The Influence of Increased Dairy Product Consumption, as Part of a Lifestyle Modification Intervention, on Diet Quality and Eating Patterns in Female Adolescents with Overweight/Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Anthropometrics and Body Composition
2.4. Exercise Intervention
2.5. Dietary Intervention
2.6. Food Record Analysis
2.7. Canadian Healthy Eating Index (HEI-C) and Nutrient Intake Analyses
2.8. Snacking Characteristics and Eating Patterns Analyses
2.9. Dairy Product Eating Patterns Analysis
2.10. Statistical Analysis
3. Results
3.1. Diet Quality Analyses
3.1.1. Canadian Healthy Eating Index (HEI-C; Table 3)
3.1.2. Nutrient Intakes (Table 4)
LDa (n = 20) | RDa (n = 23) | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
HEI-C Score (Max) | Wk 0 | Wk 12 | Change | Wk 0 | Wk 12 | Change | G | T | Int |
Total HEI-C (100) | 51.4 (13.0) | 65.8 (10.5) | 14.4 (15.9) | 50.5 (12.3) | 70.9 (10.6) | 20.4 (15.2) | 0.44 | <0.001 | 0.21 |
Total vegetables and fruit (10) | 3.8 (2.4) | 6.2 (2.9) | 2.4 (3.2) | 3.7 (2.5) | 6.0 (2.9) | 2.2 (3.3) | 0.82 | <0.001 | 0.84 |
Whole fruit (5) | 2.9 (2.0) | 3.6 (1.7) | 0.7 (2.8) | 2.9 (2.0) | 3.7 (1.7) | 0.8 (2.6) | 0.94 | 0.071 | 0.90 |
Dark green and orange vegetables (5) | 1.2 (1.3) | 3.4 (1.9) | 2.2 (2.0) | 1.3 (1.2) | 3.3 (1.6) | 2.0 (1.9) | 0.89 | <0.001 | 0.68 |
Total grain products (5) | 3.9 (1.2) | 3.5 (0.9) | −0.4 (1.2) | 4.1 (0.9) | 3.1 (0.8) | −1.0 (1.0) | 0.70 | <0.001 | 0.060 |
Whole grains (5) ‡ | 0.8 (1.2) | 2.6 (1.7) | 1.8 (1.6) | 1.4 (1.5) | 2.0 (1.6) | 0.6 (2.1) | 0.83 | <0.001 | 0.069 |
Milk and alternatives (10) | 1.8 (1.5) | 0.7 * (1.0) | −1.1 (1.6) | 3.0 # (2.0) | 9.0 *# (1.2) | 6.0 (2.5) | <0.001 | <0.001 | <0.001 |
Meat and alternatives (10) | 7.9 (2.6) | 9.4 (2.0) | 1.5 (3.7) | 7.5 (2.5) | 8.5 (2.4) | 1.0 (3.2) | -- | 0.009 | 0.68 |
Unsaturated fats (10) § | 8.5 (2.1) | 9.3 (1.4) | 0.8 (2.5) | 8.5 (2.1) | 8.8 (1.5) | 0.3 (2.6) | 0.50 | 0.17 | 0.52 |
Saturated fats (10) § | 5.6 (3.8) | 8.0 * (1.9) | 2.4 (3.4) | 5.0 (2.8) | 4.5 # (2.6) | −0.5 (4.1) | 0.003 | 0.11 | 0.016 |
Sodium (10) | 5.9 (3.4) | 6.8 (2.8) | 0.9 (4.8) | 5.7 (2.6) | 6.1 (3.1) | 0.3 (3.5) | 0.54 | 0.33 | 0.66 |
“Other food” (20) | 9.2 (6.6) | 12.5 (5.1) | 3.3 (7.6) | 7.3 (5.7) | 16.0 *# (4.9) | 8.7 (7.0) | 0.54 | <0.001 | 0.020 |
DRI | LDa (n = 20) | RDa (n = 23) | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient | Wk0 | Wk 12 | Change | Wk0 | Wk 12 | Change | G | T | Int | ||
Energy (kcal) | - | 1637 (481) | 1485 (204) | −151 (538) | 1812 (431) | 1749 (346) | −62 (430) | 0.019 | 0.16 | 0.55 | |
Protein (g/kg/d) † | 0.76/0.71 a | 0.95/0.85 b | 0.91 (0.34) | 0.97 (0.16) | 0.06 (0.33) | 0.86 (0.34) | 1.17 *# (0.30) | 0.31 (0.24) | 0.45 | <0.001 | 0.021 |
Protein (g) | 34/46 b | 68 (20) | 73 (11) | 5 (22) | 66 (19) | 91 *# (16) | 24 (18) | 0.053 | <0.001 | 0.004 | |
Protein (% of energy) | 10–30 d | 17 (4) | 20 * (3) | 3 (5) | 15 # (3) | 21 * (3) | 6 (4) | 0.49 | <0.001 | 0.023 | |
Fat (g) | - | 64 (24) | 60 (14) | −4 (27) | 73 (17) | 67 (19) | −6 (24) | 0.073 | 0.20 | 0.83 | |
Carbohydrate (g) | 100 a | 130 b | 204 (62) | 172 (32) | −32 (76) | 228 (65) | 202 (52) | −26 (64) | 0.044 | 0.009 | 0.81 |
