Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Clinical Examinations
2.3. Saliva Sampling
2.4. Total Protein Content
2.5. Protease Analysis
2.6. Alpha-Amylase
2.7. Matrix Metalloproteinase
2.8. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990–2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Bönecker, M.; Abanto, J.; Tello, G.; Oliveira, L.B. Impact of dental caries on preschool children’s quality of life: An update. Braz. Oral Res. 2012, 26 (Suppl. S1), 103–107. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, M.A.B.; Rebelo Vieira, J.M.; Pereira, J.V.; Quadros, L.N.; Vettore, M.V. Does oral health influence school performance and school attendance? A systematic review and meta-analysis. Int. J. Paediatr. Dent. 2018, 29, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Nyvad, B. The role of bacteria in the caries process: Ecological perspectives. J. Dent. Res. 2011, 90, 294–303. [Google Scholar] [CrossRef]
- Harris, R.; Nicoll, A.D.; Adair, P.M.; Pine, C.M. Risk factors for dental caries in young children: A systematic review of the literature. Community Dent. Health 2004, 21, 71–85. [Google Scholar]
- Vacaru, R.-P.; Per, S.; Ioana-Andreea, S.; Munteanu, A.; Miricescu, D.; Totan, A.; Tanase, M.; Didilescu, A. Clinical and microbiological features of carious dentin in immature permanent molars. Rom. Biotechnol. Lett. 2021, 26, 2340–2346. [Google Scholar] [CrossRef]
- Ayna, B.; Celenk, S.; Atakul, F.; Sezgin, B.; Ozekinci, T. Evaluation of clinical and microbiological features of deep carious lesions in primary molars. J. Dent. Child. 2003, 70, 15–18. [Google Scholar]
- Hahn, C.L.; Falkler, W.A., Jr.; Minah, G.E. Microbiological studies of carious dentine from human teeth with irreversible pulpitis. Arch. Oral Biol. 1991, 36, 147–153. [Google Scholar] [CrossRef]
- Orhan, A.I.; Oz, F.T.; Ozcelik, B.; Orhan, K. A clinical and microbiological comparative study of deep carious lesion treatment in deciduous and young permanent molars. Clin. Oral Investig. 2008, 12, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Bardow, A.; Hofer, E.; Nyvad, B.; ten Cate, J.M.; Kirkeby, S.; Moe, D.; Nauntofte, B. Effect of saliva composition on experimental root caries. Caries Res. 2005, 39, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roa, N.S.; Chaves, M.; Gómez, M.; Jaramillo, L.M. Association of salivary proteins with dental caries in a Colombian population. Acta Odontol. Latinoam. 2008, 21, 69–75. [Google Scholar] [PubMed]
- Tulunoglu, O.; Demirtas, S.; Tulunoglu, I. Total antioxidant levels of saliva in children related to caries, age, and gender. Int. J. Paediatr. Dent. 2006, 16, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Buczynski, A.K.; Maia, L.C.; Siqueira, W.L.; Castro, G.F. Salivary proteins as a biomarker for dental caries—A systematic review. J. Dent. 2013, 41, 2–8. [Google Scholar] [CrossRef]
- Kaman, W.E.; Hays, J.P.; Endtz, H.P.; Bikker, F.J. Bacterial proteases: Targets for diagnostics and therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Granger, D.A.; Kivlighan, K.T.; el-Sheikh, M.; Gordis, E.B.; Stroud, L.R. Salivary alpha-amylase in biobehavioral research: Recent developments and applications. Ann. N. Y. Acad. Sci. 2007, 1098, 122–144. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Torres, G.; Levine, M.J. Salivary alpha-amylase: Role in dental plaque and caries formation. Crit. Rev. Oral Biol. Med. 1993, 4, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Ray, C.A.; Gfell, L.E.; Buller, T.L.; Gregory, R.L. Interactions of Streptococcus mutans fimbria-associated surface proteins with salivary components. Clin. Diagn. Lab. Immunol. 