.-F.; Rasheed, H.; Ott, J. Editorial: Multi-Omics Study in Revealing Underlying Pathogenesis of Complex Diseases: A Translational Perspective. Front. Genet. 2021, 12, 789294. [Google Scholar] [CrossRef]
- Di Sessa, A.; Guarino, S.; Melone, R.; De Simone, R.F.; Marzuillo, P.; Miraglia Del Giudice, E. Relationship between nonalcoholic fatty liver disease and chronic kidney disease could start in childhood. World J. Gastroenterol. 2021, 27, 5793–5795. [Google Scholar] [CrossRef]
- Joshi, M.S.; Montgomery, K.A.; Giannone, P.J.; Bauer, J.A.; Hanna, M.H. Renal injury in neonates: Use of “omics” for developing precision medicine in neonatology. Pediatr. Res. 2016, 81, 271–276. [Google Scholar] [CrossRef]
- Cisek, K.; Krochmal, M.; Klein, J.; Mischak, H. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol. Dial. Transplant. 2016, 31, 2003–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzuillo, P.; Pezzella, V.; Guarino, S.; Di Sessa, A.; Baldascino, M.; Polito, C.; del Giudice, E.M.; Nunziata, F. Acute kidney injury in children hospitalized for community acquired pneumonia. Pediatr. Nephrol. 2021, 36, 2883–2890. [Google Scholar] [CrossRef] [PubMed]
- Marzuillo, P.; Iafusco, D.; Zanfardino, A.; Guarino, S.; Piscopo, A.; Casaburo, F.; Capalbo, D.; Ventre, M.; Arienzo, M.R.; Cirillo, G.; et al. Acute Kidney Injury and Renal Tubular Damage in Children with Type 1 Diabetes Mellitus Onset. J. Clin. Endocrinol. Metab. 2021, 106, e2720–e2737. [Google Scholar] [CrossRef] [PubMed]
- Marzuillo, P.; Baldascino, M.; Guarino, S.; Perrotta, S.; Miraglia Del Giudice, E.; Nunziata, F. Acute kidney injury in children hospitalized for acute gastroenteritis: Prevalence and risk factors. Pediatr. Nephrol. 2021, 36, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.L. Pediatric acute kidney injury: It’s time for real progress. Pediatr. Nephrol. 2006, 21, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.; Devarajan, P. Biomarkers for the early detection of acute kidney injury. Pediatr. Nephrol. 2008, 23, 2151–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrier, R.W.; Wang, W.; Poole, B.; Mitra, A. Acute renal failure: Definitions, diagnosis, pathogenesis, and therapy. J. Clin. Invest. 2004, 114, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Rosner, M.H.; Okusa, M.D. Acute Kidney Injury Associated with Cardiac Surgery. Clin. J. Am. Soc. Nephrol. 2006, 1, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Xin, C.; Yulong, X.; Yu, C.; Changchun, C.; Feng, Z.; Xinwei, M. Urine Neutrophil Gelatinase-Associated Lipocalin and Interleukin-18 Predict Acute Kidney Injury after Cardiac Surgery. Ren. Fail. 2008, 30, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, S.; Manyam, B.; Azhibekov, T.; Mhanna, M.J. Risk factors associated with acute kidney injury in extremely low birth weight (ELBW) infants. Pediatr. Nephrol. 2011, 27, 303–311. [Google Scholar] [CrossRef]
- Moran, S.M.; Myers, B.D. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985, 27, 928–937. [Google Scholar] [CrossRef] [Green Version]
- Star, R.A. Treatment of acute renal failure. Kidney Int. 1998, 54, 1817–1831. [Google Scholar] [CrossRef] [Green Version]
- Beger, R.D.; Holland, R.D.; Sun, J.; Schnackenberg, L.K.; Moore, P.C.; Dent, C.L.; Devarajan, P.; Portilla, D. Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr. Nephrol. 2008, 23, 977–984. [Google Scholar] [CrossRef]
