Associations of Motor Performance and Executive Functions: Comparing Children with Down Syndrome to Chronological and Mental Age-Matched Controls
Abstract
:1. Introduction
2. Methods
2.1. Participants
Matching Procedure
2.2. Materials
2.2.1. Motor Performance
2.2.2. Cognitive Performance
2.2.3. Covariates
2.2.3.1. Sociodemographic Information and Sports Participation
2.2.3.2. Receptive Vocabulary Test
2.3. Experimental Procedure
2.4. Data Analysis
3. Results
3.1. Participants
3.2. Motor Performance
3.3. Cognitive Performance
3.4. Relationship between Motor Skill and Cognitive Performance
4. Discussion
4.1. Motor Skill Performance
4.2. Cognitive Performance
4.3. Relationship between the Motor and Cognitive Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patterson, T.; Rapsey, C.M.; Glue, P. Systematic review of cognitive development across childhood in Down syndrome: Implications for treatment interventions. J. Intellect. Disabil. Res. 2013, 57, 306–318. [Google Scholar] [CrossRef]
- Ferreira, A.T.; Lamonica, D.A.C. Comparing the lexicon of children with Down syndrome and typically developing the same mental age. Rev. CEFAC 2012, 14, 786–791. [Google Scholar] [CrossRef]
- Schott, N.; Holfelder, B.; Mousouli, O. Motor skill assessment in children with Down Syndrome: Relationship between performance-based and teacher-report measures. Res. Dev. Disabil. 2014, 35, 3299–3312. [Google Scholar] [CrossRef]
- Hocking, D.R.; Menant, J.C.; Kirk, H.E.; Lord, S.; Porter, M.A. Gait profiles as indicators of domain-specific impairments in executive control across neurodevelopmental disorders. Res. Dev. Disabil. 2014, 35, 203–214. [Google Scholar] [CrossRef]
- Tungate, A.S.; Conners, F.A. Executive function in Down syndrome: A meta-analysis. Res. Dev. Disabil. 2021, 108, 103802. [Google Scholar] [CrossRef]
- Grieco, J.; Pulsifer, M.; Seligsohn, K.; Skotko, B.; Schwartz, A. Down syndrome: Cognitive and behavioral functioning across the lifespan. Am. J. Med. Genet. C Semin. Med. Genet. 2015, 169, 135–149. [Google Scholar] [CrossRef]
- Wasserman, T.; Wasserman, L.D. Toward an integrated model of executive functioning in children. Appl. Neuropsychol. Child 2013, 2, 88–96. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Charlton, J.L.; Ihsen, E.; Lavelle, B.M. Control of manual skills in children with Down syndrome. In Perceptual-Motor Behavior in Down Syndrome; Weeks, D.J., Chua, R., Elliott, D., Eds.; Human Kinetics: Champaign, IL, USA, 2000; pp. 25–48. ISBN 9780880119757. [Google Scholar]
- Woollacott, M.H.; Shumway-Cook, A. The development of the postural and voluntary motor control systems in down’s syndrome children. Adv. Psychol. 1986, 31, 45–71. [Google Scholar] [CrossRef]
- De Campos, A.C.; Savelsbergh, G.J.; Rocha, N.A. What do we know about the atypical development of exploratory actions during infancy? Res. Dev. Disabil. 2012, 33, 2228–2235. [Google Scholar] [CrossRef]
- Capio, C.M.; Rotor, E.R. Fundamental movement skills among Filipino children with Down syndrome. J. Exerc. Sci. Fit. 2010, 8, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Connolly, B.H.; Michael, B.T. Performance of retarded children, with and without Down’s syndrome, on the Bruininks Oseretsky test of motor proficiency. Phys. Ther. 1986, 66, 344–348. [Google Scholar] [CrossRef]
- Volman, M.J.; Visser, J.J.; Lensvelt-Mulders, G.J. Functional status in 5 to 7-year-old children with Down syndrome in relation to motor ability and performance mental ability. Disabil. Rehabil. 2007, 29, 25–31. [Google Scholar] [CrossRef]
- Hasan, H.B.; Abdullah, N.M.; Suun, A. The assessment of gross motor skills development among down syndrome children in Klang Valley. In Proceedings of the 2012 IEEE Symposium on Humanities, Science and Engineering Research, Kuala Lumpur, Malaysia, 24–27 June 2012; pp. 217–221. [Google Scholar] [CrossRef]
