Enteral Sodium Chloride Supplementation and Fluid Balance in Children Receiving Diuretics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilder, N.S.; Yu, S.; Donohue, J.E.; Goldberg, C.S.; Blatt, N.B. Fluid overload is associated with late poor outcomes in neonates following cardiac surgery. Pediatr. Crit. Care Med. 2016, 17, 420–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alobaidi, R.; Morgan, C.; Basu, R.K.; Senson, E.; Featherstone, R.; Majumadar, S.R.; Bagshaw, S.M. Association between fluid balance and outcomes in critically ill children: A systematic review and meta-analysis. JAMA Pediatr. 2018, 172, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittner, M.; Di Stefano, A.; Wangemann, P.; Greger, R. How do loop diuretics act? Drugs 1991, 41 (Suppl. 3), 1–13. [Google Scholar] [CrossRef]
- Carpenter, R.; Kouyoumijian, S.; Moromisato, D.; Phuong, L.; Amirnovin, R. Lower-dose intravenous chlorothiazide is an effective adjunct diuretic to furosemide following pediatric cardiac surgery. J. Pediatr. Pharmacol. Ther. 2020, 25, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.T.; Moffett, B.S.; Akcan-Arikan, A.; Galati, M.; Afonso, N.; Checchia, P.A. Enhancement of diuresis with metolazone in infant paediatric cardiac intensive care patients. Cardiol. Young 2018, 28, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, M.; Mizuno, A.; Kohsaka, S.; Shiraishi, Y.; Kohno, T.; Goda, A.; Higuchi, S.; Yagawa, M.; Nagatomo, Y.; Yoshikawa, T. Incidence of hospital-acquired hyponatremia by the dose and type of diuretics among patients with acute heart failure and its association with long-term outcomes. J. Cardiol. 2018, 71, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Dartois, L.; Levek, C.; Grover, T.; Murphy, M.E.; Ross, E.L. Diuretic use and subsequent electrolyte supplementation in a level IV neonatal intensive care urine. J. Pediatr. Pharmacol. Ther. 2020, 23, 124–130. [Google Scholar]
- Price, J.F.; Kantor, P.F.; Shaddy, R.E.; Rossano, J.W.; Goldberg, J.F.; Hagan, J.; Humlicek, T.J.; Cabrera, A.G.; Jeewa, A.; Denfield, S.W.; et al. Incidence, severity, and association with adverse outcome of hyponatremia in children hospitalized with heart failure. Am. J. Cardiol. 2016, 118, 1006–1010. [Google Scholar] [CrossRef]
- Hanna, S.; Tibby, S.M.; Durward, A.; Murdoch, I.A. Incidence of hyponatraemia and hyponatraemic seizures in severe respiratory syncytial virus bronchiolitis. Acta Paediatr. 2003, 93, 430–434. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guidelines for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Selewski, D.T.; Cornell, T.T.; Lombel, R.M.; Blatt, N.B.; Han, Y.Y.; Mottes, T.; Kommareddi, M.; Kershaw, D.B.; Shanley, T.P.; Heung, M. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 2011, 37, 1166–1173. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.; Heel, R.C. Bumetanide. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs 1984, 28, 426–464. [Google Scholar] [CrossRef]
- Grahnen, A.; Hammarlund, M.; Lundqvist, T. Implications of intraindividual variability in bioavailability studies of furosemide. Euro. J. Clin. Pharmacol. 1984, 27, 595–602. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Ohuchi, H.; Negishi, J.; Ono, S.; Miyake, A.; Toyota, N.; Tamaki, W.; Yamada, O. Hyponatremia and its association with the neurohormonal activity and adverse clinical events in children and young adult patients after the Fontan operation. Congenit. Heart Dis. 2011, 6, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Scammell, A.M.; Diver, M.J. Plasma renin activity in infants with congenital heart disease. Arch. Dis. Child 1987, 62, 1136–1138. [Google Scholar] [CrossRef] [Green Version]
- Buchhorn, R.; Ross, R.; Bartmus, D.; Wessel, A.; Hulpke-Wette, M.; Bürsch, J. Activity of the renin-angiotensin-aldosterone and sympathetic nervous system and their relation to hemodynamic and clinical abnormalities in infants with left-to-right shunts. Int. J. Cardiol. 2001, 70, 225–230. [Google Scholar] [CrossRef]
- Lilly, L.S.; Czau, V.; Williams, G.; Rydstedt, L.; Hollenberg, N.K. Hyponatremia in congestive heart failure: Implications for neurohumoral activation and responses to orthostasis. J. Clin. Endocrinol. Metab. 1984, 59, 924–930. [Google Scholar] [CrossRef]
