Copeptin Concentrations in Plasma of Healthy Neonates in Relation to Water–Electrolyte Homeostasis in the Early Adaptation Period
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Characteristic of the Study Group
3.2. CTproAVP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgenthaler, N.G. Copeptin: A biomarker of cardiovascular and renal function. Congest. Heart Fail. 2010, 16 (Suppl. S1), S37–S44. [Google Scholar] [CrossRef]
- Szinnai, G.; Morgenthaler, N.G.; Berneis, K.; Struck, J.; Müller, B.; Keller, U.; Christ-Crain, M. Changes in plasma copeptin, the C-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 2007, 92, 3973–3978. [Google Scholar] [CrossRef]
- Siegenthaler, J.; Walti, C.; Urwyler, S.A.; Schuetz, P.; Christ-Crain, M. Copeptin concentrations during psychological stress: The PsyCo study. Eur. J. Endocrinol. 2014, 171, 737–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, M.; Timper, K.; Seelig, E.; Nordmann, T.; Erlanger, T.E.; Donath, M.Y.; Christ-Crain, M. Exercise upregulates copeptin levels which is not regulated by interleukin-1. PLoS ONE 2019, 14, e0217800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katan, M.; Morgenthaler, N.; Widmer, I.; Puder, J.J.; König, C.; Müller, B.; Christ-Crain, M. Copeptin, a stable peptide derived from the vasopressin precursor, correlates with the individual stress level. Neuro Endocrinol. Lett. 2008, 29, 341–346. [Google Scholar] [PubMed]
- Struck, J.; Morgenthaler, N.G.; Bergmann, A. Copeptin, a stable peptide derived from the vasopressin precursor, is elvated in serum of sepsis patients. Peptides 2005, 26, 2500–2504. [Google Scholar] [CrossRef]
- Morgenthaler, N.G.; Müller, B.; Struck, J.; Bergmann, A.; Redl, H.; Christ-Crain, M. Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock 2007, 28, 219–226. [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, M.C.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Jeong, M.H.; Kim, S.H.; Myung Geun Shin, M.G.; Ahn, Y. Serum Copeptin Levels Predict Clinical Outcomes After Successful Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. Ann. Lab. Med. 2018, 38, 538–544. [Google Scholar] [CrossRef]
- Fenske, W.; Wanner, C.; Allolio, B.; Drechsler, C.; Blouin, K.; Lilienthal, J.; Krane, V. German Diabetes, Dialysis Study Investigators. Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J. Am. Soc. Nephrol. 2011, 22, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Ristagno, G.; Latini, R.; Plebani, M.; Zaninotto, M.; Vaahersalo, J.; Masson, S.; Tiainen, M.; Kurola, J.; Gaspari, F.; Milani, V.; et al. Copeptin levels are associated with organ dysfunction and death in the intensive care unit after out-of-hospital cardiac arrest. Crit. Care 2015, 19, 132. [Google Scholar] [CrossRef] [Green Version]
- Morawiec, B.; Kawecki, D.; Przywara-Chowaniec, B.; Opara, M.; Muzyk, P.; Ho, L.; Tat, L.C.; Gabrysiak, A.; Muller, O.; Nowalany-Kozielska, E. Copeptin as a Prognostic Marker in Acute Chest Pain and Suspected Acute Coronary Syndrome. Dis. Markers 2018, 2018, 6597387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Refardt, J.; Winzeler, B.; Christ-Crain, M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clin. Endocrinol. 2019, 91, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Enhörning, S.; Christensson, A.; Melander, O. Plasma copeptin as a predictor of kidney disease. Nephrol. Dial. Transplant. 2019, 34, 74–82. [Google Scholar] [CrossRef]
