Evaluation of Lateral Incisor Resorption Caused by Impacted Maxillary Canines Based on CBCT: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Eligibility Criteria
2.2.1. Types of Participants
2.2.2. Types of Exposure
2.2.3. Types of Outcome Measures
- severe resorption (resorption reaches the pulp),
- moderate resorption (resorption of the dentine midway to the pulp or more, the pulp lining being unbroken),
- slight resorption (resorption of less than half the dentine thickness),
- no resorption (intact root surface).
2.3. Study Design
2.4. Search Strategy
2.5. Data Collection and Data Items
2.6. Risk of Bias in Individual Studies
2.7. Risk of Bias across Studies
2.8. Summary Measures and Synthesis of Results
- quality (assessment of individual studies),
- consistency (the extent of similarity between different studies in their findings) and
- quantity (number of studies, magnitude of treatment effect, sample size across studies).
3. Results
3.1. Study Selection
3.2. Description of Studies
3.3. Risk of Bias in Individual Studies
3.4. Risk of Bias across Studies
3.5. Results of Individual Studies
3.6. Synthesis of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Zoubi, H.; Alharbi, A.A.; Ferguson, D.J.; Zafar, M.S. Frequency of impacted teeth and categorization of impacted canines: A retrospective radiographic study using orthopantomzgrams. Eur. J. Dent. 2017, 11, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Aydin, U.; Yilmaz, H.H.; Yildirim, D. Incidence of canine impaction and transmigration in a patient population. DentoMaxilloFacial Radiol. 2004, 33, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Celikoglu, M.; Kamak, H.; Oktay, H. Investigation of transmigrated and impacted maxillary and mandibular canine teeth in an orthodontic patient population. J. Oral Maxillofac. Surg. 2010, 68, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Ericson, S.; Kurol, J. Radiographic assessment of canine eruption in children with clinical signs of eruption disturbances. Eur. J. Orthod. 1986, 8, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Ericson, S.; Kurol, J. Incisor resorption caused by maxillary cuspids. A radiographic study. Angle Orthod. 1987, 57, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Rózsa, N.; Fábián, G.; Szádeczky, B.; Kaán, M.; Gábris, K.; Tarján, I. Prevalence of impacted permanent upper canine and its treatment in 11-18-year-old orthodontic patients. Fogorv. Sz. 2003, 96, 65–69. [Google Scholar]
- Kumar, S.; Mehrotra, P.; Bhagchandani, J.; Singh, A.; Garg, A.; Kumar, S.; Sharma, A.; Yadav, H. Localization of impacted canines. J. Clin. Diagn. Res. 2015, 9, ZE11–ZE14. [Google Scholar] [CrossRef]
- Grover, P.S.; Lorton, L. The incidence of unerupted permanent teeth and related clinical cases. Oral Surg. Oral Med. Oral Pathol. 1985, 59, 420–425. [Google Scholar] [CrossRef]
- Shah, R.M.; Boyd, M.A.; Vakil, T.F. Studies of permanent tooth anomalies in 7886 Canadian individuals. II: Congenitally missing, supernumerary and peg teeth. Dent. J. 1978, 44, 265–268. [Google Scholar] [CrossRef]
- Bishara, S.E. Impacted maxillary canines: A review. Am. J. Orthod. Dentofacial. Orthop. 1992, 101, 159–171. [Google Scholar] [CrossRef]
- Ristaniemi, J.; Rajala, W.; Karjalainen, T.; Melaluoto, E.; Iivari, J.; Pesonen, P.; Lähdesmäki, R. Eruption pattern of the maxillary canines: Features of natural eruption seen in PTG at the late mixed stage-Part I. Eur. Arch. Paediatr. Dent. 2022, 23, 223–232. [Google Scholar] [CrossRef]
- Mohammed, A.K.; Sravani, G.; Vallappareddy, D.; Rao, A.R.; Qureshi, A.; Prasad, A.N. Localization of Impacted Canines—A Comparative Study of Computed Tomography and Orthopantomography. J. Med. Life. 2020, 13, 56–63. [Google Scholar] [CrossRef]
- Peck, S.; Peck, L.; Kataja, M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod. 1994, 64, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ericson, S.; Kurol, P.J. Resorption of incisors after ectopic eruption of maxillary canines: A CT study. Angle Orthod. 2000, 70, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A.; Jacobs, R.; Lambrechts, P.; Loozen, G.; Willems, G. Root resorption of the maxillary lateral incisor caused by impacted canine: A literature review. Clin. Oral Investig. 2009, 13, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericson, S.; Kurol, J. Resorption of maxillary lateral incisors caused by ectopic eruption of the canines. A clinical and radiographic analysis of predisposing factors. Am. J. Orthod. Dentofac. Orthop. 1988, 94, 503–513. [Google Scholar] [CrossRef]
