An Updated Overview of MRI Injuries in Neonatal Encephalopathy: LyTONEPAL Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Data Collection
2.3. Data Management and Statistics
3. Results
3.1. Population
3.2. Brain Injuries in Neonatal Encephalopathy
3.3. Hypothermia and Brain Injuries in Neonatal Encephalopathy
3.4. The Influence of MRI Timing in Identifying Brain Injury
4. Discussion
4.1. Brain Injuries’ Location and Literature
4.2. Brain Injury and TH
4.3. Early or Late MRI?
4.4. Perspectives
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2010_Asphyxie Périnatale à Terme: Diagnostic, Pronostic, Éléments de Neuroprotection|Gynerisq. Available online: http://gynerisq.fr/bibliotheque_docs/asphyxie-perinatale-a-terme/ (accessed on 9 December 2021).
- Barkovich, A.J.; Hajnal, B.L.; Vigneron, D.; Sola, A.; Partridge, J.C.; Allen, F.; Ferriero, D.M. Prediction of Neuromotor Outcome in Perinatal Asphyxia: Evaluation of MR Scoring Systems. Am. J. Neuroradiol. 1998, 19, 143–149. [Google Scholar] [PubMed]
- Rutherford, M.; Ramenghi, L.A.; Edwards, A.D.; Brocklehurst, P.; Halliday, H.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Assessment of Brain Tissue Injury after Moderate Hypothermia in Neonates with Hypoxic–Ischaemic Encephalopathy: A Nested Substudy of a Randomised Controlled Trial. Lancet Neurol. 2010, 9, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, E.; Ricci, D.; Cowan, F.M.; Lessing, D.; Frisone, M.F.; Haataja, L.; Counsell, S.J.; Dubowitz, L.M.; Rutherford, M.A. Head Growth in Infants with Hypoxic-Ischemic Encephalopathy: Correlation with Neonatal Magnetic Resonance Imaging. Pediatrics 2000, 106, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-Body Hypothermia for Neonates with Hypoxic-Ischemic Encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S.; Barnes, P.D.; Hintz, S.R.; Laptook, A.R.; Zaterka-Baxter, K.M.; McDonald, S.A.; Ehrenkranz, R.A.; Walsh, M.C.; Tyson, J.E.; Donovan, E.F.; et al. Brain Injury Following Trial of Hypothermia for Neonatal Hypoxic-Ischaemic Encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F398–F404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weeke, L.C.; Groenendaal, F.; Mudigonda, K.; Blennow, M.; Lequin, M.H.; Meiners, L.C.; van Haastert, I.C.; Benders, M.J.; Hallberg, B.; de Vries, L.S. A Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. J. Pediatr. 2018, 192, 33–40.e2. [Google Scholar] [CrossRef] [Green Version]
- Sargent, M.A.; Poskitt, K.J.; Roland, E.H.; Hill, A.; Hendson, G. Cerebellar Vermian Atrophy after Neonatal Hypoxic-Ischemic Encephalopathy. Am. J. Neuroradiol. 2004, 25, 1008–1015. [Google Scholar]
- Le Strange, E.; Saeed, N.; Cowan, F.M.; Edwards, A.D.; Rutherford, M.A. MR Imaging Quantification of Cerebellar Growth Following Hypoxic-Ischemic Injury to the Neonatal Brain. Am. J. Neuroradiol. 2004, 25, 463–468. [Google Scholar]
- Annink, K.V.; Meerts, L.; van der Aa, N.E.; Alderliesten, T.; Nikkels, P.G.J.; Nijboer, C.H.A.; Groenendaal, F.; de Vries, L.S.; Benders, M.J.N.L.; Hoebeek, F.E.; et al. Cerebellar Injury in Term Neonates with Hypoxic-Ischemic Encephalopathy Is Underestimated. Pediatr. Res. 2020, 89, 1171–1178. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for Newborns with Hypoxic Ischaemic Encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef]