Total fibre (g) | 26 c | 15 (4) | 19 (7) | 4 (6) | 14 (4) | 15 (6) | 0 (6) | 0.14 | 0.031 | 0.057 | |
Total sugar (g) | - | 69 (36) | 49 * (18) | −20 (44) | 84 (34) | 97 # (30) | 13 (39) | <0.001 | 0.59 | 0.011 | |
Total saturated fatty acids (g) † | As low as possible | 21 (11) | 16 (4) | −5 (10) | 24 (8) | 24 (7) | 0 (8) | 0.001 | 0.15 | 0.080 | |
Alpha-linolenic acid (g) † | 1.0/1.1 c | 1.0 (0.5) | 1.4 (0.9) | 0.3 (0.9) | 1.1 (0.5) | 1.4 (0.9) | 0.4 (0.9) | 0.46 | 0.037 | 0.59 | |
Linoleic acid (g) | 10/11 c | 8.3 (3.5) | 10.1 (4.3) | 1.9 (6.2) | 8.6 (4.0) | 8.8 (4.8) | 0.3 (6.3) | 0.55 | 0.27 | 0.41 | |
Thiamin (mg) † | 0.7/0.9 a | 0.9/1.0 b | 1.0 (0.3) | 1.2 (0.4) | 0.2 (0.5) | 1.3 (0.8) | 1.1 (0.4) | −0.2 (0.6) | 0.36 | 0.88 | 0.056 |
Riboflavin (mg) † | 0.8/0.9 a | 0.9/1.0 b | 1.0 (0.4) | 1.1 (0.4) | 0.0 (0.6) | 1.3 (0.5) | 1.8 *# (0.3) | 0.5 (0.5) | <0.001 | 0.004 | 0.012 |
Niacin (mg NE) | 9/11 a | 12/14 b | 25 (10) | 30 (8) | 5 (13) | 22 (8) | 26 (8) | 4 (9) | 0.10 | 0.017 | 0.84 |
Vitamin B6 (mg) | 0.8/1.0 a | 1.0/1.2 b | 1.1 (0.5) | 1.3 (0.4) | 0.2 (0.6) | 1.1 (0.7) | 1.2 (0.4) | 0.1 (0.7) | 0.74 | 0.11 | 0.51 |
Vitamin B12 (ug) † | 1.5/2.0 a | 1.8/2.4 b | 2.3 (1.5) | 2.3 (1.3) | 0.0 (1.8) | 2.6 (1.4) | 4.0 *# (1.2) | 1.4 (1.2) | 0.002 | 0.006 | 0.012 |
Vitamin D (ug) | 10 a | 15 b | 1.4 (0.8) | 2.0 (1.9) | 0.5 (1.9) | 2.5 # (1.8) | 5.8 *# (1.4) | 3.2 (2.2) | <0.001 | <0.001 | <0.001 |
Folate (ug DFE) | 250/330 a | 300/400 b | 283 (108) | 301 (101) | 18 (163) | 295 (110) | 288 (89) | −7 (126) | 0.96 | 0.81 | 0.57 |
Calcium (mg) | 1100 a | 1300 b | 557 (262) | 510 (176) | −47 (251) | 770 # (325) | 1338 *# (193) | 568 (363) | <0.001 | <0.001 | <0.001 |
Iron (mg) | 5.7/7.9 a | 8/15 b | 10.4 (3.5) | 11.1 (2.8) | 0.7 (4.2) | 12.3 (3.5) | 10.0 * (2.8) | −2.3 (3.3) | 0.64 | 0.17 | 0.015 |
Magnesium (mg) † | 200/300 a | 240/360 b | 160 (48) | 231 (76) | 71 (85) | 187 (76) | 227 (92) | 40 (109) | 0.60 | <0.001 | 0.29 |
Phosphorus (mg) | 1055 a | 1250 b | 786 (266) | 879 (194) | 93 (328) | 866 (328) | 1483 *# (230) | 617 (332) | <0.001 | <0.001 | <0.001 |
Potassium (mg) | 4500/4700 c | 1549 (554) | 1780 (406) | 231 (634) | 1673 (664) | 2329 *# (480) | 656 (658) | 0.014 | <0.001 | 0.038 | |
Sodium (mg) | 1500 c | 2863 (1281) | 2521 (862) | −342 (1622) | 2899 (859) | 2791 (1007) | −108 (1167) | 0.50 | 0.30 | 0.59 | |
Zinc (mg) † | 7.0/7.3 a | 8.0/9.0 b | 6.1 (2.4) | 6.9 (2.5) | 0.8 (3.5) | 7.0 (3.3) | 8.7 (2.1) | 1.8 (3.2) | 0.021 | 0.004 | 0.33 |
3.2. Snacking Analysis
3.2.1. Snacking Characteristics (Figure 1)
3.2.2. Snacking Categories (Table 5)
3.3. Dairy Product Eating Patterns Analysis (Figure 2)
4. Discussion
4.1. Diet Quality and Nutrient Intake
4.2. Snacking Characteristics and Categories
4.3. Dairy Product Eating Patterns
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Canada. Table 13-10-0795-01. Measured Children and Youth Body Mass Index (BMI) (World Health Organization Classification), by Age Group and Sex, Canada and Provinces, Canadian Community Health Survey—Nutrition. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310079501 (accessed on 27 October 2022).