1999, 6, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Culp, D.J.; Robinson, B.; Cash, M.N. Murine Salivary Amylase Protects Against Streptococcus mutans-Induced Caries. Front. Physiol. 2021, 12, 699104. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Lim, D.V.; Dao, M.L. Identification and analysis of a collagenolytic activity in Streptococcus mutans. Curr. Microbiol. 1997, 34, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Van Strijp, A.J.; van Steenbergen, T.J.; ten Cate, J.M. Effects of chlorhexidine on the bacterial colonization and degradation of dentin and completely demineralized dentin in situ. Eur. J. Oral Sci. 1997, 105, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, W.G. Further Studies on the Action of Collagenase on Sound and Carious Human Dentin. J. Dent. Res. 1958, 37, 1001–1015. [Google Scholar] [CrossRef]
- Sognnaes, R.F. Introduction to the problem of caries. Ann. N. Y. Acad. Sci. 1965, 131, 687–689. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Larjava, H.; Sorsa, T.; Uitto, V.J.; Larmas, M.; Salo, T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res. 1998, 77, 1622–1629. [Google Scholar] [CrossRef]
- Hedenbjörk-Lager, A.; Bjørndal, L.; Gustafsson, A.; Sorsa, T.; Tjäderhane, L.; Åkerman, S.; Ericson, D. Caries correlates strongly to salivary levels of matrix metalloproteinase-8. Caries Res. 2015, 49, 1–8. [Google Scholar] [CrossRef]
- Chaussain-Miller, C.; Fioretti, F.; Goldberg, M.; Menashi, S. The role of matrix metalloproteinases (MMPs) in human caries. J. Dent. Res. 2006, 85, 22–32. [Google Scholar] [CrossRef]
- Hannas, A.R.; Pereira, J.C.; Granjeiro, J.M.; Tjäderhane, L. The role of matrix metalloproteinases in the oral environment. Acta Odontol. Scand. 2007, 65, 1–13. [Google Scholar] [CrossRef]
- Sulkala, M.; Wahlgren, J.; Larmas, M.; Sorsa, T.; Teronen, O.; Salo, T.; Tjäderhane, L. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J. Dent. Res. 2001, 80, 1545–1549. [Google Scholar] [CrossRef]
- Nascimento, F.D.; Minciotti, C.L.; Geraldeli, S.; Carrilho, M.R.; Pashley, D.H.; Tay, F.R.; Nader, H.B.; Salo, T.; Tjäderhane, L.; Tersariol, I.L.S. Cysteine cathepsins in human carious dentin. J. Dent. Res. 2011, 90, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Byers, M.R.; Lin, K.J. Patterns of fluoro-gold entry into rat molar enamel, dentin, and pulp. J. Dent. Res. 2003, 82, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Park, K.K.; Palenik, C.J. In-vitro root surface caries studies. J. Oral Med. 1987, 42, 40–48. [Google Scholar] [PubMed]
- Sorsa, T.; Tjäderhane, L.; Salo, T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 2004, 10, 311–318. [Google Scholar] [CrossRef]
- Sorsa, T.; Tjäderhane, L.; Konttinen, Y.T.; Lauhio, A.; Salo, T.; Lee, H.M.; Golub, L.M.; Brown, D.L.; Mäntylä, P. Matrix metalloproteinases: Contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med. 2006, 38, 306–321. [Google Scholar] [CrossRef]
- Petersen, P.E.; Baez, R.J.; World Health Organization. Oral Health Surveys: Basic Methods, 5th ed.; World Health Organization: Geneva, Switzerland, 2013.
- Kelly, S.J.; Young, R.; Sweeting, H.; Fischer, J.E.; West, P. Levels and confounders of morning cortisol collected from adolescents in a naturalistic (school) setting. Psychoneuroendocrinology 2008, 33, 1257–1268. [Google Scholar] [CrossRef] [Green Version]
- Dawes, C. Circadian rhythms in human salivary flow rate and composition. J. Physiol. 1972, 220, 529–545. [Google Scholar] [CrossRef]
- Putnam, S.K.; Lopata, C.; Fox, J.D.; Thomeer, M.L.; Rodgers, J.D.; Volker, M.A.; Lee, G.K.; Neilans, E.G.; Werth, J. Comparison of saliva collection methods in children with high-functioning autism spectrum disorders: Acceptability and recovery of cortisol. Child Psychiatry Hum. Dev. 2012, 43, 560–573. [Google Scholar] [CrossRef]