- Lavery, A.P.; Meinzen-Derr, J.K.; Anderson, E.; Ma, Q.; Bennett, M.R.; Devarajan, P.; Schibler, K.R. Urinary NGAL in Premature Infants. Pediatr. Res. 2008, 64, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askenazi, D.J.; Montesanti, A.; Hunley, H.; Koralkar, R.; Pawar, P.; Shuaib, F.; Liwo, A.; Devarajan, P.; Ambalavanan, N. Urine Biomarkers Predict Acute Kidney Injury and Mortality in Very Low Birth Weight Infants. J. Pediatr. 2011, 159, 907–912.e1. [Google Scholar] [CrossRef] [Green Version]
- McWilliam, S.; Antoine, D.J.; Sabbisetti, V.; Turner, M.A.; Farragher, T.; Bonventre, J.V.; Park, B.K.; Smyth, R.L.; Pirmohamed, M. Mechanism-Based Urinary Biomarkers to Identify the Potential for Aminoglycoside-Induced Nephrotoxicity in Premature Neonates: A Proof-of-Concept Study. PLoS ONE 2012, 7, e43809. [Google Scholar] [CrossRef]
- Jansen, D.; Peters, E.; Heemskerk, S.; Koster-Kamphuis, L.; Bouw, M.; Roelofs, H.; Van Oeveren, W.; Van Heijst, A.; Pickkers, P. Tubular Injury Biomarkers to Detect Gentamicin-Induced Acute Kidney Injury in the Neonatal Intensive Care Unit. Am. J. Perinatol. 2015, 33, 180–187. [Google Scholar] [CrossRef]
- Hanna, M.; Brophy, P.D.; Giannone, P.J.; Joshi, M.S.; Bauer, J.A.; Ramachandrarao, S. Early urinary biomarkers of acute kidney injury in preterm infants. Pediatr. Res. 2016, 80, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Tsukahara, H.; Sugaya, T.; Hayakawa, K.; Mori, Y.; Hiraoka, M.; Hata, A.; Mayumi, M. Quantification of L-type fatty acid binding protein in the urine of preterm neonates. Early Hum. Dev. 2005, 81, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Askenazi, D.J.; Koralkar, R.; Hundley, H.E.; Montesanti, A.; Parwar, P.; Sonjara, S.; Ambalavanan, N. Urine Biomarkers Predict Acute Kidney Injury in Newborns. J. Pediatr. 2012, 161, 270–275.e1. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, K.; Tsepkentzi, E.; Agakidou, E.; Diamanti, E.; Taparkou, A.; Soubasi, V.; Papachristou, F.; Drossou, V. Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr. Nephrol. 2012, 27, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Essajee, F.; Were, F.; Admani, B. Urine neutrophil gelatinase-associated lipocalin in asphyxiated neonates: A prospective cohort study. Pediatr. Nephrol. 2015, 30, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Al-Ismaili, Z.; Palijan, A.; Zappitelli, M. Biomarkers of acute kidney injury in children: Discovery, evaluation, and clinical application. Pediatr. Nephrol. 2011, 26, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Waikar, S.; Johnson, A.; Betensky, R.; Dent, C.; Devarajan, P.; Bonventre, J. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008, 73, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Zappitelli, M.; Washburn, K.K.; Arikan, A.A.; Loftis, L.; Ma, Q.; Devarajan, P.; Parikh, C.R.; Goldstein, S.L. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: A prospective cohort study. Crit. Care 2007, 11, R84. [Google Scholar] [CrossRef] [Green Version]
- Stanski, N.; Menon, S.; Goldstein, S.L.; Basu, R.K. Integration of urinary neutrophil gelatinase-associated lipocalin with serum creatinine delineates acute kidney injury phenotypes in critically ill children. J. Crit. Care 2019, 53, 1–7. [Google Scholar] [CrossRef]
- Decramer, S.; Wittke, S.; Mischak, H.; Zürbig, P.; Walden, M.; Bouissou, F.; Bascands, J.-L.; Schanstra, J.P. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat. Med. 2006, 12, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Mercier, K.; McRitchie, S.; Pathmasiri, W.; Novokhatny, A.; Koralkar, R.; Askenazi, D.; Brophy, P.D.; Sumner, S. Preterm neonatal urinary renal developmental and acute kidney injury metabolomic profiling: An exploratory study. Pediatr. Nephrol. 2017, 32, 151–161. [Google Scholar] [CrossRef]