- Bednarek, N.; Mathur, A.; Inder, T.; Wilkinson, J.; Neil, J.; Shimony, J. Impact of Therapeutic Hypothermia on MRI Diffusion Changes in Neonatal Encephalopathy. Neurology 2012, 78, 1420–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debillon, T.; Bednarek, N.; Ego, A. LyTONEPAL: Long Term Outcome of Neonatal Hypoxic Encephalopathy in the Era of Neuroprotective Treatment with Hypothermia: A French Population-Based Cohort. BMC Pediatr. 2018, 18, 255. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Sarnat, M.S. Neonatal Encephalopathy Following Fetal Distress. A Clinical and Electroencephalographic Study. Arch. Neurol. 1976, 33, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Azzopardi, D.; Brocklehurst, P.; Edwards, D.; Halliday, H.; Levene, M.; Thoresen, M.; Whitelaw, A. The TOBY Study. Whole Body Hypothermia for the Treatment of Perinatal Asphyxial Encephalopathy: A Randomised Controlled Trial. BMC Pediatr. 2008, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okereafor, A.; Allsop, J.; Counsell, S.J.; Fitzpatrick, J.; Azzopardi, D.; Rutherford, M.A.; Cowan, F.M. Patterns of Brain Injury in Neonates Exposed to Perinatal Sentinel Events. Pediatrics 2008, 121, 906–914. [Google Scholar] [CrossRef]
- Beck, J.; Bednarek, N.; Pierrat, V.; Vilotitch, A.; Loron, G.; Alison, M.; Guellec, I.; Hertz-Pannier, L.; de Launay, C.; Ego, A.; et al. Cerebral Injuries in Neonatal Encephalopathy Treated with Hypothermia: French LyTONEPAL Cohort. Pediatr. Res. 2021. [Google Scholar] [CrossRef]
- Inder, T.E.; Hunt, R.W.; Morley, C.J.; Coleman, L.; Stewart, M.; Doyle, L.W.; Jacobs, S.E. Randomized Trial of Systemic Hypothermia Selectively Protects the Cortex on MRI in Term Hypoxic-Ischemic Encephalopathy. J. Pediatr. 2004, 145, 835–837. [Google Scholar] [CrossRef]
- Miller, S.P.; Ramaswamy, V.; Michelson, D.; Barkovich, A.J.; Holshouser, B.; Wycliffe, N.; Glidden, D.V.; Deming, D.; Partridge, J.C.; Wu, Y.W.; et al. Patterns of Brain Injury in Term Neonatal Encephalopathy. J. Pediatr. 2005, 146, 453–460. [Google Scholar] [CrossRef]
- Rao, S.; Elkon, B.; Flett, K.B.; Moss, A.F.D.; Bernard, T.J.; Stroud, B.; Wilson, K.M. Long-Term Outcomes and Risk Factors Associated With Acute Encephalitis in Children. J. Pediatr. Infect. Dis. Soc. 2015, 6, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, M.; Counsell, S.; Allsop, J.; Boardman, J.; Kapellou, O.; Larkman, D.; Hajnal, J.; Edwards, D.; Cowan, F. Diffusion-Weighted Magnetic Resonance Imaging in Term Perinatal Brain Injury: A Comparison with Site of Lesion and Time from Birth. Pediatrics 2004, 114, 1004–1014. [Google Scholar] [CrossRef]
- Tusor, N.; Wusthoff, C.; Smee, N.; Merchant, N.; Arichi, T.; Allsop, J.M.; Cowan, F.M.; Azzopardi, D.; Edwards, A.D.; Counsell, S.J. Prediction of Neurodevelopmental Outcome after Hypoxic-Ischemic Encephalopathy Treated with Hypothermia by Diffusion Tensor Imaging Analyzed Using Tract-Based Spatial Statistics. Pediatr. Res. 2012, 72, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Amrani, F.; Kwan, S.; Gilbert, G.; Saint-Martin, C.; Shevell, M.; Wintermark, P. Early Imaging and Adverse Neurodevelopmental Outcome in Asphyxiated Newborns Treated With Hypothermia. Pediatr. Neurol. 2017, 73, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, K.A.; Kim, H.; Mandelli, M.L.; Rogers, E.E.; Gano, D.; Ferriero, D.M.; Barkovich, A.J.; Gorno-Tempini, M.L.; Glass, H.C.; Xu, D. Early Changes in Brain Structure Correlate with Language Outcomes in Children with Neonatal Encephalopathy. Neuroimage Clin. 2017, 15, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.L.; Zimmerman, R.A.; Clancy, R.; Haselgrove, J.H. Quantitative Apparent Diffusion Coefficient Measurements in Term Neonates for Early Detection of Hypoxic-Ischemic Brain Injury: Initial Experience. Radiology 2001, 218, 825–833. [Google Scholar] [CrossRef]