- Herman, K.M.; Craig, C.L.; Gauvin, L.; Katzmarzyk, P.T. Tracking of obesity and physical activity from childhood to adulthood: The Physical Activity Longitudinal Study. Int. J. Pediatr. Obes. 2009, 4, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Pawlak, D.B.; Ludwig, D.S. Childhood obesity: Public-health crisis, common sense cure. Lancet 2002, 360, 473–482. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Grossman, D.S.; Bibbins-Domingo, K.; Curry, S.J.; Barry, M.J.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; Krist, K.H.; et al. Screening for Obesity in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2017, 317, 2417–2426. [Google Scholar] [CrossRef] [PubMed]
- Iglesia, I.; Intemann, T.; De Miguel-Etayo, P.; Pala, V.; Hebestreit, A.; Wolters, M.; Russo, P.; Veidebaum, T.; Papoutsou, S.; Nagy, P.; et al. Dairy Consumption at Snack Meal Occasions and the Overall Quality of Diet during Childhood. Prospective and Cross-Sectional Analyses from the IDEFICS/I.Family Cohort. Nutrients 2020, 12, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keast, D.R.; Hill Gallant, K.M.; Albertson, A.M.; Gugger, C.K.; Holschuh, N.M. Associations between yogurt, dairy, calcium, and vitamin D intake and obesity among U.S. children aged 8–18 years: NHANES, 2005–2008. Nutrients 2015, 7, 1577–1593. [Google Scholar] [CrossRef] [PubMed]
- Maillot, M.; Rehm, C.D.; Vieux, F.; Rose, C.M.; Drewnowski, A. Beverage consumption patterns among 4–19 y old children in 2009-14 NHANES show that the milk and 100% juice pattern is associated with better diets. Nutr. J. 2018, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Xun, P.; Wan, Y.; He, K.; Cai, W. Long-term association between dairy consumption and risk of childhood obesity: A systematic review and meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2016, 70, 414–423. [Google Scholar] [CrossRef]
- Vatanparast, H.; Islam, N.; Shafiee, M. Consumption of Milk and alternatives decreased among Canadians from 2004 to 2015: Evidence from the Canadian community health surveys. BMC Nutr. 2021, 7, 63. [Google Scholar] [CrossRef]
- Green, B.P.; Turner, L.; Stevenson, E.; Rumbold, P.L. Short communication: Patterns of dairy consumption in free-living children and adolescents. J. Dairy Sci. 2015, 98, 3701–3705. [Google Scholar] [CrossRef] [Green Version]
- Nezami, M.; Segovia-Siapco, G.; Beeson, W.L.; Sabate, J. Associations between Consumption of Dairy Foods and Anthropometric Indicators of Health in Adolescents. Nutrients 2016, 8, 427. [Google Scholar] [CrossRef]
- Bo, S.; De Carli, L.; Venco, E.; Fanzola, I.; Maiandi, M.; De Michieli, F.; Durazzo, M.; Beccuti, G.; Cavallo-Perin, P.; Ghigo, E.; et al. Impact of snacking pattern on overweight and obesity risk in a cohort of 11- to 13-year-old adolescents. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. What Is a Snack, Why Do We Snack, and How Can We Choose Better Snacks? A Review of the Definitions of Snacking, Motivations to Snack, Contributions to Dietary Intake, and Recommendations for Improvement. Adv. Nutr. 2016, 7, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatanparast, H.; Islam, N.; Patil, R.P.; Shafiee, M.; Smith, J.; Whiting, S. Snack Consumption Patterns among Canadians. Nutrients 2019, 11, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangoni, F.; Martini, D.; Scaglioni, S.; Sculati, M.; Donini, L.M.; Leonardi, F.; Agostoni, C.; Castelnuovo, G.; Ferrara, N.; Ghiselli, A.; et al. Snacking in nutrition and health. Int. J. Food Sci. Nutr. 2019, 70, 909–923. [Google Scholar] [CrossRef]