- Liu, K.D.; Altmann, C.; Smits, G.; Krawczeski, C.D.; Edelstein, C.L.; Devarajan, P.; Faubel, S. Serum Interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: A case-control study. Crit. Care 2009, 13, R104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.T.; Dent, C.L.; Ross, G.F.; Harris, N.; Manning, P.B.; Mitsnefes, M.M.; Devarajan, P. Urinary aprotinin as a predictor of acute kidney injury after cardiac surgery in children receiving aprotinin therapy. Pediatr. Nephrol. 2008, 23, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, P.; Krawczeski, C.D.; Nguyen, M.T.; Kathman, T.; Wang, Z.; Parikh, C.R. Proteomic Identification of Early Biomarkers of Acute Kidney Injury After Cardiac Surgery in Children. Am. J. Kidney Dis. 2010, 56, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Xiao, C.; Liu, C.; Li, J.; Fang, F.; Lu, X.; Zhang, C.; Xu, F. Identification of Biomarkers of Sepsis-Associated Acute Kidney Injury in Pediatric Patients Based on UPLC-QTOF/MS. Inflammation 2020, 43, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Muhle-Goll, C.; Eisenmann, P.; Luy, B.; Kölker, S.; Tönshoff, B.; Fichtner, A.; Westhoff, J.H. Urinary NMR Profiling in Pediatric Acute Kidney Injury—A Pilot Study. Int. J. Mol. Sci. 2020, 21, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlayel, A.; Simms, K.J.A.; Ashoor, I.F. Emerging monitoring technologies in kidney transplantation. Pediatr. Nephrol. 2021, 36, 3077–3087. [Google Scholar] [CrossRef] [PubMed]
- Dharnidharka, V.R.; Fiorina, P.; Harmon, W.E. Kidney transplantation in children. N. Engl. J. Med. 2014, 371, 549–558. [Google Scholar] [CrossRef]
- Dharnidharka, V.R.; Lamb, K.E.; Zheng, J.; Schechtman, K.B.; Meier-Kriesche, H.-U. Lack of significant improvements in long-term allograft survival in pediatric solid organ transplantation: A US national registry analysis. Pediatr. Transplant. 2015, 19, 477–483. [Google Scholar] [CrossRef]
- Loupy, A.; Vernerey, D.; Tinel, C.; Aubert, O.; Van Huyen, J.-P.D.; Rabant, M.; Verine, J.; Nochy, D.; Empana, J.-P.; Martinez, F.; et al. Subclinical Rejection Phenotypes at 1 Year Post-Transplant and Outcome of Kidney Allografts. J. Am. Soc. Nephrol. 2015, 26, 1721–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nankivell, B.J.; Borrows, R.J.; Fung, C.L.-S.; O’Connell, P.J.; Allen, R.D.M.; Chapman, J.R. Natural History, Risk Factors, and Impact of Subclinical Rejection in Kidney Transplantation. Transplantation 2004, 78, 242–249. [Google Scholar] [CrossRef]
- Bolignano, D. Serum creatinine and the search for new biomarkers of acute kidney injury (AKI): The story continues. Clin. Chem. Lab. Med. 2012, 50, 1495–1499. [Google Scholar] [CrossRef]
- Hussain, F.; Mallik, M.; Marks, S.D.; Watson, A.R.; on behalf of the British Association of Paediatric Nephrology. Renal biopsies in children: Current practice and audit of outcomes. Nephrol. Dial. Transplant. 2010, 25, 485–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharnidharka, V.R.; Malone, A. Biomarkers to detect rejection after kidney transplantation. Pediatr. Nephrol. 2017, 33, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, C.P.; Conlon, P.J.; Phelan, P.J. Using omics to explore complications of kidney transplantation. Transpl. Int. 2017, 31, 251–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blydt-Hansen, T.D.; Sharma, A.; Gibson, I.; Mandal, R.; Wishart, D.S. Urinary Metabolomics for Noninvasive Detection of Borderline and Acute T Cell-Mediated Rejection in Children After Kidney Transplantation. Am. J. Transplant. 2014, 14, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
