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Abstract: The role of the microbiota in the pathogenesis of arthritis is gaining increasing attention.
While multiple studies have queried the intestinal microbiota, very few have analyzed the contents
of the oral microbiota. In this pilot study, we obtained salivary and sub-gingival specimens from
a cohort of six healthy controls and five children with well-controlled spondyloarthritis (SpA) and
performed 16S sequencing on bacteria obtained from both habitats. The Quantitative Insight into
Microbial Ecology tool suite was used to generate operational taxonomic units, Phyloseq was used
for diversity analyses, and DeSeq2 was used to compare abundances while adjusting for multiple
comparisons. A repeat specimen was obtained from one subject during a flare. Clustering based upon
diagnosis was observed from both habitats, with decreased alpha diversity seen within the plaque
obtained from the patients vs. controls. Among the differentially abundant taxa were statistically
significantly increased plaque Fusobacterium and salivary Rothia mucilaginosa among the patients
compared to the controls. Additionally, the abundance of plaque Fusobacterium increased in one
patient at the time of a flare. Our data suggest that the oral cavity may harbor bacteria involved in
the pathogenesis of spondyloarthritis; additional studies are warranted.

Keywords: microbiota; gingiva; saliva; spondylarthritis

1. Introduction

The role of the microbiota in the pathogenesis of arthritis is gaining increasing attention.
While there have been studies of the intestinal microbiota in patients with inflammatory
bowel disease (IBD) since the 1950s [1], the last 10 years have witnessed an emerging
interest of the microbiota in patients with multiple forms of arthritis, including spondy-
loarthritis (SpA) [2]. In this category of arthritis, which bears substantial clinical overlap
with IBD, multiple studies have demonstrated altered fecal or mucosal bacterial popu-
lations, including increased abundance of Ruminococcus [3] and decreased abundance of
Faecalibacterium prausnitzii [4], mirroring observations in subjects with IBD [5].

An understudied habitat in SpA is the oral cavity. One previous study involving
adult patients with axial SpA did not demonstrate any differences in the contents of the
microbiota as compared to healthy controls [6], although our previous work has shown
that microbiota findings in adult subjects do not necessarily translate to pediatrics [7]. An
altered sub-gingival microbiota was reported in pediatric patients with Crohn Disease [8].
Additionally, we have previously demonstrated that children with SpA have increased
antibodies directed against an oral commensal organism [9].

Children 2022, 9, 1764. https://doi.org/10.3390/children9111764 https://www.mdpi.com/journal/children

https://doi.org/10.3390/children9111764
https://doi.org/10.3390/children9111764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/children
https://www.mdpi.com
https://orcid.org/0000-0002-6225-3690
https://orcid.org/0000-0002-4606-9551
https://doi.org/10.3390/children9111764
https://www.mdpi.com/journal/children
https://www.mdpi.com/article/10.3390/children9111764?type=check_update&version=2


Children 2022, 9, 1764 2 of 10

To evaluate for a potential role of the oral microbiota in children with SpA, we performed
a pilot study of the oral microbiota. Because different oral habitats have different associated
bacteria in health [10], we studied two different habitats: the saliva and the sub-gingiva.

2. Patients and Methods
2.1. Overview

This was a cross-sectional study evaluating the contents of the salivary and sub-
gingival microbiota of children with Juvenile SpA vs. healthy controls.

2.2. Subjects

Patients included in the study had either psoriatic juvenile idiopathic arthritis or
enthesitis-related arthritis as per the International League of Associations for Rheumatology
criteria for juvenile idiopathic arthritis (JIA) [11]. Controls were patients presenting for
routine care at the Orthodontics clinic at the University of Alabama at Birmingham (UAB).
Informed consent was obtained from the guardians of all subjects prior to performing any
study-related procedures. The study was approved by the Institutional Review Board at
UAB. We limited the study to children aged 10–18, to minimize variability introduced by
primary vs. secondary dentition.

2.3. Collection of Samples

Collection of saliva samples was performed as previously described [10,12]. We
collected 2–3 mL of unstimulated saliva into a 15 mL tube, centrifuged it at 3300× g for
10 min at 4 ◦C, and resuspended the pellet in Cary-Blair media [13]. This was kept frozen
at −80 ◦C until use.