- Potter, M.; Vlassopoulos, A.; Lehmann, U. Snacking Recommendations Worldwide: A Scoping Review. Adv. Nutr. 2018, 9, 86–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatanparast, H.; Islam, N.; Masoodi, H.; Shafiee, M.; Patil, R.P.; Smith, J.; Whiting, S.J. Time, location and frequency of snack consumption in different age groups of Canadians. Nutr. J. 2020, 19, 85. [Google Scholar] [CrossRef]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.P.; de Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C.; et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Brauer, P.; Royall, D.; Rodrigues, A. Use of the Healthy Eating Index in Intervention Studies for Cardiometabolic Risk Conditions: A Systematic Review. Adv. Nutr. 2021, 12, 1317–1331. [Google Scholar] [CrossRef]
- Calleja, M.; Caetano Feitoza, N.; Falk, B.; Klentrou, P.; Ward, W.E.; Sullivan, P.J.; Josse, A.R. Increased dairy product consumption as part of a diet and exercise weight management program improves body composition in adolescent females with overweight and obesity-A randomized controlled trial. Pediatr. Obes. 2020, 15, e12690. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body composition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josse, A.R.; Atkinson, S.A.; Tarnopolsky, M.A.; Phillips, S.M. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J. Nutr. 2011, 141, 1626–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; p. 1358. [Google Scholar]
- Josse, A.R.; Ludwa, I.A.; Kouvelioti, R.; Calleja, M.; Falk, B.; Ward, W.E.; Klentrou, P. Dairy product intake decreases bone resorption following a 12-week diet and exercise intervention in overweight and obese adolescent girls. Pediatr. Res. 2020, 88, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Eating Well with Canada’s Food Guide 2007; Health Canada: Ottawa, ON, Canada, 2007. [Google Scholar]
- Jessri, M.; Lou, W.Y.; L’Abbe, M.R. Evaluation of different methods to handle misreporting in obesity research: Evidence from the Canadian national nutrition survey. Br. J. Nutr. 2016, 115, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garriguet, D. Diet quality in Canada. Health Rep. 2009, 20, 41–52. [Google Scholar] [PubMed]
- Tripicchio, G.L.; Kachurak, A.; Davey, A.; Bailey, R.L.; Dabritz, L.J.; Fisher, J.O. Associations between Snacking and Weight Status among Adolescents 12–19 Years in the United States. Nutrients 2019, 11, 1486. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.L.; Corvalan, C.; Reyes, M.; Popkin, B.M.; Taillie, L.S. Snacking patterns among Chilean children and adolescents: Is there potential for improvement? Public Health Nutr. 2019, 22, 2803–2812. [Google Scholar] [CrossRef]