- Mincham, C.M.; Gibson, I.; Sharma, A.; Wiebe, C.; Mandal, R.; Rush, D.; Nickerson, P.; Ho, J.; Wishart, D.S.; Blydt-Hansen, T.D. Evolution of renal function and urinary biomarker indicators of inflammation on serial kidney biopsies in pediatric kidney transplant recipients with and without rejection. Pediatr. Transplant. 2018, 22, e13202. [Google Scholar] [CrossRef] [PubMed]
- Blydt-Hansen, T.; Sharma, A.; Gibson, I.; Wishart, D.S.; Mandal, R.; Ho, J.; Nickerson, P.; Rush, D. Urinary Metabolomics for Noninvasive Detection of Antibody-Mediated Rejection in Children After Kidney Transplantation. Transplantation 2017, 101, 2553–2561. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Groningen, M.C.-V.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef]
- Landsberg, A.; Sharma, A.; Gibson, I.W.; Rush, D.; Wishart, D.S.; Blydt-Hansen, T.D. Non-invasive staging of chronic kidney allograft damage using urine metabolomic profiling. Pediatr. Transplant. 2018, 22, e13226. [Google Scholar] [CrossRef]
- Wang, J.-N.; Zhou, Y.; Zhu, T.-Y.; Wang, X.; Guo, Y.-L. Prediction of Acute Cellular Renal Allograft Rejection by Urinary Metabolomics Using MALDI-FTMS. J. Proteome Res. 2008, 7, 3597–3601. [Google Scholar] [CrossRef]
- Suhre, K.; Schwartz, J.E.; Sharma, V.K.; Chen, Q.; Lee, J.R.; Muthukumar, T.; Dadhania, D.M.; Ding, R.; Ikle, D.N.; Bridges, N.D.; et al. Urine Metabolite Profiles Predictive of Human Kidney Allograft Status. J. Am. Soc. Nephrol. 2015, 27, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Posada-Ayala, M.; Zubiri, I.; Martin-Lorenzo, M.; Sanz-Maroto, A.; Molero, D.; Gonzalez-Calero, L.; Fernandez-Fernandez, B.; de la Cuesta, F.; Laborde, C.M.; Barderas, M.G.; et al. Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int. 2014, 85, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatierra, O., Jr.; Singh, T.; Shifrin, R.; Conley, S.; Alexander, S.; Tanney, D.; Lemley, K.; Sarwal, M.; Mackie, F.; Alfrey, E.; et al. Successful transplantation of adult-sized kidneys into infants requires maintenance of high aortic blood flow. Transplantation 1998, 66, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Naesens, M.; Kambham, N.; Concepcion, W.; Salvatierra, O.; Sarwal, M. The Evolution of Nonimmune Histological Injury and Its Clinical Relevance in Adult-Sized Kidney Grafts in Pediatric Recipients. Arab. Archaeol. Epigr. 2007, 7, 2504–2514. [Google Scholar] [CrossRef] [PubMed]
- Archdekin, B.; Sharma, A.; Gibson, I.; Rush, D.; Wishart, D.S.; Blydt-Hansen, T.D. Non-invasive differentiation of non-rejection kidney injury from acute rejection in pediatric renal transplant recipients. Pediatr. Transplant. 2019, 23, e13364. [Google Scholar] [CrossRef]
- Duranton, F.; Lundin, U.; Gayrard, N.; Mischak, H.; Aparicio, M.; Mourad, G.; Daurès, J.-P.; Weinberger, K.M.; Argilés, A. Plasma and Urinary Amino Acid Metabolomic Profiling in Patients with Different Levels of Kidney Function. Clin. J. Am. Soc. Nephrol. 2014, 9, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Bassi, R.; Niewczas, M.A.; Biancone, L.; Bussolino, S.; Merugumala, S.; Tezza, S.; D’Addio, F.; Ben Nasr, M.; Valderrama-Vasquez, A.; Usuelli, V.; et al. Metabolomic Profiling in Individuals with a Failing Kidney Allograft. PLoS ONE 2017, 12, e0169077. [Google Scholar] [CrossRef]
- Mezzolla, V.; Pontrelli, P.; Fiorentino, M.; Stasi, A.; Pesce, F.; Franzin, R.; Rascio, F.; Grandaliano, G.; Stallone, G.; Infante, B.; et al. Emerging biomarkers of delayed graft function in kidney transplantation. Transplant. Rev. 2021, 35, 100629. [Google Scholar] [CrossRef]
