The Metagenomic and Metabolomic Profile of the Infantile Gut: Can They Be “Predicted” by the Feed Type?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Alpha— and Beta—Diversity
3.2. Microbial Composition
3.3. Gut Chemistry and Metabolites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Quality Assessment
Study | Participants Size | Study Design | Level of Evidence | Risk of Bias | Publication Bias |
---|---|---|---|---|---|
Cong et al., 2017 [17] | 33 | Cohort | Low | Moderate | Undetected |
Bazanella et al., 2017 [18] | 106 | RCT | High | Low | Strongly suspected (funding from baby food company) |
Parra-Llorca et al., 2018 [19] | 69 | Cohort | Low | Moderate | Undetected |
Béghin et al., 2020 [20] | 350 | RCT | High | Low | Strongly suspected (authors are employees of a baby food company) |
Wang et al., 2020 [21] | 20 | Prospective with two arms | Very low | High (no randomization or blinding reported) | Undetected |
Li et al., 2020 [22] | 77 | Cohort | Low | Moderate | Undetected |
Knol et al., 2005 [12] | 68 | RCT | High | Low | Undetected |
References
- Marincola, F.C.; Noto, A.; Caboni, P.; Reali, A.; Barberini, L.; Lussu, M.; Murgia, F.; Santoru, M.L.; Atzori, L.; Fanos, V. A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: Preliminary results. J. Matern. Neonatal Med. 2012, 25, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gura, T. Nature’s first functional food. Science 2014, 345, 747–749. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [Green Version]
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci. 2014, 34, 15490–15496. [Google Scholar] [CrossRef] [Green Version]
- Guaraldi, F.; Salvatori, G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front. Cell. Infect. Microbiol. 2012, 2, 94. [Google Scholar] [CrossRef] [Green Version]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [Green Version]
- Phan, M.; Momin, S.R.; Senn, M.K.; Wood, A.C. Metabolomic Insights into the Effects of Breast Milk Versus Formula Milk Feeding in Infants. Curr. Nutr. Rep. 2019, 8, 295–306. [Google Scholar] [CrossRef]
- Backhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 852. [Google Scholar] [CrossRef] [Green Version]
- Shortt, C.; Hasselwander, O.; Meynier, A.; Nauta, A.; Fernandez, E.N.; Putz, P.; Rowland, I.; Swann, J.; Turk, J.; Vermeiren, J.; et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 2018, 57, 25–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knol, J.; Scholtens, P.; Kafka, C.; Steenbakkers, J.; Gro, S.; Helm, K.; Klarczyk, M.; Schopfer, H.; Bockler, H.M.; Wells, J. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: More like breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 2005, 40, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Brown, D. A Review of the PubMed PICO Tool: Using Evidence-Based Practice in Health Education. Heal. Promot. Pract. 2020, 21, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Speckman, R.A.; Friedly, J.L. Asking Structured, Answerable Clinical Questions Using the Population, Intervention/Comparator, Outcome (PICO) Framework. PM&R J. Inj. Funct. Rehabil. 2019, 11, 548–553. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Schunemann, H.J.; Tugwell, P.; Knottnerus, A. GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology. J. Clin. Epidemiol. 2011, 64, 380–382. [Google Scholar] [CrossRef]
- Cong, X.; Judge, M.; Xu, W.; Diallo, A.; Janton, S.; Brownell, E.A.; Maas, K.; Graf, J. Influence of Feeding Type on Gut Microbiome Development in Hospitalized Preterm Infants. Nurs. Res. 2017, 66, 123–133. [Google Scholar] [CrossRef]
- Bazanella, M.; Maier, T.V.; Clavel, T.; Lagkouvardos, I.; Lucio, M.; Maldonado-Gomez, M.X.; Autran, C.; Walter, J.; Bode, L.; Schmitt-Kopplin, P.; et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am. J. Clin. Nutr. 2017, 106, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Parra-Llorca, A.; Gormaz, M.; Alcantara, C.; Cernada, M.; Nunez-Ramiro, A.; Vento, M.; Collado, M.C. Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk. Front. Microbiol. 2018, 9, 1376. [Google Scholar] [CrossRef]
- Beghin, L.; Tims, S.; Roelofs, M.; Rouge, C.; Oozeer, R.; Rakza, T.; Chirico, G.; Roeselers, G.; Knol, J.; Roze, J.C.; et al. Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clin. Nutr. 2021, 40, 778–787. [Google Scholar] [CrossRef]
- Wang, Z.; Neupane, A.; Vo, R.; White, J.; Wang, X.; Marzano, S.L. Comparing Gut Microbiome in Mothers’ Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants. Front. Microbiol. 2020, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yan, F.; Wang, N.; Song, Y.; Yue, Y.; Guan, J.; Li, B.; Huo, G. Distinct Gut Microbiota and Metabolite Profiles Induced by Different Feeding Methods in Healthy Chinese Infants. Front. Microbiol. 2020, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; McAleenan, A.; Reeves, B.C.; Higgins, J.P. Assessing risk of bias in a non-randomized study. In Cochrane Handbook for Systematic Reviews of Interventions, 6th ed.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; Cochrane: Chichester, UK, 2019; Available online: https://training.cochrane.org/handbook/current/chapter-25 (accessed on 1 November 2021).