- Skelly, L.E.; Barbour-Tuck, E.N.; Kurgan, N.; Calleja, M.; Klentrou, P.; Falk, B.; Josse, A.R. Neutral Effect of Increased Dairy Product Intake, as Part of a Lifestyle Modification Program, on Cardiometabolic Health in Adolescent Girls with Overweight/Obesity: A Secondary Analysis from a Randomized Controlled Trial. Front. Nutr. 2021, 8, 673589. [Google Scholar] [CrossRef]
- Campmans-Kuijpers, M.J.; Singh-Povel, C.; Steijns, J.; Beulens, J.W. The association of dairy intake of children and adolescents with different food and nutrient intakes in the Netherlands. BMC Pediatr. 2016, 16, 2. [Google Scholar] [CrossRef] [Green Version]
- Cifelli, C.J.; Agarwal, S.; Fulgoni, V.L., 3rd. Association of Yogurt Consumption with Nutrient Intakes, Nutrient Adequacy, and Diet Quality in American Children and Adults. Nutrients 2020, 12, 3435. [Google Scholar] [CrossRef]
- Zhu, Y.; Jain, N.; Holschuh, N.; Smith, J. Associations between frequency of yogurt consumption and nutrient intake and diet quality in the United Kingdom. J. Nutr. Sci. 2021, 10, e85. [Google Scholar] [CrossRef] [PubMed]
- Chazelas, E.; Srour, B.; Desmetz, E.; Kesse-Guyot, E.; Julia, C.; Deschamps, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Sugary drink consumption and risk of cancer: Results from NutriNet-Sante prospective cohort. BMJ 2019, 366, l2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Kim, H.; Rebholz, C.M. Higher Ultra-Processed Food Consumption Is Associated with Increased Risk of Incident Coronary Artery Disease in the Atherosclerosis Risk in Communities Study. J. Nutr. 2021, 151, 3746–3754. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Canada. Do Canadian Adolescents Meet Their Nutrient Requirements through Food Intake Alone? Cat. No. H164-112/2-2012E-PDF; Health Canada: Ottawa, ON, Canada, 2012. [Google Scholar]
- O’Sullivan, T.A.; Ambrosini, G.; Beilin, L.J.; Mori, T.A.; Oddy, W.H. Dietary intake and food sources of fatty acids in Australian adolescents. Nutrition 2011, 27, 153–159. [Google Scholar] [CrossRef]
- Kirkpatrick, S.I.; Raffoul, A.; Lee, K.M.; Jones, A.C. Top dietary sources of energy, sodium, sugars, and saturated fats among Canadians: Insights from the 2015 Canadian Community Health Survey. Appl. Physiol. Nutr. Metab. 2019, 44, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranceta Bartrina, J.; Serra-Majem, L.; Perez-Rodrigo, C.; Ribas-Barba, L.; Delgado-Rubio, A. Nutrition risk in the child and adolescent population of the Basque country: The enKid Study. Br. J. Nutr. 2006, 96 (Suppl. 1), S58–S66. [Google Scholar] [CrossRef] [Green Version]
- Krauss, R.M.; Kris-Etherton, P.M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: NO. Am. J. Clin. Nutr. 2020, 112, 19–24. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Krauss, R.M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: YES. Am. J. Clin. Nutr. 2020, 112, 13–18. [Google Scholar] [CrossRef]
- de Oliveira Otto, M.C.; Mozaffarian, D.; Kromhout, D.; Bertoni, A.G.; Sibley, C.T.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary intake of saturated fat by food source and incident cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2012, 96, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astrup, A.; Bertram, H.C.; Bonjour, J.P.; de Groot, L.C.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirahatake, K.M.; Astrup, A.; Hill, J.O.; Slavin, J.L.; Allison, D.B.; Maki, K.C. Potential Cardiometabolic Health Benefits of Full-Fat Dairy: The Evidence Base. Adv. Nutr. 2020, 11, 533–547. [Google Scholar] [CrossRef]