- Macioszek, S.; Wawrzyniak, R.; Kranz, A.; Kordalewska, M.; Struck-Lewicka, W.; Dudzik, D.; Biesemans, M.; Maternik, M.; Żurowska, A.M.; Markuszewski, M.J. Comprehensive Metabolic Signature of Renal Dysplasia in Children. A Multiplatform Metabolomics Concept. Front. Mol. Biosci. 2021, 8, 665661. [Google Scholar] [CrossRef]
- Baliga, M.M.; Klawitter, J.; Christians, U.; Hopp, K.; Chonchol, M.; Gitomer, B.Y.; Cadnapaphornchai, M.A.; Klawitter, J. Metabolic profiling in children and young adults with autosomal dominant polycystic kidney disease. Sci. Rep. 2021, 11, 6629. [Google Scholar] [CrossRef] [PubMed]
- Benito, S.; Sánchez, A.; Unceta, N.; Andrade, F.; Aldámiz-Echevarria, L.; Goicolea, M.A.; Barrio, R.J. LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic pathway-related compounds in plasma: Application to identify potential biomarkers in pediatric chronic kidney disease. Anal. Bioanal. Chem. 2016, 408, 747–760. [Google Scholar] [CrossRef]
- Marzuillo, P.; Guarino, S.; Di Sessa, A.; Rambaldi, P.F.; Reginelli, A.; Vacca, G.; Cappabianca, S.; Capalbo, D.; Esposito, T.; De Luca Picione, C.; et al. Congenital Solitary Kidney from Birth to Adulthood. J. Urol. 2021, 205, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Benito, S.; Sánchez-Ortega, A.; Unceta, N.; Andrade, F.; Aldámiz-Echevarria, L.; Goicolea, M.A.; Barrio, R.J. Untargeted metabolomics for plasma biomarker discovery for early chronic kidney disease diagnosis in pediatric patients using LC-QTOF-MS. Analyst 2018, 143, 4448–4458. [Google Scholar] [CrossRef] [PubMed]
- Marzuillo, P.; Grandone, A.; Di Sessa, A.; Guarino, S.; Diplomatico, M.; Umano, G.R.; Polito, C.; La Manna, A.; Perrone, L.; del Giudice, E.M. Anthropometric and Biochemical Determinants of Estimated Glomerular Filtration Rate in a Large Cohort of Obese Children. J. Ren. Nutr. 2018, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Brooks, E.R.; Lin, D.C.; Langman, C.B.; Thompson, J.W.; John-Williams, L.S.; Furth, S.L.; Warady, B.; Haymond, S. Metabolomic Patterns in Adolescents with Mild to Moderate CKD. Kidney Int. Rep. 2019, 4, 720–723. [Google Scholar] [CrossRef]
- Denburg, M.R.; Xu, Y.; Abraham, A.G.; Coresh, J.; Chen, J.; Grams, M.E.; Feldman, H.I.; Kimmel, P.L.; Rebholz, C.M.; Rhee, E.P.; et al. Metabolite Biomarkers of CKD Progression in Children. Clin. J. Am. Soc. Nephrol. 2021, 16, 1178–1189. [Google Scholar] [CrossRef]
- Schultheiss, U.T.; Sekula, P. The Promise of Metabolomics in Decelerating CKD Progression in Children. Clin. J. Am. Soc. Nephrol. 2021, 16, 1152–1154. [Google Scholar] [CrossRef]
- Sood, M.M.; Murphy, M.S.; Hawken, S.; Wong, C.A.; Potter, B.K.; Burns, K.D.; Tsampalieros, A.; Atkinson, K.M.; Chakraborty, P.; Wilson, K. Association Between Newborn Metabolic Profiles and Pediatric Kidney Disease. Kidney Int. Rep. 2018, 3, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsson, B.; Berg, U.; Svensson, L. Renal scarring after acute pyelonephritis. Arch. Dis. Child. 1994, 70, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Guarino, S.; Capalbo, D.; Martin, N.; Campana, G.; Rambaldi, P.F.; Del Giudice, E.M.; La Manna, A.; Marzuillo, P. In children with urinary tract infection reduced kidney length and vesicoureteric reflux predict abnormal DMSA scan. Pediatr. Res. 2019, 87, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Keren, R.; Shaikh, N.; Pohl, H.; Gravens-Mueller, L.; Ivanova, A.; Zaoutis, L.; Patel, M.; Deberardinis, R.; Parker, A.; Bhatnagar, S.; et al. Risk Factors for Recurrent Urinary Tract Infection and Renal Scarring. Pediatrics 2015, 136, e13–e21. [Google Scholar] [CrossRef] [Green Version]