- Lijnen, P.; Fagard, R.; Staessen, J.; Amery, A. Effect of chronic diuretic treatment on the plasma renin-angiotensin-aldosterone system in essential hypertension. Br. J. Clin. Pharmacol. 1981, 12, 387–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayliss, J.; Norell, M.; Canepa-Anson, R.; Sutton, G.; Poole-Wilson, P. Untreated heart failure: Clinical and neuroendocrine effects of introducing diuretics. Br. Heart J. 1987, 57, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Sica, D.; Oren, R.M.; Gottwald, M.D.; Mills, R.M. Natriuretic and neurohormonal responses to nesiritide, furosemide, and combined nesiritide and furosemide in patients with stable systolic dysfunction. Clin. Cardiol. 2010, 33, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, G.; Di Pasquale, P.; Licata, G.; Torres, D.; Giammanco, M.; Fasullo, S.; Mezzero, M.; Paterna, S. Long-term effects of dietary sodium intake on cytokines and neruohormonal activation in patients with recently compensated congestive heart failure. J. Cardiac Fail. 2009, 15, 864–873. [Google Scholar] [CrossRef]
- Damgaard, M.; Norsk, P.; Gustafsson, F.; Kanters, J.K.; Christensen, N.J.; Bie, P.; Gadsbøll, N. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1294–R1301. [Google Scholar] [CrossRef] [Green Version]
- Earley, L.E.; Martino, J.A. Influence of sodium balance on the ability of diuretics to inhibit tubular reabsorption. A study of factors that influence renal tubular sodium reabsorption in man. Circulation 1970, 42, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Licata, G.; Di Pasquale, P.; Parrinello, G.; Amato, P.; Cardinale, A.; Follone, G.; Giubiato, A.; Licata, G. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: Long-term effects. Am. Heart J. 2003, 145, 459–466. [Google Scholar] [CrossRef]
- Paterna, S.; Di Gaudio, F.; La Rocca, V.; Balistreri, F.; Greco, M.; Torres, D.; Lupo, U.; Rizzo, G.; di Pasquale, P.; Indelicato, S.; et al. Hypertonic saline in conjunction with high-dose furosemide improves dose-response curves in worsening refractory congestive heart failure. Adv. Ther. 2015, 32, 971–982. [Google Scholar] [CrossRef] [Green Version]
- Okuhara, Y.; Hirotani, S.; Naito, Y.; Nakabo, A.; Iwasaku, T.; Eguchi, A.; Morisawa, D.; Ando, T.; Sawada, H.; Manabe, E.; et al. Intravenous salt supplementation with low-dose furosemide for treatment of acute decompensated heart failure. J. Cardiac Fail. 2014, 20, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Isemann, B.; Mueller, E.W.; Narendran, V.; Akinbi, H. Impact of early sodium supplementation on hyponatremia and growth in premature infants: A randomized controlled trial. J. Parentter. Enteral Nutr. 2016, 40, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Al-Dahhan, J.; Jannoun, L.; Haycock, G.B. Effect of salt supplementation of newborn premature infants on neurodevelopmental outcome at 10-13 years of age. Arch. Dis. Child Fetal. Neonatal. Ed. 2002, 86, F120–F123. [Google Scholar] [CrossRef] [Green Version]
- Chance, G.W.; Radde, I.C.; Willis, D.M.; Roy, R.N.; Park, E.; Ackerman, I. Postnatal growth of infants of <1.3 kg birth weight: Effects of metabolic acidosis, of caloric intake, and of calcium, sodium, and phosphate supplementation. J. Pediatr. 1977, 91, 787–793. [Google Scholar] [CrossRef]
- Abbott Nutrition: Similac Advance. Available online: www.abbottnutrition.com/similac-advance (accessed on 1 November 2021).
- Koo, W.W.; Gupta, J.M. Breast milk sodium. Arch. Dis. Child 1982, 57, 500–502. [Google Scholar] [CrossRef] [Green Version]
- De Bacquer, D.; De Bacquer, G.; De Buyzere, M.; Kornitzer, M. Is low serum chloride level a risk factor for cardiovascular mortality? J. Cardiovasc. Risk 1998, 5, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Naal, T.; Abuhalimeh, B.; Khirfan, G.; Dweik, R.A.; Wilson Tang, W.H.; Tonelli, A.R. Serum chloride levels track with survival in patients with pulmonary arterial hypertension. Chest 2019, 154, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Hanberg, J.S.; Rao, V.; ter Maaten, J.M.; Laur, O.; Brisco, M.A.; Wilson, F.P.; Grodin, J.L.; Assefa, M.; Bougton, J.S.; Planawsky, N.J.; et al. Hypochloremia and diuretic resistance in heart failure. Circ. Heart Fail. 2016, 9, pe003180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barhight, M.F.; Brinton, J.; Stidham, T.; Soranno, D.E.; Faubel, S.; Griffin, B.R.; Goebel, J.; Mourani, P.M.; Gist, K.M. Increase in chloride from baseline is independently associated with mortality in critically ill children. Intensive Care Med. 2018, 44, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Giacoia, G.; Pineda, R. Diuretics, Hypochloremia and outcome in bronchopulmonary dysplasia patients. Dev. Pharmacol. Ther. 1991, 16, 212–220. [Google Scholar] [CrossRef]