- Trivedi, S.B.; Vesoulis, Z.A.; Rao, R.; Liao, S.M.; Shimony, J.S.; McKinstry, R.C.; Mathur, A.M. A Validated Clinical MRI Injury Scoring System in Neonatal Hypoxic-Ischemic Encephalopathy. Pediatr. Radiol. 2017, 47, 1491–1499. [Google Scholar] [CrossRef]
- Parikh, N.A.; Lasky, R.E.; Garza, C.N.; Bonfante-Mejia, E.; Shankaran, S.; Tyson, J.E. Volumetric and Anatomical MRI for Hypoxic–Ischemic Encephalopathy: Relationship to Hypothermia Therapy and Neurosensory Impairments. J. Perinatol. 2009, 29, 143–149. [Google Scholar] [CrossRef]
- Cowan, F.; Rutherford, M.; Groenendaal, F.; Eken, P.; Mercuri, E.; Bydder, G.M.; Meiners, L.C.; Dubowitz, L.M.S.; de Vries, L.S. Origin and Timing of Brain Lesions in Term Infants with Neonatal Encephalopathy. Lancet 2003, 361, 736–742. [Google Scholar] [CrossRef]
- Barnett, A.; Mercuri, E.; Rutherford, M.; Haataja, L.; Frisone, M.F.; Henderson, S.; Cowan, F.; Dubowitz, L. Neurological and Perceptual-Motor Outcome at 5–6 Years of Age in Children with Neonatal Encephalopathy: Relationship with Neonatal Brain MRI. Neuropediatrics 2002, 33, 242–248. [Google Scholar] [CrossRef]
- Chau, V.; Poskitt, K.J.; Sargent, M.A.; Lupton, B.A.; Hill, A.; Roland, E.; Miller, S.P. Comparison of Computer Tomography and Magnetic Resonance Imaging Scans on the Third Day of Life in Term Newborns with Neonatal Encephalopathy. Pediatrics 2009, 123, 319–326. [Google Scholar] [CrossRef]
- Steinman, K.J.; Gorno-Tempini, M.L.; Glidden, D.V.; Kramer, J.H.; Miller, S.P.; Barkovich, A.J.; Ferriero, D.M. Neonatal Watershed Brain Injury on Magnetic Resonance Imaging Correlates with Verbal IQ at 4 Years. Pediatrics 2009, 123, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Kurinczuk, J.J.; White-Koning, M.; Badawi, N. Epidemiology of Neonatal Encephalopathy and Hypoxic-Ischaemic Encephalopathy. Early Hum. Dev. 2010, 86, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Agut, T.; León, M.; Rebollo, M.; Muchart, J.; Arca, G.; Garcia-Alix, A. Early Identification of Brain Injury in Infants with Hypoxic Ischemic Encephalopathy at High Risk for Severe Impairments: Accuracy of MRI Performed in the First Days of Life. BMC Pediatr. 2014, 14, 177. [Google Scholar] [CrossRef] [Green Version]
- Charon, V.; Proisy, M.; Ferré, J.-C.; Bruneau, B.; Tréguier, C.; Beuchée, A.; Chauvel, J.; Rozel, C. Comparison of Early and Late MRI in Neonatal Hypoxic-Ischemic Encephalopathy Using Three Assessment Methods. Pediatr. Radiol. 2015, 45, 1988–2000. [Google Scholar] [CrossRef] [PubMed]
- Charon, V.; Proisy, M.; Bretaudeau, G.; Bruneau, B.; Pladys, P.; Beuchée, A.; Burnouf-Rose, G.; Ferré, J.-C.; Rozel, C. Early MRI in Neonatal Hypoxic-Ischaemic Encephalopathy Treated with Hypothermia: Prognostic Role at 2-Year Follow-Up. Eur. J. Radiol. 2016, 85, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- El-Dib, M.; Parziale, M.P.; Johnson, L.; Benson, C.B.; Grant, P.E.; Robinson, J.; Volpe, J.J.; Inder, T. Encephalopathy in Neonates with Subgaleal Hemorrhage Is a Key Predictor of Outcome. Pediatr. Res. 2019, 86, 234–241. [Google Scholar] [CrossRef]