Collection of the sub-gingival samples was performed as previously described [10].
First, the supra-gingival plaque from multiple molars was removed with use of a Universal
Columbia 13/14 Curette. Subsequently, the sub-gingival plaque was accessed and placed
in a tube containing Cary-Blair media. As there does not appear to be much variation in
the contents of the sub-gingival microbiota among healthy teeth [14], we pooled scrapings
from multiple teeth to increase the yield. Screening for periodontitis was performed at the
time of sample collection for the patients and at the onset of orthodontic treatment for the
healthy controls.

2.4. Sequencing and Analysis of 16S Ribosomal DNA from the Salivary and Sub-Gingival Specimens

This was performed as previously described by our group [4,7,15]. Briefly, microbial
genomic DNA was isolated using the Zymo mini kit (Irving, CA, USA), and the purified
DNA was PCR-amplified at the Variable IV region from the 16S ribosomal DNA gene
and sequenced on the MiSeq (Illumina, San Diego, CA, USA) device, generating 250 base-
pair paired end reads. The initial analytic steps were performed with the Quantitative
Insight Into Microbial Ecology (QIIME) tool suite [16] using open reference operational
taxonomic unit (OTU) picking with uclust [17], with downstream steps performed with
the R Phyloseq package [18]. Assessments of alpha diversity were performed with the
chao1 test of richness and the Shannon measure of evenness. For assessment of beta
diversity, we used the Permutational analysis of variance [19] test as administered by the
Adonis test in the R package vegan [20] to the distance table generated with the Bray Curtis
clustering algorithm to model whether the subject group predicted the structure of the
microbiota. For assessment of taxonomic data, the major issue is controlling for multiple
comparisons due to the large numbers of output data in the form of individual taxa or
pathways, compounded by the non-normal distribution of the data and the large number of
very low values (“excess zeros”). The Bioconductor package DeSeq2 [21], while designed
for analysis of RNASeq data, can be used for microbiota data as well [22,23], as these issues
are similar. It functions by normalizing the data and also removing from the analysis those
output variables that are unlikely to confer meaningful differences between the groups due
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to near zero values, thus reducing the false discovery rate penalty [24], which was used.
An FDR-corrected cutoff of 0.05 was considered statistically significant.

2.5. Power Calculations for a Definitive Study

As this was a pilot study, we performed power calculations for a hypothetical definitive
study of the oral microbiota in children with SpA. To do so, we first performed community-
wide power calculations using the R package HMP [25], which takes as input the OTU
tables generated in the preliminary (in this case, current) study and estimates statistical
power for various sample sizes. We also calculated statistical power for determining
differences in individual taxa identified herein; this was performed with the R package
RNASeqPower [26], which performs negative binomial model analysis for over-dispersed
count data.

2.6. Statistical Analyses

Differences in alpha diversity were assessed using the Student’s t-test, using a signifi-
cance threshold of 0.05. All analyses were performed with R version 4.2.0.

3. Results
3.1. Subjects

Eleven subjects aged 11–17 were included in the study. None of them had any remain-
ing primary detention. Demographics as well as diagnosis and medication history (SpA
subjects) are depicted in Table 1. No subjects were taking traditional disease-modifying
anti-rheumatic drugs, although all five patients were on biologics for treatment of their
arthritis. All subjects were in clinical remission at the time of the original assessment. One
subject flared and had a repeat specimen obtained during the time of her flare. None of the
subjects had evidence of periodontitis or gingivitis at the time of sample collection.

Table 1. Demographic and clinical variables of the study population. Abbreviations: TNFi mAb,
tumor necrosis factor inhibitor (monoclonal antibody).

Feature Healthy Controls Juvenile Spondyloarthritis

n 6 5
Demographics
Male Sex 2 (33%) 1 (20%)
Race

White 5 (83%) 5 (100%)
Black 1 (17%) 0

Age (years) 14.4 ± 2.1 14.3 ± 2.0
Treatment

Etanercept 0 1 (20%)
TNFi mAb 0 3 (60%)
Abatacept 0 1 (20%)

3.2. 16S Sequencing

Each subject underwent 16S sequencing of the sub-gingival as well as salivary microbiota.
Read counts of approximately 50,000–60,000 were obtained from both groups and from both
habitats (saliva and sub-gingiva), without significant intergroup differences (not shown).