- Prodan, A.; Brand, H.S.; Ligtenberg, A.J.; Imangaliyev, S.; Tsivtsivadze, E.; van der Weijden, F.; Crielaard, W.; Keijser, B.J.; Veerman, E.C. Interindividual variation, correlations, and sex-related differences in the salivary biochemistry of young healthy adults. Eur. J. Oral Sci. 2015, 123, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Janus, M.M.; Keijser, B.J.; Bikker, F.J.; Exterkate, R.A.; Crielaard, W.; Krom, B.P. In vitro phenotypic differentiation towards commensal and pathogenic oral biofilms. Biofouling 2015, 31, 503–510. [Google Scholar] [CrossRef]
- Rathnayake, N.; Akerman, S.; Klinge, B.; Lundegren, N.; Jansson, H.; Tryselius, Y.; Sorsa, T.; Gustafsson, A. Salivary biomarkers for detection of systemic diseases. PLoS ONE 2013, 8, e61356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.S.; Khurshid, Z.; Yahya Ibrahim Asiri, F. Advancing Point-of-Care (PoC) Testing Using Human Saliva as Liquid Biopsy. Diagnostics 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.M.; Waheed, H.; Khurshid, Z.; Zafar, M.S.; Moin, S.F.; Alam, M.K. Differentially Expressed Salivary Proteins in Dental Caries Patients. BioMed Res. Int. 2021, 2021, 5517521. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M.; Wegehaupt, F.J.; Attin, T. A first study on the usefulness of matrix metalloproteinase 9 from dentinal fluid to indicate pulp inflammation. J. Endod. 2011, 37, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Kobus, A.; Bagińska, J.; Łapińska-Antończuk, J.; Ławicki, S.; Kierklo, A. Levels of Selected Matrix Metalloproteinases, Their Inhibitors in Saliva, and Oral Status in Juvenile Idiopathic Arthritis Patients vs. Healthy Controls. BioMed Res. Int. 2019, 2019, 7420345. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Wang, Y.; Wang, Q.; Ruan, M.S. Hydrophobic interaction chromatography and capillary zone electrophoresis to explore the correlation between the isoenzymes of salivary alpha-amylase and dental caries. J. Chromatogr. B Biomed. Sci. Appl. 1999, 724, 381–388. [Google Scholar] [CrossRef]
- Mojarad, F.; Fazlollahifar, S.; Poorolajal, J.; Hajilooi, M. Effect of alpha amylase on early childhood caries: A matched case-control study. Braz. Dent. Sci. 2013, 16, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, D.; Nag, M.; Banerjee, R.; Mukherjee, D.; Garai, S.; Sarkar, T.; Dey, A.; Sheikh, H.I.; Pathak, S.K.; Edinur, H.A.; et al. Amylases: Biofilm Inducer or Biofilm Inhibitor? Front. Cell Infect. Microbiol. 2021, 11, 660048. [Google Scholar] [CrossRef]
- Borghi, G.; Rodrigues, L.; Marangoni-Lopes, L.; Parisotto, T.; Steiner-Oliveira, C.; Nobre dos Santos, M. Relationship among α amylase and carbonic anhydrase VI in saliva, visible biofilm, and early childhood caries: A longitudinal study. Int. J. Paediatr. Dent. 2016, 27, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Sitaru, A.; Tohati, A.; Pop, A.; Bică, C. Correlation Between the Salivary Level of Alpha-amylase and the Risk for Dental Caries in Young Permanent Teeth. Rev. Chim. 2017, 68, 2984–2986. [Google Scholar] [CrossRef]
- Balekjian, A.Y.; Meyer, T.S.; Montague, M.E.; Longton, R.W. Electrophoretic patterns of parotid fluid proteins from caries-resistant and caries-susceptible individuals. J. Dent. Res. 1975, 54, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Motamayel, F.; Goodarzi, M.; Jamshidi, Z.; Mahdavinezhad, A.; Rafieian, N. Evaluation of Salivary and Serum Alpha Amylase Level in Dental Caries of Adolescence. Braz. Dent. Sci. 2016, 19, 40. [Google Scholar] [CrossRef]