Newborn ≥ 36 wg, NE Grades II–III | ||
---|---|---|
Patient Characteristics | All n = 520 | With TH n = 479 |
n (%) Mean ± SD | n Group (%) Mean ± SD | |
Birth outside a TH center | 377/520 (72.5) | 349/479 (72.9) |
Sentinel event | 264/520 (50.8) | 248/479 (51.8) |
Abnormalities of fetal heart rate | 436/513 (85.0) | 400/472 (84.7) |
Delivery mode | 511/520 | 470/479 |
Vaginal, no instrumental extraction | 89 (17.4) | 78 (16.6) |
Vaginal, instrumental extraction | 122 (21.9) | 103 (21.9) |
Cesarean | 310 (60.7) | 289 (61.5) |
Term, WG | 39.4 ± 1.5 | 39.4 ± 1.6 |
Birth weight, g | 3172 ± 537 | 3180 ± 523 |
Sex, male | 278/520 (53.5) | 255/479 (53.2) |
Apgar score at 5 min < 5 | 283/520 (54.4) | 268/479 (55.9) |
Apgar score at 10 min < 5 | 219/439 (49.9) | 207/403 (51.4) |
Intubation in delivery room | 388/517 (75.1) | 368/476 (77.3) |
Encephalopathy grade (Sarnat) a | 520/520 | 479/479 |
II | 330 (63.5) | 304 (63.6) |
III | 190 (36.5) | 175 (36.5) |
First-hour pH | 6.97 ± 0.18 | 6.96 ± 0.18 |
First-hour lactate (mmol/L) | 12.43 ± 4.96 | 12.50 ± 4.97 |
First-hour base excess (mmol/L) | 11.81 ± 6.64 | 11.93 ± 6.64 |
Glycemia at admission (mmol/L) | 6.87 ± 4.59 | 6.95 ± 4.67 |
Hypoglycemia ≤ 24 h of life b | 36/435 (8.3) | 35/400 (8.8) |
Seizures ≤ 24 h of life | 145/514 (28.2) | 127/473 (26.9) |
Seizures > 24 h of life | 99/514 (19.3) | 91/473 (19.2) |
Seizures during the first 8 days of life | 190/520 (36.5) | 167/479 (34.9) |
Normal clinical exam at discharge | 276/381 (72.4) | 257/351 (73.2) |
Death during hospitalization | 81/520 (15.6) | 74/479 (15.4) |
Newborn ≥ 36 wg, NE Grades II–III | |||
---|---|---|---|
Location | All (n = 520) n (%) | with TH (n = 479) n (%) | without TH (n = 41) n (%) |
Any location | 273/520 (52.5) | 248/479 (51.8) | 25/41 (60) |
BGT | 171/506 (33.8) | 157/466 (33.7) | 14/40 (35.0) |
- Thalamus | 121 | 109 | 12 |
- Globus pallidus | 93 | 84 | 9 |
- Putamen | 85 | 78 | 7 |
- Caudate nucleus | 59 | 52 | 7 |
PLIC | 82/497 (16.5) | 72/456 (15.8) | 10/41 (24.4) |
WM | 166/496 (33.5) | 148/456 (32.5) | 18/40 (45.0) |
- Periventricular | 68 | 62 | 6 |
- Junctional | |||
◦ anterior | 49 | 43 | 6 |
◦ posterior | 48 | 42 | 6 |
- Frontal | 64 | 57 | 7 |
- Parietal | 62 | 57 | 5 |
- Centrum semiovale | 57 | 52 | 5 |
- Temporal | 43 | 39 | 4 |
- Occipital | 43 | 36 | 7 |
Cortex | 128/500 (25.6) | 114/459 (24.8) | 14/41 (34.2) |
- Rolandic | 62 | 55 | 7 |
- Junctional | |||
◦ posterior | 45 | 41 | 4 |
◦ anterior | 43 | 40 | 3 |
- Occipital | 58 | 53 | 5 |
- Mesiotemporal | 48 | 45 | 3 |
- Insula | 37 | 34 | 3 |
CC | 63/460 (13.7) | 56/422 (13.3) | 7/38 (18.4) |
- Splenium | 57 | 52 | 5 |
- Knee | 40 | 39 | 1 |
Brainstem | 44/501 (8.8) | 39/461 (8.5) | 5/40 (12.5) |
- Midbrain | 28 | 25 | 3 |
- Pons | 26 | 24 | 2 |
- Medulla | 17 | 17 | 0 |
Cerebellum | 24/491 (4.9) | 23/450 (5.1) | 1/41 (2.4) |
- Hemisphere | 15 | 14 | 1 |
- Vermis | 5 | 5 | 0 |
Patient Characteristics | All Newborns ≥36 wg n = 520 | Early MRI (before D6) n = 247 | Late MRI (between D6 and D12) n = 273 |
---|---|---|---|
n (%) Mean ± SD | n (%) Mean ± SD | n (%) Mean ± SD | |
Birth outside a TH center | 377/520 (72.5) | 181/247 (73.3) | 196/273 (71.8) |
Sentinel event | 264/520 (50.8) | 137/247 (55.5) | 127/273 (46.5) |