- Vitko, D.; McQuaid, J.W.; Gheinani, A.H.; Hasegawa, K.; Di Martino, S.; Davis, K.H.; Chung, C.Y.; Petrosino, J.F.; Adam, R.M.; Mansbach, J.M.; et al. Urinary Tract Infections in Children with Vesicoureteral Reflux Are Accompanied by Alterations in Urinary Microbiota and Metabolome Profiles. Eur. Urol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ahern, P.P.; Faith, J.J.; Gordon, J.I. Mining the Human Gut Microbiota for Effector Strains that Shape the Immune System. Immun. 2014, 40, 815–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neis, E.P.J.G.; Dejong, C.H.C.; Rensen, S.S. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients 2015, 7, 2930–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, J.D.; Macdonald, I.A. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by Clostridium absonum. J. Lipid Res. 1982, 23, 726–732. [Google Scholar] [CrossRef]
- Marzuillo, P.; Guarino, S.; Apicella, A.; La Manna, A.; Polito, C. Why we need a higher suspicion index of urolithiasis in children. J. Pediatr. Urol. 2017, 13, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Denburg, M.R.; Koepsell, K.; Lee, J.-J.; Gerber, J.; Bittinger, K.; Tasian, G.E. Perturbations of the Gut Microbiome and Metabolome in Children with Calcium Oxalate Kidney Stone Disease. J. Am. Soc. Nephrol. 2020, 31, 1358–1369. [Google Scholar] [CrossRef]
- Gambaro, G. Empirical therapy or precision medicine for kidney stone formers in the ‘-omics’ era? Urolithiasis 2018, 47, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Cao, Y.; Li, Y.; Zhu, F.; Yuan, M.; Xu, J.; Li, J. Metabolomics analysis of the serum from children with urolithiasis using UPLC-MS. Clin. Transl. Sci. 2021, 14, 1327–1337. [Google Scholar] [CrossRef]
- Greed, L.; Willis, F.; Johnstone, L.; Teo, S.; Belostotsky, R.; Frishberg, Y.; Pitt, J. Metabolite diagnosis of primary hyperoxaluria type 3. Pediatr. Nephrol. 2018, 33, 1443–1446. [Google Scholar] [CrossRef]
- Eddy, S.; Mariani, L.H.; Kretzler, M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 657–668. [Google Scholar] [CrossRef]
References | Study Design and Methods | Population (n) | Main Findings |
---|---|---|---|
Macioszek et al. [68] | prospective, case control study; GC-QQQ/MS, LC-TOF-MS | 72 children: −39 with renal dysplasia (mean age 5.68 yr.) −33 healthy controls (mean age 7.28 yr.) | The main changes detected derived from the purine, lipid, and aminoacid metabolism and included glycolysis, TCA cycle, and the urea cycle |
Baliga et al. [69] | randomized, double- blind, placebo- controlled phase 3 clinical trial; HPLC–MS/MS | 58 patients: 31 undergoing treatment with pravastatin (mean age 16 ± 3 yr.) and 27 with placebo (mean age 15 ± 4 yr.) | Thirty-seven metabolites showed a potential role to differentiate plasma of children with ADPKD and healthy subjects. |
References | Study Design and Methods | Population (n) | Main Findings |
---|---|---|---|
Benito et al. [70] | Cohort study using LC-QTOF-MS based targeted metabolomics of arginine–creatine metabolic pathway to identify potential plasma biomarkers in pediatric CKD | 56 patients: −32 patients suffering from CKD aged 3–17 years in different stages of the disease; −24 healthy patients aged 6–18 years | Five metabolites were increased independently of creatinine (glycine, citrulline, ADMA and SDMA) while dimethylglycine was increased when CKD patients had plasma creatinine levels above 12 microg/mL |