Separate assessments of richness (chao1 test) and evenness (Shannon test) were per-
formed on samples obtained from both habitats and shown in Figure 1 (sub-gingival plaque)
and Figure 2 (saliva). Data from the plaque specimens showed significantly decreased
richness (2287 ± 157 vs. 993 ± 154, p < 0.01) and evenness (5.4 ± 0.6 vs. 3.7 ± 0.2. p < 0.01)
in the patient group, (Figure 1); potentially reflective of expansion of specific organisms
within the SpA patients compared to controls. In contrast, the saliva specimens demon-
strated similar richness (932 ± 107 vs. 853 ± 279, p = 0.578) and only marginally lower
evenness (3.8 ± 0.3 vs. 3.4 ± 0.3, p = 0.020) among the patients vs. the controls, (Figure 2).
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significant at p < 0.01.
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Figure 2. Assessment of richness (chao1; A) and evenness (Shannon; B) obtained from the saliva of
patients with Spondyloarthritis (SpA) and healthy controls. * indicates statistically significant at p < 0.05.

Ordination analysis performed on all 11 subjects inclusive of both habitats is shown in
Figure 3; this includes a “blank” sample used as an environmental control. Regardless of
patient group, there is apparent clustering based upon habitat (salivary samples depicted as
squares, sub-gingival samples depicted as triangles), consistent with previously published
data [10]. Additionally, within each habitat there is clustering based upon subject group,
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with the blank specimen clustering with most of the plaque specimens obtained from
controls, consistent with the controls having low biomass in their sub-gingival sulci.
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Figure 3. Ordination analysis of sub-gingival and salivary samples obtained from healthy control
subjects and children with Spondyloarthritis. A negative control (blank) is included as well. The
shape of the dot indicates the habitat (circle, blank specimen; triangle, plaque; square, saliva), while
the color of the specimen indicates the subject group (blue, blank specimen; green, Spondyloarthritis;
red, Healthy controls).

Figure 4 depicts the ordination analysis limited to the plaque specimens obtained from
the patients and controls. Consistent with Figure 3, visually evident clustering between
the two groups is shown, confirmed by the PermANOVA test (p = 0.004). To determine
which organisms were driving this clustering, we used the DeSeq2 tool as described in
the Methods section [21]. Even after correction for multiple comparisons, 1057 unique
OTUs differentiated the two groups (Supplementary Table S1). Among the most abundant
organisms was one matching to the Fusobacterium genus, which demonstrated a log2fold
difference of 4.4 (p = 0.002; Figure 5), indicating significantly higher abundance in the pa-
tients. We obtained a repeat specimen on one subject six months after the initial assessment,
at which time she was experiencing a flare manifested by clinical enthesitis and sacroiliitis;
at this visit, her sub-gingival Fusobacterium abundance had increased from 8 to 16%.

Figure 6 depicts the ordination analysis limited to the saliva specimens obtained from the
patients and controls. Here as well, visually evident clustering based upon diagnosis is present,
confirmed by the PermANOVA test (p = 0.004). In contrast to the plaque specimens, where
over 1000 OTUs were significantly altered between the patients and controls, DeSeq2 analysis
identified only 34 OTUs differentiating the two groups (Table S2). Most of the organisms
were enriched in the controls; however, the most abundant organism, Rothia mucilaginosa, was
significantly more abundant in the patients (log2Fold change 2.2, p = 0.005; Figure 7).
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3.3. Proposal for Definitive Study