- Diamond, A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Piek, J.P.; Dyck, M.J.; Nieman, A.; Anderson, M.; Hay, D.; Smith, L.M.; McCoy, M.; Hallmayer, J. The relationship between motor coordination, executive functioning and attention in school aged children. Arch. Clin. Neuropsychol. 2004, 19, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Schott, N.; Holfelder, B. Relationship between motor skill competency and executive function in children with Down’s syndrome. J. Intellect. Disabil. Res. 2015, 59, 860–872. [Google Scholar] [CrossRef]
- Westendorp, M.; Hartman, E.; Houwen, S.; Smith, J.; Visscher, C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Res. Dev. Disabil. 2011, 32, 2773–2779. [Google Scholar] [CrossRef]
- Wassenberg, R.; Feron, F.J.; Kessels, A.G.; Hendriksen, J.G.; Kalff, A.C.; Kroes, M.; Hurks, P.P.M.; Beeren, M.; Jolles, J.; Vles, J.S. Relation between cognitive and motor performance in 5- to 6-year-old children: Results from a large-scale cross-sectional study. Child Dev. 2005, 76, 1092–1103. [Google Scholar] [CrossRef]
- Hartman, E.; Houwen, S.; Scherder, E.; Visscher, C. On the relationship between motor performance and executive functioning in children with intellectual disabilities. J. Intellect. Disabil. Res. 2010, 54, 468–477. [Google Scholar] [CrossRef]
- Moriyama, C.H.; Massetti, T.; Crocetta, T.B.; Silva, T.D.D.; Mustacchi, Z.; Guarnieri, R.; De Abreu, L.C.; De Araújo, A.V.L.; Del Ciello De Menezes, L.; De Mello Monteiro, C.B.; et al. Systematic review of the main motor scales for clinical assessment of individuals with Down Syndrome. Dev. Neurorehabilit. 2020, 23, 39–49. [Google Scholar] [CrossRef]
- Ulrich, D.A. Test of Gross Motor Development Examiner’s Manual, 2nd ed.; PRO-ED: Austin, TX, USA, 2000. [Google Scholar]
- Espy, K.A.; Cwik, M.F. The development of a trial making test in young children: The TRAILS-P. Clin. Neuropsychol. 2004, 18, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Lanfranchi, S.; Jerman, O.; Dal Pont, E.; Alberti, A.; Vianello, R. Executive function in adolescents with Down Syndrome. J. Intellect. Disabil. Res. 2010, 54, 308–319. [Google Scholar] [CrossRef]
- Borella, E.; Carretti, B.; Lanfranchi, S. Inhibitory mechanisms in Down syndrome: Is there a specific or general deficit? Res. Dev. Disabil. 2013, 34, 65–71. [Google Scholar] [CrossRef]
- Milgram, N.A. Cognition and language in mental retardation: Distinctions and implications. In The Experimental Psychology of Mental Retardation; Routh, D.K., Ed.; Routledge: London, UK, 2017; pp. 157–230. ISBN 9781315131948. [Google Scholar]
- Spaniol, M.; Danielsson, H. A meta-analysis of the executive function components inhibition, shifting, and attention in intellectual disabilities. J. Intellect. Disabil. Res. 2021. [Google Scholar] [CrossRef]
- Kohlberg, L. Early education: A cognitive-developmental view. Child Dev. 1968, 39, 1013–1062. [Google Scholar] [CrossRef]
- Zigler, E.; Balla, D. Mental Retardation: The Developmental-Difference Controversy; Routledge: London, UK, 2013; ISBN 9781299626287. [Google Scholar]
- Houwen, S.; Visser, L.; van der Putten, A.; Vlaskamp, C. The interrelationships between motor, cognitive, and language development in children with and without intellectual and developmental disabilities. Res. Dev. Disabil. 2016, 53–54, 19–31. [Google Scholar] [CrossRef]
- Dunn, L.M.; Dunn, D.M. PPVT-4: Peabody Picture Vocabulary Test; Pearson Assessments: Frankfurt, Germany, 2007. [Google Scholar]
- Lenhard, A.; Lenhard, W.; Segerer, R.; Suggate, S. Peabody Picture Vocabulary Test, Deutsche Fassung, 4th ed.; Hogrefe: Göttingen, Germany, 2015. [Google Scholar]
- Henderson, S.E.; Sugden, D.A.; Barnett, A.L. Movement Assessment Battery for Children, 2nd ed.; Pearson: Oxford, UK, 2007. [Google Scholar]
- Petermann, F. Movement Assessment Battery for Children-2 (Movement ABC-2): Manual; Harcourt Test Services/Pearson: Frankfurt am Main, Germany, 2008. [Google Scholar]
- Blank, R.; Smits-Engelsman, B.; Polatajko, H.; Wilson, P. European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev. Med. Child Neurol. 2012, 54, 54–93. [Google Scholar] [CrossRef]