Benito et al. [72] | Cohort study using LC-QTOF-MS based untargeted metabolomics to identify potential plasma biomarkers in pediatric CKD. | 58 patients: −32 patients suffering from CKD aged 3–18 yr. in different stages of the disease; −26 healthy patients aged 6–19 yr. | Four metabolites were increased in patients with CKD (sphingosine-1-phosphate, n-butyrylcarnitine, cis-4-decenoylcarnitine and an unidentified feature with 126.0930 m/z), while bilirubin was significantly decreased. |
Brooks et al. [74] | Cohort study using targeted metabolomics to identify altered biochemical pathways in plasma of adolescents with mild to moderate CKD (stage 2 and 3b). | 40 patients subdivided in two cohorts matched by age, gender, and CKD etiology (glomerulopathy and non-glomerularurologic anomalies). | Five metabolites (phosphatidylcholine, Trp, Kyn, creatinine and acylcarnitine) and ratios (Tyr/Cr, Orn/Cit, Kyn/Trp, Pro/Cit, Phe/Trp and SDMA/ADMA) were significantly different between the cohorts. |
Denburg et al. [75,76] | Multicenter prospective cohort study using plasma samples of CKD children, enrolled between January 2005 and December 2014, to detect metabolites involved in CKD progression. | 645 participants (aged from 6 months to 16 years) with eGFR of 30–90 mL/min per 1.73 m2. | 825 metabolites were recognized. For children with baseline eGFR ≥60 mL/min per 1.73 m2, seven metabolites were significantly associated with CKD progression, such as N6-carbamoylthreonyladenosine, 5,6-dihydrouridine, pesudouridine, C-glycosyltryptophan, lanthionine, 2-methylcitrate/homocitrate and gulonate. Children with eGFR <60 mL/min per 1.73 m2 had higher level of tetrahydrocortisol sulfate, which was associated with lower risk of CKD progression. |
Sood et al. [77] | Population-level cohort study using metabolic profiles from newborns from 2006 to 2015 to detect metabolic profiles at birth possibly associated with higher risk of CKD or dialysis. | 1,288,905 newborns, born between 1 April 2006 and 26 September 2015 for whom newborn screening data were available. | Among the analyzed children, 2086 developed CKD and 641 required dialysis. For CKD, the strongest associations were with citrulline, phenylalanine/glycine, acylcarnitines, acylcarnitine ratios, and ratios between amino acids and acylcarnitines to endocrine markers such as 17-hydroxyprogesterone. For dialysis, the strongest associations were with amino acid ratios (phenylalanine/glycine, phenylalanine/tyrosine, citrulline/tyrosine), acylcarnitine ratios and ratio of amino acids to acylcarnitine. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccio, S.; Valentino, M.S.; Passaro, A.P.; Izzo, M.; Guarino, S.; Miraglia del Giudice, E.; Marzuillo, P.; Di Sessa, A. New Insights from Metabolomics in Pediatric Renal Diseases. Children 2022, 9, 118. https://doi.org/10.3390/children9010118
Riccio S, Valentino MS, Passaro AP, Izzo M, Guarino S, Miraglia del Giudice E, Marzuillo P, Di Sessa A. New Insights from Metabolomics in Pediatric Renal Diseases. Children. 2022; 9(1):118. https://doi.org/10.3390/children9010118
Chicago/Turabian StyleRiccio, Simona, Maria Sole Valentino, Antonio Paride Passaro, Marica Izzo, Stefano Guarino, Emanuele Miraglia del Giudice, Pierluigi Marzuillo, and Anna Di Sessa. 2022. "New Insights from Metabolomics in Pediatric Renal Diseases" Children 9, no. 1: 118. https://doi.org/10.3390/children9010118
APA StyleRiccio, S., Valentino, M. S., Passaro, A. P., Izzo, M., Guarino, S., Miraglia del Giudice, E., Marzuillo, P., & Di Sessa, A. (2022). New Insights from Metabolomics in Pediatric Renal Diseases. Children, 9(1), 118. https://doi.org/10.3390/children9010118