- Fenske, W.K.; Schnyder, I.; Koch, G.; Walti, C.; Pfister, M.; Kopp, P.; Fassnacht, M.; Strauss, K.; Christ-Crain, M. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers. J. Clin. Endocrinol. Metab. 2018, 103, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roussel, R.; Fezeu, L.; Marre, M.; Velho, G.; Fumeron, F.; Jungers, P.; Lantieri, O.; Balkau, B.; Bouby, N.; Bankir, L.; et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J. Clin. Endocrinol. Metab. 2014, 99, 4656–4663. [Google Scholar] [CrossRef] [PubMed]
- Krause, I.; Birk, E.; Davidovits, M.; Cleper, R.; Blieden, L.; Pinhas, L.; Gamzo, Z.; Eisenstein, B. Inferior vena cava diameter: A useful method for estimation of fluid status in children on haemodialysis. Nephrol. Dial. Transplant. 2001, 16, 1203–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dönmez, O.; Mir, S.; Ozyürek, R.; Cura, A.; Kabasakal, C. Inferior vena cava indices determine volume load in minimal lesion nephrotic syndrome. Pediatr. Nephrol. 2001, 16, 251–255. [Google Scholar] [CrossRef]
- Levine, A.C.; Shah, S.P.; Umulisa, I.; Munyaneza, R.B.M.; Dushimiyimana, J.M.; Stegmann, K.; Musavuli, J.; Ngabitsinze, P.; Stulac, S.; Epino, H.M.; et al. Ultrasound assessment of severe dehydration in children with diarrhoea and vomiting. Acad. Emerg. Med. 2010, 17, 1035–1041. [Google Scholar] [CrossRef]
- Chen, L.; Kim, Y.; Santucci, K.A. Use of ultrasound measurement of the inferior vena cava diameter as an objective tool in the assessment of children with clinical dehydration. Acad. Emerg. Med. 2007, 14, 841–845. [Google Scholar] [CrossRef]
- Kosiak, W.; Świętoń, D.; Piskunowicz, M. Sonographic inferior vena cava/aorta diameter index, a new approach to the body fluid status assessment in children and young adults in emergency ultrasound—Preliminary study. Am. J. Emerg. Med. 2008, 26, 320–325. [Google Scholar] [CrossRef]
- Chen, L.; Hsiao, A.; Langhan, M. Use of bedside ultrasound to assess degree of dehydration in children with gastroenteritis. Acad. Emerg. Med. 2010, 17, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Adewumi, A.A.; Braimoh, K.T.M.; Adesiyun, O.A.; Ololu-Zubair, H.T.; Idowu, B.M. Correlation of sonographic inferior vena cava and aorta diameter ratio with dehydration in Nigerian children. Niger. J. Clin. Pract. 2019, 22, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Ravanshad, Y.; Azarfar, A.; Alamdaran, S.; Naseri, M.; Sarvari, G.; Bagheri, S.; Sani, A. Use of ultrasound for the assessment of dehydration in pediatric patients with mild to moderate dehydration. Emerg. Care J. 2019, 15, 8151. [Google Scholar] [CrossRef] [Green Version]
- Jarosz-Lesz, A.; Michalik, K.; Maruniak-Chudek, I. Baseline Diameters of Inferior Vena Cava and Abdominal Aorta Measured by Ultrasonography in Healthy Term Neonates During Early Neonatal Adaptation Period. J. Ultrasound Med. 2018, 37, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Baumert, M.; Surmiak, P.; Więcek, A.; Walencka, Z. Serum NGAL and copeptin levels as predictors of acute kidney injury in asphyxiated neonates. Clin. Exp. Nephrol. 2017, 21, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Loh, T.P.; Metz, M.P. Trends and physiology of common serum biochemistries in children aged 0–18 years. Pathology 2015, 47, 452–461. [Google Scholar] [CrossRef]