Abnormalities of fetal heart rate | 436/513 (85.0) | 210/242 (86.8) | 226/271 (83.4) |
Delivery mode | 511/520 | 243/244 | 268/273 |
Vaginal, no instrumental extraction | 89 (17.4) | 38 (15.6) | 51 (19.0) |
Vaginal, instrumental extraction | 112 (21.9) | 54 (22.2) | 58 (21.6) |
Cesarean | 310 (60.7) | 151 (62.2) | 159 (59.4) |
Term, WG | 39.4 ± 1.5 | 39.5 ± 1.6 | 39.4 ± 1.5 |
Birth weight, g | 3172 ± 537 | 3167 ± 534 | 3177 ± 540 |
Sex, male | 278/520 (53.5) | 139/247 (56.3) | 139/273 (50.9) |
Apgar score at 5 min < 5 | 283/520 (54.4) | 139/247 (56.3) | 144/273 (52.8) |
Apgar score at 10 min < 5 | 219/439 (49.9) | 104/208 (50.0) | 115/231 (49.8) |
Intubation in delivery room | 388/517 (75.1) | 182/245 (74.3) | 106/272 (75.7) |
Encephalopathy grade (Sarnat) a | 520/520 | 244/244 | 273/273 |
II | 330 (63.5) | 147 (59.5) | 183 (67.0) |
III | 190 (36.5) | 100 (40.5) | 90 (33.0) |
First-hour pH | 6.97 ± 0.18 | 6.95 ± 0.18 | 6.98 ± 0.19 |
First-hour lactate (mmol/L) | 12.43 ± 4.97 | 12.48 ± 5.27 | 12.38 ± 4.68 |
First-hour base excess (mmol/L) | 11.81 ± 6.64 | 12.12 ± 6.84 | 11.54 ± 6.46 |
Glycemia at admission (mmol/L) | 6.87 ± 4.59 | 6.81 ± 4.76 | 6.93 ± 4.45 |
Hypoglycemia ≤ 24 h of life b | 36/435 (8.3) | 18/209 (8.6) | 18/226 (8.0) |
Seizures ≤ 24 h of life | 145/514 (28.2) | 77/243 (31.7) | 68/271 (25.1) |
Seizures > 24 h of life | 99/514 (19.3) | 49/242 (20.3) | 50/272 (18.4) |
Seizures during the first 8 days of life | 190/520 (36.5) | 95/247 (38.5) | 95/273 (34.8) |
Normal clinical exam at discharge | 276/381 (72.4) | 123/166 (74.1) | 153/215 (71.2) |
Death during hospitalization | 81/520 (15.6) | 49/247 (19.8) | 32/273 (11.7) |
Brain Injuries | Total n = 520 | Early MRI (before D6) n = 247 | Late MRI (between D6 and D12) n = 273 |
---|---|---|---|
n (%) | n (%) | n (%) | |
No injury | 247/520 (47.5) | 106/247 (42.9) | 141/273 (51.7) |
BGT | 171/506 (33.8) | 94/236 (39.8) | 77/270 (28.5) |
WM | 166/496 (33.5) | 85/231 (36.8) | 81/265 (30.6) |
Cortex | 128/500 (25.6) | 73/231 (31.6) | 5/269 (20.5) |
PLIC | 82/497 (16.5) | 50/230 (21.7) | 32/267 (12.0) |
CC | 63/460 (13.7) | 35/227 (15.4) | 28/233 (12.0) |
Brainstem | 44/501 (8.8) | 31/232 (13.4) | 13/269 (4.8) |
Cerebellum | 24/491 (4.9) | 13/234 (5.6) | 11/257 (4.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, J.; Loron, G.; Ancel, P.-Y.; Alison, M.; Hertz Pannier, L.; Vo Van, P.; Debillon, T.; Bednarek, N. An Updated Overview of MRI Injuries in Neonatal Encephalopathy: LyTONEPAL Cohort. Children 2022, 9, 561. https://doi.org/10.3390/children9040561
Beck J, Loron G, Ancel P-Y, Alison M, Hertz Pannier L, Vo Van P, Debillon T, Bednarek N. An Updated Overview of MRI Injuries in Neonatal Encephalopathy: LyTONEPAL Cohort. Children. 2022; 9(4):561. https://doi.org/10.3390/children9040561
Chicago/Turabian StyleBeck, Jonathan, Gauthier Loron, Pierre-Yves Ancel, Marianne Alison, Lucie Hertz Pannier, Philippe Vo Van, Thierry Debillon, and Nathalie Bednarek. 2022. "An Updated Overview of MRI Injuries in Neonatal Encephalopathy: LyTONEPAL Cohort" Children 9, no. 4: 561. https://doi.org/10.3390/children9040561
APA StyleBeck, J., Loron, G., Ancel, P. -Y., Alison, M., Hertz Pannier, L., Vo Van, P., Debillon, T., & Bednarek, N. (2022). An Updated Overview of MRI Injuries in Neonatal Encephalopathy: LyTONEPAL Cohort. Children, 9(4), 561. https://doi.org/10.3390/children9040561