- Reitan, R.M. Validity of the Trail Making Test as an indicator of organic brain damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Kortte, K.B.; Horner, M.D.; Windham, W.K. The trail making test, part B: Cognitive flexibility or ability to maintain set? Appl. Neuropsychol. 2002, 9, 106–109. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Executive control in set switching: Residual switch cost and task-set inhibition. Can. J. Exp. Psychol. 2000, 54, 33–41. [Google Scholar] [CrossRef]
- Schott, N.; El-Rajab, I.; Klotzbier, T. Cognitive-motor interference during fine and gross motor tasks in children with Developmental Coordination Disorder (DCD). Res. Dev. Disabil. 2016, 57, 136–148. [Google Scholar] [CrossRef]
- Klotzbier, T.J.; Schott, N. Cognitive-Motor Interference during walking in older adults with probable mild cognitive impairment. Front. Aging Neurosci. 2017, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Gaudino, E.A.; Geisler, M.W.; Squires, N.K. Construct validity in the Trail Making Test: What makes Part B harder? J. Clin. Exp. Neuropsychol. 1995, 17, 529–535. [Google Scholar] [CrossRef]
- Fals-Stewart, W. An interrater reliability study of the Trail Making Test (Parts A and B). Percept. Mot. Ski. 1992, 74, 39–42. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.E.E.A.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [Green Version]
- Salthouse, T.A. What cognitive abilities are involved in trail-making performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Crowe, S.F. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J. Clin. Psychol. 1998, 54, 585–591. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail making test, part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Demakis, G.J. Frontal lobe damage and tests of executive processing: A meta-analysis of the category test, stroop test, and trail-making test. J. Clin. Exp. Neuropsychol. 2004, 26, 441–450. [Google Scholar] [CrossRef]
- Reitan, R.M.; Wolfson, D. Category Test and Trail Making Test as measures of frontal lobe functions. Clin. Neuropsychol. 1995, 9, 50–56. [Google Scholar] [CrossRef]
- Loveall, S.J.; Channell, M.M.; Phillips, B.A.; Abbeduto, L.; Conners, F.A. Receptive vocabulary analysis in Down syndrome. Res. Dev. Disabil. 2016, 55, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Krasileva, K.E.; Sanders, S.J.; Bal, V.H. Peabody Picture Vocabulary Test: Proxy for verbal IQ in genetic studies of autism spectrum disorder. J. Autism Dev. Disord. 2017, 47, 1073–1085. [Google Scholar] [CrossRef]
- Dilling, H.; Dittmann, V. Psychiatric diagnosis following the 10th revision of the International Classification of Diseases (ICD-10). Nervenarzt 1990, 61, 259–270. [Google Scholar]
- Costanzo, F.; Varuzza, C.; Menghini, D.; Addona, F.; Gianesini, T.; Vicari, S. Executive functions in intellectual disabilities: A comparison between Williams syndrome and Down syndrome. Res. Dev. Disabil. 2013, 34, 1770–1780. [Google Scholar] [CrossRef]
- Meegan, S.; Maraj, B.; Weeks, D.; Chua, R. Gross motor skill acquisition in adolescents with Down syndrome. Down Syndr. Res. Pract. 2006, 9, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Virji-Babul, N.; Moiseev, A.; Cheung, T.; Weeks, D.; Cheyne, D.; Ribary, U. Changes in mu rhythm during action observation and execution in adults with Down syndrome: Implications for action representation. Neurosci. Lett. 2008, 436, 177–180. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki, ethical principles for medical research involving human subjects. In Proceedings of the 52nd WMA General Assembly, Edinburgh, Scotland, 3–7 October 2000. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson: Boston, MA, USA, 2013; ISBN 9780205849574. [Google Scholar]
- Preacher, K.J. Calculation for the Test of the Difference between Two Independent Correlation Coefficients [Computer Software]. Available online: www.quantpsy.org (accessed on 12 October 2021).