We propose a study comparing the salivary and sub-gingival microbiota of treatment-
naïve children with SpA and healthy controls, as one that would lay the groundwork for
longitudinal studies that would assess whether changes in the microbiota could predict
flare. The role of serologic reactivity against oral organisms should also be assessed [9].
The ultimate aim would be the evaluation of interventional efforts designed at improving
periodontal health in children with SpA. As described in the Methods section, community-
wide power calculations were performed with the R package HMP [25] using as input
the OTU tables obtained from the salivary microbiota. We performed 1000 trials vary-
ing sample sizes from 20–30/group; finding that the projected power for these studies
approaches 1 when sample size exceeds 20, indicating that relatively small sample sizes
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would still identify community-wide differences between patients and healthy controls.
In light of the more pronounced changes in the sub-gingiva as compared to the saliva
(e.g., Figure 3), even small sample sizes could theoretically identify community-wide dif-
ferences in the sub-gingiva. Additionally, to determine sample sizes needed to identify
statistically significantly differentially abundant pre-specified taxa (e.g., Fusobacterium),
we used the RNASeqPower R Package [26], which is designed for these types of studies.
Using the log2fold change obtained from the DeSeq2 calculations as the effect sizes, ap-
proximately 40 subjects would be required to identify differences in the salivary abundance
of Rothia mucilaginosa, while a substantially lower number of subjects would be required
to identify differences in sub-gingival Fusobacterium; larger sizes would be needed as the
number of a priori comparisons increases.

4. Discussion

This pilot study demonstrated substantially altered sub-gingival microbiota between
patients and controls, as well as altered salivary microbiota. The differentially abundant
organisms identified herein are associated with dental caries. Specifically, among the pa-
tients, increased Fusobacterium was observed in the sub-gingival crevice, and increased
Rothia mucilaginosa was observed in the saliva. Fusobacterium nucleatum is one of the organ-
isms constituting the Red Complex bacteria, that have long been linked to periodontitis [27].
Likewise, salivary Rothia mucilaginosa has been linked to dental caries in children as well [28].
These data suggest a potential link between oral inflammation and SpA and are thus in
agreement with our previously published work demonstrating that SpA patients had elevated
IgA antibodies against a single oral commensal organism, Prevotella oralis [9]; albeit the latter
was not identified as being differentially abundant in the current study. Further supporting a
causal association between Fusobacterium and active disease is the finding that the abundance
of this organism increased from 8 to 16% in a patient whose disease flared 6 months after
the initial assessment. The mechanism by which oral inflammation may be linked to SpA
is beyond the scope of the study. However, in light of findings showing involvement of the
Th17 pathway in the setting of periodontitis [29,30] and findings from some [31–33] albeit not
all [34] studies showing that patients with psoriasis or SpA had increased periodontal disease
as compared to healthy controls, we suspect that local inflammation may generate an inflam-
matory response that extends systemically through cross-reactivity or other immunologic
mechanisms. A recent review article has likewise reached the conclusion that periodontal
inflammation can result in microbiota changes and SpA [35].

Of note, the findings reported herein appear to be specific to patients with juvenile
SpA, compared to other categories of JIA. Specifically, studies of the sub-gingival and of
the salivary microbiota in children with non-SpA types of JIA did not detect substantial
differences in the composition of the microbiota between the patients and controls [36,37],
underscoring potential pathophysiologic differences among the various forms of arthritis.

This study has important limitations, particularly the small sample size. In addition,
all of the patients were on immunomodulatory therapy. It is unknown whether these
medications impact the oral microbiota, although the previous studies assessing the mi-
crobiota in children with JIA included patients on immunomodulatory therapy [36,37].
Additionally, similar to previously published studies in patients with IBD, JIA, or SpA, we
did not perform detailed analyses of oral health or require specific oral hygiene practices
prior to sample collection [6,8,36,37]. These findings will need to be validated with larger
and optimally treatment-naïve cohorts.

In summary, this pilot study suggests that children with SpA may have altered salivary
and sub-gingival microbiota populations as compared to healthy children. The alterations
may predispose to local inflammatory processes, potentially contributing to the onset and
severity of the disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/children9111764/s1, Table S1. Statistically significant results

https://www.mdpi.com/article/10.3390/children9111764/s1
https://www.mdpi.com/article/10.3390/children9111764/s1
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of the DeSeq2 output of the sub-gingival plaque specimens comparing Juvenile Spondyloarthritis
patients and healthy control subjects. Abbreviations: LFCSE, log2Fold Change standard error;
padj, adjusted (corrected) p-value. LFC values > 0 represent operational taxonomic units higher
in the SpA subjects. Table S2. Statistically significant results of the DeSeq2 output of the salivary
specimens comparing Juvenile Spondyloarthritis patients and healthy control subjects. Abbreviations:
LFCSE, log2Fold Change standard error; padj, adjusted (corrected) p-value. LFC values > 0 represent
operational taxonomic units higher in the SpA subjects.
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