- Èukuranović, R.; Vlajković, S. Age Related Anatomical and Functional Characteristics of Human Kidney. Facta Univ. Med. Biol. 2005, 12, 61–69. [Google Scholar]
- Chantry, C.J.; Nommsen-Rivers, L.A.; Peerson, J.M.; Cohen, R.J.; Dewey, K.G. Excess weight loss in first-born breastfed newborns relates to maternal intrapartum fluid balance. Pediatrics 2011, 127, e171–e179. [Google Scholar] [CrossRef] [Green Version]
- Okumus, N.; Atalay, Y.; Onal, E.E.; Turkyilmaz, C.; Senel, S.; Gunaydin, B.; Pasaoglu, H.; Koc, E.; Ergenekon, E.; Unal, S. The effects of delivery route and anesthesia type on early postnatal weight loss in newborns: The role of vasoactive hormones. J. Pediatr. Endocrinol. Metab. 2011, 24, 45–50. [Google Scholar] [CrossRef]
- Watson, J.; Hodnett, E.; Armson, B.A.; Davies, B.; Watt-Watson, J. A randomized controlled trial of the effect of intrapartum intravenous fluid management on breastfed newborn weight loss. J. Obstet. Gynecol. Neonatal Nurs. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Lamp, J.M.; Macke, J.K. Relationships among intrapartum maternal fluid intake, birth type, neonatal output, and neonatal weight loss during the first 48 hours after birth. J. Obstet. Gynecol. Neonatal Nurs. 2010, 39, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Mulder, P.J.; Gardner, S.E. The healthy newborn hydration model: A new model for understanding newborn hydration immediately after birth. Biol. Res. Nurs. 2015, 17, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; Hsu, M.C.; Shen, C.H.; Wang, C.L.; Chang, S.C.; Wu, K.G.; Wu, S.C.; Chen, S.J. Influence of breast-feeding on weight loss, jaundice, and waste elimination in neonates. Pediatr. Neonatol. 2011, 52, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Thulier, D. Challenging Expected Patterns of Weight Loss in Full-Term Breastfeeding Neonates Born by Cesarean. J. Obstet. Gynecol. Neonatal Nurs. 2017, 46, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Vuohelainen, T.; Ojala, R.; Virtanen, A.; Holm, P.; Tammela, O. Predictors of delayed first voiding in newborn. Acta Paediatr. 2008, 97, 904–908. [Google Scholar] [CrossRef]
- Benzing, J.; Wellmann, S.; Achini, F.; Letzner, J.; Burkhardt, T.; Beinder, E.; Morgenthaler, N.G.; Haagen, U.; Bucher, H.U.; Bührer, C.; et al. Plasma Copeptin in Preterm Infants: A Highly Sensitive Marker of Fetal and Neonatal Stress. J. Clin. Endocrinol. Metab. 2011, 96, E982–E985. [Google Scholar] [CrossRef] [Green Version]
- Koch, L.; Dabek, M.T.; Frommhold, D.; Poeschl, J. Stable precursor fragments of vasoactive peptides in umbilical cord blood of term and preterm infants. Horm. Res. Paediatr. 2011, 76, 234–239. [Google Scholar] [CrossRef]
- Wellmann, S.; Benzing, J.; Cippa, G.; Admaty, D.; Creutzfeldt, R.; Mieth, R.A.; Beinder, E.; Lapaire, O.; Morgenthaler, N.G.; Haagen, U.; et al. High Copeptin Concentrations in Umbilical Cord Blood after Vaginal Delivery and Birth Acidosis. J. Clin. Endocrinol. Metab. 2010, 95, 5091–5096. [Google Scholar] [CrossRef] [Green Version]
- Schlapbach, L.J.; Frey, S.; Bigler, S.; Manh-Nhi, C.; Aebi, C.; Nelle, M.; Nuoffer, J.M. Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia. BMC Pediatr. 2011, 19, 38. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, T.; Schwabe, S.; Morgenthaler, N.G.; Natalucci, G.; Zimmermann, R.; Wellmann, S. Copeptin: A marker for stress reaction in fetuses with intrauterine growth restriction. Am. J. Obstet. Gynecol. 2012, 207, 497.e1–497.e5. [Google Scholar] [CrossRef]