- Hatch-Stein, J.A.; Zemel, B.S.; Prasad, D.; Kalkwarf, H.J.; Pipan, M.; Magge, S.N.; Kelly, A. Body composition and BMI growth charts in children with Down syndrome. Pediatrics 2016, 138, e20160541. [Google Scholar] [CrossRef] [Green Version]
- Moss, S.J.; Czyz, S.H. Level of agreement between physical activity levels measured by ActiHeart and the International Physical Activity Questionnaire in persons with intellectual disability. Disabil. Rehabil. 2018, 40, 360–366. [Google Scholar] [CrossRef]
- Marchal, J.P.; Maurice-Stam, H.; Houtzager, B.A.; van Rozenburg-Marres, S.L.R.; Oostrom, K.J.; Grootenhuis, M.A.; van Trotsenburg, A.S.P. Growing up with Down syndrome: Development from 6 months to 10.7 years. Res. Dev. Disabil. 2016, 59, 437–450. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Gardner, R.A.; Broman, M. The Purdue pegboard: Normative data on 1334 school children. J. Clin. Child Psychol. 1979, 8, 156–162. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Rogers, S.L.; Dowe-Keval, M.; Donahoe, L.; Rennells, C. The Purdue Pegboard: Norms for 14- to 19-year-olds. Am. J. Occup. Ther. 1986, 40, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Castelli, D.M. Motor performance or opportunities to move? What do children need the most? J. Sport Health Sci. 2019, 8, 149–152. [Google Scholar] [CrossRef]
- Vallence, A.-M.; Hebert, J.; Jespersen, E.; Klakk, H.; Rexen, C.; Wedderkopp, N. Childhood motor performance is increased by participation in organized sport: The CHAMPS Study-DK. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.L.; Marcopulos, B.A. A comparison of normative data for the Trail Making Test from several countries: Equivalence of norms and considerations for interpretation. Scand. J. Psychol. 2008, 49, 239–246. [Google Scholar] [CrossRef]
- Horvat, M.; Croce, R.; Fallaize, A. Information processing and motor control in Down syndrome. J. Down Syndr. Chr. Abnorm. 2016, 2, 107. [Google Scholar] [CrossRef]
- Müller, U.; Baker, L.; Yeung, E. A developmental systems approach to executive function. Adv. Child Dev. Behav. 2013, 45, 39–66. [Google Scholar] [CrossRef]
- Fiske, A.; Holmboe, K. Neural substrates of early executive function development. Dev. Rev. 2019, 52, 42–62. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Schott, N.; Klotzbier, T. The motor–cognitive connection: Indicator of future developmental success in children and adoles-cents? In Physical Activity and Educational Achievement; Meeusen, R., Schaefer, S., Tomporowski, P., Bailey, R., Eds.; Routledge: London, UK, 2017; pp. 111–129. ISBN 9781315305790. [Google Scholar]
- van der Fels, I.M.J.; Te Wierike, S.C.M.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [Green Version]
- El-Hady, S.S.A.; El-Azim, F.H.A.; El-Talawy, H.A.E.-A.M. Correlation between cognitive function, gross motor skills and health—Related quality of life in children with Down syndrome. Egypt. J. Med. Hum. Genet. 2018, 19, 97–101. [Google Scholar] [CrossRef]