- Harrison, S.; Brassard, D.; Lemieux, S.; Lamarche, B. Dietary Saturated Fats from Different Food Sources Show Variable Associations with the 2015 Healthy Eating Index in the Canadian Population. J. Nutr. 2020, 150, 3288–3295. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Wang, Y.F.; Ahmed, M.; Ng, A.P.; DiAngelo, C.; Marsden, S.L.; Sievenpiper, J.L. Intakes of nutrients and food categories in Canadian children and adolescents across levels of sugars intake: Cross-sectional analyses of the Canadian Community Health Survey 2015 Public Use Microdata File. Appl. Physiol. Nutr. Metab. 2022, 47, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Waling, M.; Larsson, C. Improved dietary intake among overweight and obese children followed from 8 to 12 years of age in a randomised controlled trial. J. Nutr. Sci. 2012, 1, e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wengle, J.G.; Hamilton, J.K.; Manlhiot, C.; Bradley, T.J.; Katzman, D.K.; Sananes, R.; Adeli, K.; Birken, C.S.; Abadilla, A.A.; McCrindle, B.W. The ’Golden Keys’ to health—A healthy lifestyle intervention with randomized individual mentorship for overweight and obesity in adolescents. Paediatr. Child Health 2011, 16, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Miri, S.F.; Javadi, M.; Lin, C.Y.; Griffiths, M.D.; Bjork, M.; Pakpour, A.H. Effectiveness of cognitive-behavioral therapy on nutrition improvement and weight of overweight and obese adolescents: A randomized controlled trial. Diabetes Metab. Syndr. 2019, 13, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
- Black, M.M.; Hager, E.R.; Le, K.; Anliker, J.; Arteaga, S.S.; Diclemente, C.; Gittelsohn, J.; Magder, L.; Papas, M.; Snitker, S.; et al. Challenge! Health promotion/obesity prevention mentorship model among urban, black adolescents. Pediatrics 2010, 126, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Steyn, N.P.; de Villiers, A.; Gwebushe, N.; Draper, C.E.; Hill, J.; de Waal, M.; Dalais, L.; Abrahams, Z.; Lombard, C.; Lambert, E.V. Did HealthKick, a randomised controlled trial primary school nutrition intervention improve dietary quality of children in low-income settings in South Africa? BMC Public Health 2015, 15, 948. [Google Scholar] [CrossRef]
- Alustiza, E.; Perales, A.; Mateo-Abad, M.; Ozcoidi, I.; Aizpuru, G.; Albaina, O.; Vergara, I.; en representación del Grupo PRE-STARt Euskadi. Tackling risk factors for type 2 diabetes in adolescents: PRE-STARt study in Euskadi. An. Pediatr. (Engl. Ed.) 2021, 95, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, L.M.; Andrade, E.B.; Ballonoff Suleiman, A.; Barker, M.; Beal, T.; Blum, L.S.; Demmler, K.M.; Dogra, S.; Hardy-Johnson, P.; Lahiri, A.; et al. Food choice in transition: Adolescent autonomy, agency, and the food environment. Lancet 2022, 399, 185–197. [Google Scholar] [CrossRef]