- Foda, A.A.; Abdel Aal, I.A. Maternal and neonatal copeptin levels at cesarean section and vaginal delivery. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 165, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, S.; Koslowski, A.; Spanaus, K.; Zimmermann, R.; Burkhardt, T. Fetal Release of Copeptin in Response to Maternal Oxytocin Administration: A Randomized Controlled Trial. Obstet. Gynecol. 2016, 128, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blohm, M.E.; Arndt, F.; Fröschle, G.M.; Langenbach, N.; Sandig, J.; Vettorazzi, E.; Mir, T.S.; Hecher, K.; Weil, J.; Kozlik-Feldmann, R.; et al. Cardiovascular Biomarkers in Amniotic Fluid, Umbilical Arterial Blood, Umbilical Venous Blood, and Maternal Blood at Delivery, and Their Reference Values for Full-Term, Singleton, Cesarean Deliveries. Front. Pediatr. 2019, 7, 271. [Google Scholar] [CrossRef]
- Timur, H.; Tokmak, A.; Taflan, S.; Hançerlioğullari, N.; Laleli, B.; İnal, H.A.; Moraloğlu, Ö.; Danişman, N. Investigation of maternal and cord blood erythropoietin and copeptin levels in low-risk term deliveries complicated by meconium-stained amniotic fluid. J. Matern. Fetal Neonatal Med. 2017, 30, 665–669. [Google Scholar] [CrossRef]
- Rouatbi, H.; Zigabe, S.; Gkiougki, E.; Vranken, L.; Van Linthout, C.; Seghaye, M.C. Biomarkers of neonatal stress assessment: A prospective study. Early Hum. Dev. 2019, 137, 104826. [Google Scholar] [CrossRef]
- Summanen, M.; Seikku, L.; Rahkonen, P.; Stefanovic, V.; Teramo, K.; Andersson, S.; Kaila, K.; Rahkonen, L. Comparson of Umbilical Serum Copeptin Relative to Erythropoietin and S100B as Asphyxia Biomarkers at Birth. Neonatology 2017, 112, 60–66. [Google Scholar] [CrossRef]
- Kasser, S.; Hartley, C.; Rickenbacher, H.; Klarer, N.; Depoorter, A.; Datta, A.N.; Cobo, M.M.; Goksan, S.; Hoskin, A.; Magerl, W.; et al. Birth experience in newborn infants is associated with changes in nociceptive sensitivity. Sci. Rep. 2019, 9, 4117. [Google Scholar] [CrossRef]
- Kelen, D.; Andorka, C.; Szabó, M.; Alafuzoff, A.; Kaila, K.; Summanen, M. Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS ONE 2017, 12, e0184593. [Google Scholar] [CrossRef] [Green Version]
- Burckhardt, M.A.; Wellmann, M.; Fouzas, S.; Lapaire, O.; Burkhardt, T.; Benzing, J.; Bührer, C.; Szinnai, G.; Wellmann, S. Sexual disparity of copeptin in healthy newborn infants. J. Clin. Endocrinol. Metab. 2014, 99, E1750–E1753. [Google Scholar] [CrossRef] [Green Version]
- Kieliszczyk, J.; Baranowski, W.; Kosiak, W. Usefulness of ultrasound examination in the evaluation of a neonate’s body fluid status. J. Ultrason. 2016, 16, 125–134. [Google Scholar] [CrossRef]
- Shaffer, S.G.; Bradt, S.K.; Meade, V.M.; Hall, R.T. Extracellular fluid volume changes in very low birth weight infants during first 2 postnatal months. J. Pediatr. 1987, 111, 124–128. [Google Scholar] [CrossRef]
Parameter/Group | All (N = 200) | VG (N = 100) | CS (N = 100) |
---|---|---|---|
Gender (M/F) [N] | 107/93 | 57/43 | 50/50 |
Gestational age [wks] | 39 ± 1 | 40 ± 1 | 39 ± 1 |
Birth weight [g] | 3385 ± 406 | 3421 ± 356 | 3349 ± 450 |