- Higgins, J.P.T.; Savović, J.; Page, M.; Elbers, R.G.; Sterne, J.A. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions, 6th ed.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; Cochrane: Chichester, UK, 2019; Available online: https://training.cochrane.org/handbook/current/chapter-08 (accessed on 1 November 2021).
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Balshem, H.; Helfand, M.; Schunemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE guidelines: 6. Rating the quality of evidence—Imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Falck-Ytter, Y.; Jaeschke, R.; Vist, G.; et al. GRADE guidelines: 8. Rating the quality of evidence—Indirectness. J. Clin. Epidemiol. 2011, 64, 1303–1310. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Glasziou, P.; Jaeschke, R.; Akl, E.A.; et al. GRADE guidelines: 7. Rating the quality of evidence—Inconsistency. J. Clin. Epidemiol. 2011, 64, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
PICO Component | Query Part |
---|---|
P(atient) | ((infant*(Title/Abstract) OR infant*(MeSH Terms)) OR (neonat*(Title/Abstract) OR neonat*(MeSH Terms))) |
I(ntervention) | ((formul*(Title/Abstract) OR formul*(MeSH Terms)) OR (symbiot*(Title/Abstract) OR symbiot*(MeSH Terms)) OR (probiot*(Title/Abstract) OR probiot*(MeSH Terms))) |
C(omparator, or control) | ((breast milk(Title/Abstract) OR breast milk(MeSH Terms)) or (feed*(Title/Abstract) OR feed*(MeSH Terms))) |
O(utcome) | ((microb*(Title/Abstract) OR microb*(MeSH Terms)) OR (metabol*(Title/Abstract) OR metabol*(MeSH Terms)) or (fecal(Title/Abstract) OR fecal(MeSH Terms)) or (gut(Title/Abstract) OR gut(MeSH Terms))) |
Τ(ime) | (“2000/01/01”(Publication Date): “3000”(Publication Date)) |
PICO Question | ((infant*(Title/Abstract) OR infant*(MeSH Terms)) OR (neonat*(Title/Abstract) OR neonat*(MeSH Terms)))) AND ((formul*(Title/Abstract) OR formul*(MeSH Terms)) OR (symbiot*(Title/Abstract) OR symbiot*(MeSH Terms)) OR (probiot*(Title/Abstract) OR probiot*(MeSH Terms))) AND ((breast milk(Title/Abstract) OR breast milk(MeSH Terms)) or (feed*(Title/Abstract) OR feed*(MeSH Terms))) AND((microb*(Title/Abstract) OR microb*(MeSH Terms)) OR (metabol*(Title/Abstract) OR metabol*(MeSH Terms)) or (fecal(Title/Abstract) OR fecal(MeSH Terms)) or (gut(Title/Abstract) OR gut(MeSH Terms))) AND (“2000/01/01”(Publication Date): “3000”(Publication Date)) |
Study Design (Type, Consent) | Patient Characteristics (GA) | Observation Period | Feeding Types | Participants Size | Exclusion Criteria | Fecal Sample Processing | Primary Outcome | |
---|---|---|---|---|---|---|---|---|
Cong et al., 2017 [17] | Secondary analysis of data from a prospective exploratory study, parental consent | Preterm 28–32 6/7 weeks | 30 days | BM, BM + DM, BM + Formula, DM, formula, DM + formula | 38 | Congenital abnormaitie, severe IVH, surgery, hx of prenatal drugs | 16S rRNA gene amplicon sequencing | Gut microbial patterns associated with feeding type |
Bazanella et al., 2017 [18] | Double-blind, randomized, placebo controlled, both parents consent | Term | 12-month, (24-month) | BM, formula, Mixed | 106 | Preterm < 36 weeks, high-risk pregnancy, maternal chronic illness, antibiotics in the last 2months pregnancy | 16S rRNA gene amplicon sequencing, metabolomics via UHPLC-MS | Fecal microbiota in the first year during Bifidobacteria supplementation, secondary:fecal metabolite profiling |