- Kor, M.; Pouramir, M.; Khafri, S.; Ebadollahi, S.; Gharekhani, S. Association between Dental Caries, Obesity and Salivary Alpha Amylase in Adolescent Girls of Babol City, Iran-2017. J. Dent. 2021, 22, 27–32. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, A.; Sood, P.B.; Sood, A.; Zaidi, I.; Sinha, A. Saliva as a prediction tool for dental caries: An in vivo study. J. Oral Biol. Craniofac. Res. 2015, 5, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitorino, R.; de Morais Guedes, S.; Ferreira, R.; Lobo, M.J.; Duarte, J.; Ferrer-Correia, A.J.; Tomer, K.B.; Domingues, P.M.; Amado, F.M. Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility. Eur. J. Oral Sci. 2006, 114, 147–153. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology 2009, 34, 486–496. [Google Scholar] [CrossRef]
- De Farias, D.G.; Bezerra, A.C. Salivary antibodies, amylase and protein from children with early childhood caries. Clin. Oral Investig. 2003, 7, 154–157. [Google Scholar] [CrossRef]
- Ben-Aryeh, H.; Fisher, M.; Szargel, R.; Laufer, D. Composition of whole unstimulated saliva of healthy children: Changes with age. Arch. Oral Biol. 1990, 35, 929–931. [Google Scholar] [CrossRef]
- Bikker, F.J.; Nascimento, G.G.; Nazmi, K.; Silbereisen, A.; Belibasakis, G.N.; Kaman, W.E.; Lopez, R.; Bostanci, N. Salivary Total Protease Activity Based on a Broad-Spectrum Fluorescence Resonance Energy Transfer Approach to Monitor Induction and Resolution of Gingival Inflammation. Mol. Diagn. Ther. 2019, 23, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Katsiki, P.; Nazmi, K.; Loos, B.G.; Laine, M.L.; Schaap, K.; Hepdenizli, E.; Bikker, F.J.; Brand, H.S.; Veerman, E.C.I.; Nicu, E.A. Comparing periodontitis biomarkers in saliva, oral rinse and gingival crevicular fluid: A pilot study. J. Clin. Periodontol. 2021, 48, 1250–1259. [Google Scholar] [CrossRef]
Indices for Primary Dentition (n = 19) | |||
dmft | 6.32 ± 4.57 (5) | dmfs | 16.32 ± 14.89 (15) |
d | 5.95 ± 4.47 (5) | d | 15.11 ± 14.79 (13) |
m | 0.16 ± 0.69 (0) | m | 0.63 ± 2.75 (0) |
f | 0.21 ± 0.71 (0) | f | 0.58 ± 2.09 (0) |
Indices for Permanent Dentition (n = 20) | |||
DMFT | 3.85 ± 4.02 (4) | DMFS | 6.20 ± 7.76 (5) |
D | 3.50 ± 3.56 (3) | D | 5.55 ± 6.50 (4) |
M | 0.05 ± 0.22 (0) | M | 0.25 ± 1.12 (0) |
F | 0.30 ± 0.80 (0) | F | 0.40 ± 1.19 (0) |
Median | Q1 | Q3 | Mean | SD | |
---|---|---|---|---|---|
sAA (U/mL) | 38.04 | 15 | 72.49 | 55.74 | 57.17 |
TPC (μg/mL) | 179.62 | 125.84 | 227.68 | 191.44 | 98.83 |
PFU-089 (F/min) | 118.70 | 75.59 | 154.47 | 120.04 | 49.44 |
PFU-089/TPC ratio | 0.70 | 0.37 | 1.47 | 0.91 | 0.69 |
PEK-054 (F/min) | 719.61 | 519.73 | 1195.1 | 830.94 | 486.09 |
PEK-054/TPC ratio | 4.35 | 2.72 | 7.10 | 5.26 | 3.54 |
MMP-8 (pg/mL) | 629.09 | 480.68 | 848.87 | 684.54 | 244.91 |
MMP-9 (pg/mL) | 425.23 | 307.26 | 521.37 | 432.42 | 145.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vacaru, R.-P.; Didilescu, A.C.; Constantinescu, I.; Mărunțelu, I.; Tănase, M.; Stanciu, I.A.; Kaman, W.E.; Brand, H.S. Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study. Children 2022, 9, 343. https://doi.org/10.3390/children9030343
Vacaru R-P, Didilescu AC, Constantinescu I, Mărunțelu I, Tănase M, Stanciu IA, Kaman WE, Brand HS. Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study. Children. 2022; 9(3):343. https://doi.org/10.3390/children9030343
Chicago/Turabian StyleVacaru, Raluca-Paula, Andreea Cristiana Didilescu, Ileana Constantinescu, Ion Mărunțelu, Mihaela Tănase, Ioana Andreea Stanciu, Wendy Esmeralda Kaman, and Hendrik Simon Brand. 2022. "Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study" Children 9, no. 3: 343. https://doi.org/10.3390/children9030343
APA StyleVacaru, R. -P., Didilescu, A. C., Constantinescu, I., Mărunțelu, I., Tănase, M., Stanciu, I. A., Kaman, W. E., & Brand, H. S. (2022). Salivary Enzymatic Activity and Carious Experience in Children: A Cross-Sectional Study. Children, 9(3), 343. https://doi.org/10.3390/children9030343