Apgar 5′ [pts] | 9.9 ± 0.4 | 9.9 ± 0.4 | 9.9 ± 0.3 |
Birth weight loss in 48 h [%] | 6.6 ± 1.7 | 6.2 ± 1.7 | 6.9 ± 1.6 |
IVC diameter at 48 h [mm] | 4.1 ± 0.5 | 4.1 ± 0.6 | 4.0 ± 0.5 |
IVC/Ao at 48 h | 0.62 ± 0.08 | 0.62 ± 0.08 | 0.61 ± 0.08 |
Hematocrit at 48 h [%] | 50.4 ± 5.6 | 52.6 ± 4.5 | 48.3 ± 5.7 |
Blood pH at 48 h | 7.38 ± 0.03 | 7.38 ± 0.03 | 7.37 ± 0.03 |
Serum bilirubin at 48 h [mg/dL] | 8.1 ± 2.7 | 8.5 ± 3.0 | 7.8 ± 2.3 |
Serum sodium at 48 h [mmol/L] | 140.8 ± 3.1 | 140.6 ± 3.3 | 141.0 ± 2.9 |
Serum potassium at 48 h [mmol/l] | 4.36 ± 0.44 | 4.32 ± 0.41 | 4.40 ± 0.47 |
Serum glucose at 48 h [mg/dL] | 66.9 ± 10.4 | 67.2 ± 10.3 | 66.5 ± 10.6 |
Sosm—48 h [mOsm/kgL] | 285 ± 6 | 285 ± 7 | 286 ± 6 |
Uosm [mOsm/kg] | 364.9 ± 105 | 371 ± 34 | 359 ± 27 |
CTproAVP at 48 h females [pmol/mL] | 205 ± 108 | 224 ± 112 | 186 ± 104 |
CTproAVP at 48 h males [pmol/mL] | 213 ± 102 | 213 ± 116 | 214 ± 89 |
Parameter | Action | N | CTproAVP [pmol/L] | Uosm [mOsm/kg H2O] | Sosm [mOsm/kg H2O] | |||
---|---|---|---|---|---|---|---|---|
Oxitocin given to mother | No | 150 | 214 ± 121 | p = 0.36 | 353 ± 88 | p = 0.38 | 286 ± 6 | p = 0.7 |
Yes | 50 | 207 ± 101 | 369 ± 11 | 285 ± 7 | ||||
Fluid given to mother IV | No | 132 | 206 ± 100 | p = 0.33 | 360 ± 92 | p = 0.91 | 286 ± 6 | p = 0.66 |
Yes | 68 | 213 ± 117 | 375 ± 12 | 285 ± 7 | ||||
Fluid given to neonate 0–24 HOL 1 | No | 116 | 215 ± 119 | p = 0.56 | 361 ± 96 | p = 0.83 | 285 ± 6 | p = 0.51 |
Yes | 84 | 205 ± 96 | 370 ± 11 | 286 ± 7 | ||||
Fluid given to neonate 25–48 HOL | No | 100 | 206 ± 99 | p = 0.73 | 376 ± 100 | p = 0.89 | 286 ± 7 | p = 0.73 |
Yes | 100 | 212 ± 113 | 362 ± 11 | 286 ± 6 |
Parameter/Groups | Sosm | Uosm | CTproAVP | |||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Bilirubin | 0.08 | 0.274 | 0.05 | 0.502 | 0.05 | 0.531 |
Hematocrit | −0.28 | 0.001 | 0.08 | 0.001 | −0.11 | 0.109 |
pH | 0.01 | 0.924 | 0.11 | 0.112 | 0.06 | 0.413 |
Na+ | 1.00 | 0.001 | 0.21 | 0.003 | 0.14 | 0.052 |
K+ | −0.14 | 0.049 | −0.09 | 0.028 | 0.03 | 0.703 |
Glucose | −0.10 | 0.177 | −0.09 | 0.185 | −0.11 | 0.168 |
Uosm | 0.21 | 0.004 | X | X | −0.05 | 0.072 |
Sosm | X | X | 0.21 | 0.010 | 0.13 | 0.068 |
IVC/Ao 48 HOL 1 | 0.00 | 0.520 | 0.05 | 0.423 | −0.01 | 0.089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarosz-Lesz, A.; Brzozowska, A.; Maruniak-Chudek, I. Copeptin Concentrations in Plasma of Healthy Neonates in Relation to Water–Electrolyte Homeostasis in the Early Adaptation Period. Children 2022, 9, 443. https://doi.org/10.3390/children9030443
Jarosz-Lesz A, Brzozowska A, Maruniak-Chudek I. Copeptin Concentrations in Plasma of Healthy Neonates in Relation to Water–Electrolyte Homeostasis in the Early Adaptation Period. Children. 2022; 9(3):443. https://doi.org/10.3390/children9030443
Chicago/Turabian StyleJarosz-Lesz, Anna, Aniceta Brzozowska, and Iwona Maruniak-Chudek. 2022. "Copeptin Concentrations in Plasma of Healthy Neonates in Relation to Water–Electrolyte Homeostasis in the Early Adaptation Period" Children 9, no. 3: 443. https://doi.org/10.3390/children9030443
APA StyleJarosz-Lesz, A., Brzozowska, A., & Maruniak-Chudek, I. (2022). Copeptin Concentrations in Plasma of Healthy Neonates in Relation to Water–Electrolyte Homeostasis in the Early Adaptation Period. Children, 9(3), 443. https://doi.org/10.3390/children9030443