Parra-Llorca et al., 2018 [19] | Prospective, observational, unicentric cohort study, parental consent | Preterm ≤ 32 weeks | 12-month period | BM, DM, formula | 69 | Mixed brestfeeding not included, major malformations or surgery | 16S rRNA gene amplicon sequencing | Impact of DHM on preterm microbiota |
Béghin et al., 2020 [20] | Prospective, randomized, double-blind, controlled, multicentered (computer-generated randomization, parental consent | Term > 37 weeks | 6 months | BM, formula, FERM, FERM/GOS/FOS, FGOS/FOS | 350 | Illness not included, congenital malformation, antibiotics, allergy | (FISH) Bacterial composition, Metabolic activity parameters (pH, SCFA, lactate) | SIgA concentration |
Wang et al., 2020 [21] | Randomized controlled, parental consent | Late-preterm 32 0/7–36 6/7 weeks | 17 days postnatally (2 samples 24 h apart) DNA and RNA extracted from fecal samples | BM, Formula | 20 | Exclusive BM (with BMF) or formula, All mothers received abx, No infant with positive blood culture (twins are acceptable) | 16S rRNA gene amplicon sequencing, comparative metatranscriptomics (gene expression) | Alpha and beta diversity of gut bacterial composition (compare the composition and function of gut microbiome as related to the nutrional source in moderate-late preterm) |
Li et al., 2020 [22] | Randomized controlled, parental consent | Term, 38 weeks | 16 to 295 days | BM, Formula, mixed | 77 | No infants that received antibiotics and probiotics. History of chorioamnionitis and gestational diabetes | 16S rRNA gene amplicon sequencing, Metabolomics by liquid chromatography-mass spectrometry | Gut microbiome composition and metabolites |
Knol et al., 2005 [12] | randomized, double-blind, placebo controlled | Infants Age~7.7 weeks | 7–8 weeks | Formula with prebiotic, standard formula, BM © | 68 | Congenital abnormalities, allergy, antibiotics less than 2 weeks, formula with pre or probiotics less than a months before | FISH, gas chromatography(SCFA) pH electrode (pH), L-lactic detection kit (lactate) | Bifidobacteria, pH, SCFA, lactate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrakopoulou, E.I.; Pouliakis, A.; Falaina, V.; Xanthos, T.; Zoumpoulakis, P.; Tsiaka, T.; Sokou, R.; Iliodromiti, Z.; Boutsikou, T.; Iacovidou, N. The Metagenomic and Metabolomic Profile of the Infantile Gut: Can They Be “Predicted” by the Feed Type? Children 2022, 9, 154. https://doi.org/10.3390/children9020154
Dimitrakopoulou EI, Pouliakis A, Falaina V, Xanthos T, Zoumpoulakis P, Tsiaka T, Sokou R, Iliodromiti Z, Boutsikou T, Iacovidou N. The Metagenomic and Metabolomic Profile of the Infantile Gut: Can They Be “Predicted” by the Feed Type? Children. 2022; 9(2):154. https://doi.org/10.3390/children9020154
Chicago/Turabian StyleDimitrakopoulou, Eftychia Ioanna, Abraham Pouliakis, Vasiliki Falaina, Theodoros Xanthos, Panagiotis Zoumpoulakis, Thalia Tsiaka, Rozeta Sokou, Zoi Iliodromiti, Theodora Boutsikou, and Nicoletta Iacovidou. 2022. "The Metagenomic and Metabolomic Profile of the Infantile Gut: Can They Be “Predicted” by the Feed Type?" Children 9, no. 2: 154. https://doi.org/10.3390/children9020154
APA StyleDimitrakopoulou, E. I., Pouliakis, A., Falaina, V., Xanthos, T., Zoumpoulakis, P., Tsiaka, T., Sokou, R., Iliodromiti, Z., Boutsikou, T., & Iacovidou, N. (2022). The Metagenomic and Metabolomic Profile of the Infantile Gut: Can They Be “Predicted” by the Feed Type? Children, 9(2), 154. https://doi.org/10.3390/children9020154