- Malak, R.; Kostiukow, A.; Krawczyk-Wasielewska, A.; Mojs, E.; Samborski, W. Delays in motor development in children with Down syndrome. Med. Sci. Monit. 2015, 21, 1904–1910. [Google Scholar] [CrossRef] [Green Version]
- Malak, R.; Kotwicka, M.; Krawczyk-Wasielewska, A.; Mojs, E.; Samborski, W. Motor skills, cognitive development and balance functions of children with Down syndrome. Ann. Agric. Environ. Med. 2013, 20, 804–806. [Google Scholar]
- Chen, C.-C.; Ringenbach, S.D.; Albert, A.; Semken, K. Fine motor control is related to cognitive control in adolescents with Down syndrome. Int. J. Disabil. Dev. Educ. 2014, 61, 6–15. [Google Scholar] [CrossRef]
- Horvat, M.; Croce, R.; Tomporowski, P.; Barna, M.C. The influence of dual-task conditions on movement in young adults with and without Down syndrome. Res. Dev. Disabil. 2013, 34, 3517–3525. [Google Scholar] [CrossRef]
- Kover, S.T.; Atwood, A.K. Establishing equivalence: Methodological progress in group-matching design and analysis. Am. J. Intellect. Dev. Disabil. 2013, 118, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.E.; Doherty, B.J.; Boynton, L. Basis of reading skill in young adults with Down syndrome. In Down Syndrome: Living and Learning in the Community; Nadel, L., Rosenthal, D., Eds.; Wiley-Liss: Hoboken, NJ, USA, 1995; pp. 182–196. ISBN 9780471022015. [Google Scholar]
- Horowitz, K.T.; Schmitz, R.; Hutton, J.S.; Schumacher, J. How to create a successful reader? Milestones in reading development from birth to adolescence. Acta Paediatr. 2017, 106, 534–544. [Google Scholar] [CrossRef]
- Van Der Fels, I.M.J.; Smith, J.; De Bruijn, A.G.M.; Bosker, R.J.; Königs, M.; Oosterlaan, J.; Visscher, C.; Hartman, E. Relations between gross motor skills and executive functions, controlling for the role of information processing and lapses of attention in 8–10 year old children. PLoS ONE 2019, 14, e0224219. [Google Scholar] [CrossRef] [Green Version]
DS | TD-CA | TD-MA | Statistical Analyses | |
---|---|---|---|---|
(n = 12) | (n = 12) | (n = 12) | ||
Age (years) | 10.5 ± 10.08 § | 10.5 ± 10.07 | 5.98 ± 1.21 # | F(2,33) = 65.8, p < 0.001, η2p = 0.799 |
Sex (% male) | 500.0 | 500.0 | 500.0 | CHI2(2) = 00.00, p = 10.00 |
Weight (kg) | 32.1 ± 7.76 §,# | 40.1 ± 7.67 | 19.4 ± 50.02 # | F(2,33) = 27.1, p < 0.001, η2p = 0.621 |
Height (cm) | 133 ± 80.05 §,# | 150 ± 5.83 | 115 ± 13.8 # | F(2,33) = 37.9, p < 0.001, η2p = 0.697 |
BMI (kg/m2) | 180.0 ± 2.76 § | 17.8 ± 2.73 | 14.6 ± 1.62 # | F(2,33) = 7.27, p = 0.002, η2p = 0.306 |
Medication (n) | 1.42 ± 0.79 §,# | 00.00 ± 00.00 | 00.08 ± 0.29 | F(2,33) = 31.9, p < 0.001, η2p = 0.659 |
Finger length (cm) | 5.48 ± 0.34 # | 7.13 ± 0.53 | 5.38 ± 0.70 # | F(2,33) = 39.2, p < 0.001, η2p = 0.704 |
Palm length (cm) | 80.07 ± 0.93# | 9.54 ± 0.50 | 7.46 ± 0.84# | F(2,33) = 22.8, p < 0.001, η2p = 0.580 |
Palm-to-finger length ratio | 0.69 ± 00.07 | 0.75 ± 00.05 | 0.72 ± 00.07 | F(2,33) = 2.80, p = 0.075, η2p = 0.145 |