- Godin, K.M.; Hammond, D.; Chaurasia, A.; Leatherdale, S.T. Examining changes in school vending machine beverage availability and sugar-sweetened beverage intake among Canadian adolescents participating in the COMPASS study: A longitudinal assessment of provincial school nutrition policy compliance and effectiveness. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S.A. Beverage Choices of Young Females. J. Am. Diet. Assoc. 2002, 102, 1234–1239. [Google Scholar] [CrossRef]
- Sui, Z.; Raubenheimer, D.; Rangan, A. Exploratory analysis of meal composition in Australia: Meat and accompanying foods. Public Health Nutr. 2017, 20, 2157–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayet-Moore, F.; McConnell, A.; Kim, J.; Mathias, K.C. Identifying Eating Occasion-Based Opportunities to Improve the Overall Diets of Australian Adolescents. Nutrients 2017, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Racey, M.; Bransfield, J.; Capello, K.; Field, D.; Kulak, V.; Machmueller, D.; Preyde, M.; Newton, G. Barriers and Facilitators to Intake of Dairy Products in Adolescent Males and Females with Different Levels of Habitual Intake. Glob. Pediatr. Health 2017, 4, 2333794X17694227. [Google Scholar] [CrossRef] [Green Version]
- Labonte, M.E.; Kirkpatrick, S.I.; Bell, R.C.; Boucher, B.A.; Csizmadi, I.; Koushik, A.; L’Abbe, M.R.; Massarelli, I.; Robson, P.J.; Rondeau, I.; et al. Dietary assessment is a critical element of health research—Perspective from the Partnership for Advancing Nutritional and Dietary Assessment in Canada. Appl. Physiol. Nutr. Metab. 2016, 41, 1096–1099. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Martin, B.R.; Hickey, Y.; Teegarden, D.; Campbell, W.W.; Craig, B.A.; Schoeller, D.A.; Kerr, D.A.; Weaver, C.M. Comparison of self-reported, measured, metabolizable energy intake with total energy expenditure in overweight teens. Am. J. Clin. Nutr. 2009, 89, 1744–1750. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Arakawa, M. Characteristics of under- and over-reporters of energy intake among Japanese children and adolescents: The Ryukyus Child Health Study. Nutrition 2012, 28, 532–538. [Google Scholar] [CrossRef]
- Lioret, S.; Touvier, M.; Balin, M.; Huybrechts, I.; Dubuisson, C.; Dufour, A.; Bertin, M.; Maire, B.; Lafay, L. Characteristics of energy under-reporting in children and adolescents. Br. J. Nutr. 2011, 105, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
LDa | RDa | |
---|---|---|
Age (years) | 14.9 (2.3) | 14.7 (2.2) |
Height (cm) | 163.6 (5.9) | 163.6 (7.9) |
Weight (kg) | 79.2 (13.4) | 80.8 (15.3) |
BMI (kg/m2) | 29.6 (5.0) | 30.2 (5.1) |
Category | Examples |
---|---|
Healthy Snacks | |
1. Dairy products | Cheese, milk, yogurt |
2. Grains (breads and cereals) | Bread, bagels, pasta, ready to eat cereals, waffles |
3. Meat and alternatives | Chicken, egg, hummus, nuts |
4. Vegetables and fruits | Berries, apples, carrots, cucumber |
Unhealthy Snacks | |
5. Candy and chocolate | Chocolate bars, gummy candies, hard candies |
6. Chips and cookies | Potato chips, tortilla chips, chocolate chip cookies |
7. Condiments | Butter, salad dressing, maple syrup, jam |
8. Other grain-based snacks | Crackers, rice cakes, popcorn, granola bars, pretzels, energy bars |