- Perlman, J.M.; Moore, V.; Siegel, M.J.; Dawson, J. Is chloride depletion an important contributing cause of death in infants with bronchopulmonary dysplasia? Pediatrics 1986, 77, 212–216. [Google Scholar] [CrossRef]
- Sierra, C.M.; Hernandez, E.A.; Parbuoni, K.A. Use of arginine hydrochloride in the treatment of metabolic alkalosis of Hypochloremia in pediatric patients. J. Pediatr. Pharmacol. 2018, 23, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Heble, D.E.; Oschman, A.; Sandritter, T.L. Comparison of arginine hydrochloride and acetazolamide for the correction of metabolic alkalosis in pediatric patients. Am. J. Ther. 2016, 23, e1469–e1473. [Google Scholar] [CrossRef]
- McNab, S.; Duke, T.; South, M.; Babl, F.E.; Lee, K.J.; Arnup, S.J.; Young, S.; Turner, H.; Davidson, A. 140 mml/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): A randomized controlled double-blind trial. Lancet 2015, 385, 1190–1197. [Google Scholar] [CrossRef]
Number (%) n = 56 | |
---|---|
Admission diagnosis category | |
Cardiac—single ventricle post- | |
operative | 20 (36) |
Cardiac—two ventricle post-operative | 9 (16) |
Cardiac—heart failure | 8 (14) |
Cardiac—other | 9 (16) |
Non-cardiac—respiratory | 4 (7) |
Non-cardiac—other | 6 (11) |
Sex, male | 32 (58) |
Supplementation event variables | Number (%) n = 68 |
Location of first NaCl order | |
PICU | 47 (69) |
Med Surg | 21 (31) |
On vasoactive support | 19 (28) |
On mechanical ventilation | 29 (43) |
Variable | 7 Days Prior to Starting NaCl | 7 Days after Starting NaCl | p Value |
---|---|---|---|
Fluid balance, mL/kg/day | 17 (7–26) | 22 (13–35) | 0.0003 |
Total fluid in, mL/kg/day | 122 (104–136) | 130 (104–152) | 0.0002 |
Enteral feeds in, mL/kg/day | 75 (52–98) | 106 (88–125) | <0.0001 |
TPN in, mL/kg/day | 0 (0–28.6) | 0 (0–0.2) | <0.0001 |
IVF in, mL/kg/day | 23 (10–38) | 8 (0.8–23) | <0.0001 |
Total fluid out, mL/kg/day | 106 (88–118) | 103 (88–123) | 0.90 |
Urine output, mL/kg/hour | 4.0 (3.1–4.7) | 3.9 (3.2–4.5) | 0.62 |
Surgical drain out, mL/kg/day | 0 (0–2.6) | 0 (0–0) | 0.10 |
Weight change, kg | 0 (−0.2–0.2) | 0 (−0.1–0.2) | 0.63 |
Loop diuretic, mg/kg/day | 3.2 (2.3–4.3) | 3.2 (2.2–4.7) | 0.50 |
Variable | 7 Days Prior to NaCl | 7 Days after NaCl | p Value |
---|---|---|---|
Fluid balance, ml/kg/day | |||
Sodium < 130 | 17 (7–25) | 24 (15–37) | 0.0002 |
Sodium ≥ 130 | 17.5 (7–26) | 21 (5–34) | 0.23 |
Enteral feeds, mL/kg/day | |||
Sodium < 130 | 89 (57–107) | 115 (90–136) | <0.0001 |
Sodium ≥ 130 | 72 (50–82) | 101 (84–119) | <0.0001 |
Weight change, kg | |||
Sodium < 130 | 0 (−0.2–0.3) | 0.1 (−0.1–0.2) | 0.99 |
Sodium ≥ 130 | 0.1 (−0.1–0.2) | 0.1 (−0.1–0.3) | 0.57 |
UOP, mL/kg/hour | |||
Sodium < 130 | 4.0 (3.1–4.7) | 4.0 (3.4–4.5) | 0.65 |
Sodium ≥ 130 | 4.1 (3.1–4.8) | 4.1 (2.8–4.7) | 0.50 |
Loop diuretics, mg/kg/day | |||
Sodium < 130 | 3.2 (2.2–3.8) | 2.7 (2.0–4.1) | 0.97 |
Sodium ≥ 130 | 3.5 (2.6–4.4) | 3.2 (2.3–5.0) | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortmann, L.; Mauch, T.J.; Ballweg, J. Enteral Sodium Chloride Supplementation and Fluid Balance in Children Receiving Diuretics. Children 2022, 9, 94. https://doi.org/10.3390/children9010094
Ortmann L, Mauch TJ, Ballweg J. Enteral Sodium Chloride Supplementation and Fluid Balance in Children Receiving Diuretics. Children. 2022; 9(1):94. https://doi.org/10.3390/children9010094
Chicago/Turabian StyleOrtmann, Laura, Teri J. Mauch, and Jean Ballweg. 2022. "Enteral Sodium Chloride Supplementation and Fluid Balance in Children Receiving Diuretics" Children 9, no. 1: 94. https://doi.org/10.3390/children9010094
APA StyleOrtmann, L., Mauch, T. J., & Ballweg, J. (2022). Enteral Sodium Chloride Supplementation and Fluid Balance in Children Receiving Diuretics. Children, 9(1), 94. https://doi.org/10.3390/children9010094