PPVT-IV raw value Receptive vocabulary Score | 96.6 ± 19.7 # 66.6 ± 2.13 | 172 ± 190.0 980.0 ± 12.2 | 105 ± 28.4 # 920.0 ± 10.4 | F(2,33) = 38.9, p < 0.001, η2p = 0.702 F(2,33) = 38.1, p < 0.001, η2p = 0.698 |
Sports participation (min/week) | 138 ± 45.1 § | 158 ± 71.4 | 62.5 ± 71.4 # | F(2,33) = 7.38, p = 0.002, η2p = 0.309 |
MD Percentile | AC Percentile | B Percentile | TTS Percentile | |
---|---|---|---|---|
DS | ||||
r | r | r | r | |
TMT-M | 0.177 | −0.179 | 0.032 | −0.206 |
TMT-A | −0.038 | 0.074 | −0.190 | −0.215 |
TMT-B | −0.232 | 0.367 | −0.273 | −0.189 |
TD-MA | ||||
TMT-M | 0.156 | 0.004 | 0.318 | 0.158 |
TMT-A | 0.078 | −0.184 | −0.204 | −0.170 |
TMT-B | −0.317 | −0.401 | −0.520 T | −0.456 T |
TD−CA | ||||
TMT-M | −0.280 | 0.418 | 0.032 | 0.189 |
TMT-A | −0.385 | −0.407 | 0.345 | −0.570 * |
TMT-B | −0.335 | −0.089 | 0.713 * | −0.316 |
DS vs. TD-MA | ||||
---|---|---|---|---|
MD Percentile | AC Percentile | B Percentile | TTS Percentile | |
TMT-M | z = 0.046; p = 0.481 | z = −0.394; p = 0.346 | z = −0.631; p = 0.264 | z = −0.781; p = 0.217 |
TMT-A | z = −0.246; p = 0.402 | z = 0.554; p = 0.289 | z = 0.031; p = 0.487 | z = −0.099; p = 0.460 |
TMT-B | z = 0.354; p = 0.361 | z = 1.72; p = 0.042 | z = 0.628; p = 0.264 | z = 0.638; p = 0.261 |
DS vs. TD−CA | ||||
TMT-M | z = 0.99; p =.161 | z = −1.33; p = 0.091 | z = 0.0; p = 0.5 | z = −0.849; p = 0.197 |
TMT-A | z = 0.78; p = 0.217 | z = 1.16; p = 0.123 | z = −1.171; p = 0.120 | z = 0.91; p = 0.181 |
TMT-B | z = 0.238; p = 0.405 | z = 10.01; p = 0.156 | z = −2.489; p = 0.006 | z = 0.288; p = 0.386 |
TD−MA vs. TD−CA | ||||
TMT-M | z = 0.944; p = 0.172 | z = −0.936; p = 0.174 | z = 0.631; p = 0.264 | z = −0.068; p = 0.472 |
TMT-A | z = 10.03; p = 0.152 | z = 0.522; p = 0.301 | z = −1.20; p = 0.114 | z = 10.01; p = 0.156 |
TMT-B | z = 0.043; p = 0.482 | z = −0.712; p = 0.238 | z = −3.12; p < 0.001 | z = −0.35; p = 0.363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klotzbier, T.J.; Holfelder, B.; Schott, N. Associations of Motor Performance and Executive Functions: Comparing Children with Down Syndrome to Chronological and Mental Age-Matched Controls. Children 2022, 9, 73. https://doi.org/10.3390/children9010073
Klotzbier TJ, Holfelder B, Schott N. Associations of Motor Performance and Executive Functions: Comparing Children with Down Syndrome to Chronological and Mental Age-Matched Controls. Children. 2022; 9(1):73. https://doi.org/10.3390/children9010073
Chicago/Turabian StyleKlotzbier, Thomas Jürgen, Benjamin Holfelder, and Nadja Schott. 2022. "Associations of Motor Performance and Executive Functions: Comparing Children with Down Syndrome to Chronological and Mental Age-Matched Controls" Children 9, no. 1: 73. https://doi.org/10.3390/children9010073
APA StyleKlotzbier, T. J., Holfelder, B., & Schott, N. (2022). Associations of Motor Performance and Executive Functions: Comparing Children with Down Syndrome to Chronological and Mental Age-Matched Controls. Children, 9(1), 73. https://doi.org/10.3390/children9010073