9. Desserts | Brownies, cake, frozen desserts (ice cream), muffins |
10. Drinks | Sweetened tea, coffee beverages, juice |
11. Processed/mixed foods | Pre-made sandwiches and smoothies, fast-food |
LDa (n = 21) | RDa (n = 22) | p-Values | ||||||
---|---|---|---|---|---|---|---|---|
Snacking Categories (% of Snack Kcal) | Wk 0 | Wk 12 | Change | Wk 0 | Wk 12 | Change | Time | Change |
Healthy | 22 (23) | 53 (28) | 31 (27) | 33 (20) | 82 (17) | 50 (28) | <0.001 | 0.036 |
Dairy products | 4.8 (6.3) | 1.4 (4.0) | −3.4 (8.2) | 8.8 (12) | 64 (25) | 55 (32) | <0.001 | <0.001 |
Grains | 4.0 (6.4) | 1.4 (3.9) | −2.6 (7.5) | 8.7 (11) | 3.0 (6.7) | −5.8 (11) | 0.003 | 0.37 |
Meat and alternatives | 1.3 (2.1) | 23 (29) | 22 (29) | 2.2 (6.7) | 4.3 (10) | 2.1 (13) | <0.001 | 0.025 |
Vegetables and fruits | 12 (23) | 27 (21) | 15 (30) | 13 (20) | 11 (12) | −1.6 (23) | 0.010 | 0.008 |
Unhealthy * | 78 (23) | 47 (28) | −31 (27) | 67 (20) | 18 (17) | −50 (28) | <0.001 | 0.036 |
Candy and chocolate | 5.9 (13) | 1.7 (3.7) | −4.2 (13) | 6.1 (11) | 3.0 (6.2) | −3.1 (14) | 0.14 | 0.99 |
Chips and cookies | 16 (17) | 11 (16) | −5.6 (21) | 13 (14) | 1.6 (4.0) | −11 (14) | 0.001 | 0.43 |
Condiments | 3.2 (5.0) | 2.6 (4.3) | −0.7 (6.7) | 2.0 (3.1) | 1.2 (3.3) | −0.8 (2.7) | 0.46 | 0.14 |
Desserts | 13 (14) | 12 (22) | −0.5 (29) | 13 (13) | 3.4 (7.0) | −9.9 (14) | 0.006 | 0.46 |
Drinks | 7.4 (11) | 4.0 (9.1) | −3.4 (16) | 17 (17) | 2.2 (3.9) | −15 (17) | <0.001 | 0.032 |
Other grain-based snacks | 17 (24) | 13 (17) | −4.0 (23) | 11 (11) | 4.1 (6.0) | −6.9 (13) | 0.13 | 0.077 |
Processed/mixed foods | 16 (20) | 2.5 (8.6) | −13 (21) | 5.6 (11) | 2.3 (4.2) | −3.3 (10) | 0.004 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraschetti, E.C.; Skelly, L.E.; Ahmed, M.; Biancaniello, E.C.; Klentrou, P.; Josse, A.R. The Influence of Increased Dairy Product Consumption, as Part of a Lifestyle Modification Intervention, on Diet Quality and Eating Patterns in Female Adolescents with Overweight/Obesity. Children 2022, 9, 1703. https://doi.org/10.3390/children9111703
Fraschetti EC, Skelly LE, Ahmed M, Biancaniello EC, Klentrou P, Josse AR. The Influence of Increased Dairy Product Consumption, as Part of a Lifestyle Modification Intervention, on Diet Quality and Eating Patterns in Female Adolescents with Overweight/Obesity. Children. 2022; 9(11):1703. https://doi.org/10.3390/children9111703
Chicago/Turabian StyleFraschetti, Emily C., Lauren E. Skelly, Mavra Ahmed, Emma C. Biancaniello, Panagiota Klentrou, and Andrea R. Josse. 2022. "The Influence of Increased Dairy Product Consumption, as Part of a Lifestyle Modification Intervention, on Diet Quality and Eating Patterns in Female Adolescents with Overweight/Obesity" Children 9, no. 11: 1703. https://doi.org/10.3390/children9111703
APA StyleFraschetti, E. C., Skelly, L. E., Ahmed, M., Biancaniello, E. C., Klentrou, P., & Josse, A. R. (2022). The Influence of Increased Dairy Product Consumption, as Part of a Lifestyle Modification Intervention, on Diet Quality and Eating Patterns in Female Adolescents with Overweight/Obesity. Children, 9(11), 1703. https://doi.org/10.3390/children9111703