- Ericson, S.; Bjerklin, K.; Falahat, B. Does the canine dental follicle cause resorption of permanent incisor roots? A computed tomographic study of erupting maxillary canines. Angle Orthod. 2002, 72, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, R.; Cavallini, C.; Vernucci, R.; Vichi, M.; Leonardi, R.; Barbato, E. Impacted maxillary canines and root resorption of adjacent teeth: A retrospective observational study. Med. Oral Patol. Oral 2016, 21, 743–750. [Google Scholar] [CrossRef]
- Westphalen, V.P.; Gomes de Moraes, I.; Westphalen, F.H.; Martins, W.D.; Souza, P.H. Conventional and digital radiographic methods in detection of simulated external root resorptions: A comparative study. Dentomaxillofac. Radiol. 2004, 33, 233–235. [Google Scholar] [CrossRef]
- Tsolakis, A.I.; Kalavritinos, M.; Bitsanis, E.; Sanoudos, M.; Benetou, V.; Alexiou, K.; Tsiklakis, K. Reliability of different radiographic methods for the localization of displaced maxillary canines. Am. J. Orthod. Dentofacial. Orthop. 2018, 153, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.; Ioannidis; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta- analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in a non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Nyaga, V.N.; Arbyn, M.; Aerts, M. Metaprop: A Stata command to perform meta-analysis of binomial data. Arch. Public Health 2014, 72, 39. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.H.; Al-Turaihi, B.A.; Mohammed, L.K.; Alam, M.K. Root Resorption of Teeth Adjacent to Untreated Impacted Maxillary Canines: A CBCT Study. Biomed. Res. Int. 2021, 2021, 6635575. [Google Scholar] [CrossRef]
- Rafflenbeul, F.; Gros, C.I.; Lefebvre, F.; Bahi-Gross, S.; Maizeray, R.; Bolender, Y. Prevalence and risk factors of root resorption of adjacent teeth in maxillary canine impaction, among untreated children and adolescents. Eur. J. Orthod. 2019, 41, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Doğramacı, E.J.; Sherriff, M.; Rossi-Fedele, G.; McDonald, F. Location and severity of root resorption related to impacted maxillary canines: A cone beam computed tomography (CBCT) evaluation. Aust. Orthod. J. 2015, 31, 49–58. [Google Scholar] [CrossRef]
- Hadler-Olsen, S.; Pirttiniemi, P.; Kerosuo, H.; Limchaichana, N.B.; Pesonen, P.; Kallio-Pulkkinen, S.; Lähdesmäki, R. Root resorptions related to ectopic and normal eruption of maxillary canine teeth—A 3D study. Acta Odontol. Scand. 2015, 73, 609–615. [Google Scholar] [CrossRef]
- Lai, C.S.; Bornstein, M.M.; Mock, L.; Heuberger, B.M.; Dietrich, T.; Katsaros, C. Impacted maxillary canines and root resorptions of neighbouring teeth: A radiographic analysis using cone-beam computed tomography. Eur. J. Orthod. 2013, 35, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.G.; Zhang, W.L.; Zhang, Z.Y.; Wu, Y.T.; Ma, X.C. Localization of impacted maxillary canines and observation of adjacent incisor resorption with cone-beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, S.; Knueppel, S. Three-dimensional assessment of impacted canines and root resorption using cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Schroder, A.G.D.; Guariza-Filho, O.; de Araujo, C.M.; Ruellas, A.C.; Tanaka, O.M.; Porporatti, A.L. To what extent are impacted canines associated with root resorption of the adjacent tooth?: A systematic review with meta-analysis. J. Am. Dent. Assoc. 2018, 149, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Kiljunen, T.; Kaasalainen, T.; Suomalainen, A.; Kortesniemi, M. Dental cone beam CT: A review. Phys. Med. 2015, 31, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A.; Jacobs, R.; Fieuws, S.; Nackaerts, O.; The SEDENTEXCT Project Consortium; Willems, G. Comparison of 6 cone-beam computed tomography systems for image quality and detection of simulated canine impaction-induced external root resorption in maxillary lateral incisors. Am. J. Orthod. Dentofacial Orthop. 2011, 140, e129–e139. [Google Scholar] [CrossRef]
- Almasoud, N.N. Extraction of primary canines for interceptive orthodontic treatment of palatally displaced permanent canines: A systematic review. Angle Orthod. 2017, 87, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Alqerban, A.; Jacobs, R.; Souza, P.C.; Willems, G. In-vitro comparison of 2 cone-beam computed tomography systems and panoramic imaging for detecting simulated canine impaction-induced external root resorption in maxillary lateral incisors. Am. J. Orthod. Dentofac. Orthop. 2009, 136, e1–e11. [Google Scholar] [CrossRef]
- Samandara, A.; Papageorgiou, S.N.; Ioannidou-Marathiotou, I.; Kavvadia-Tsatala, S.; Papadopoulos, M.A. Evaluation of orthodontically induced external root resorption following orthodontic treatment using cone beam computed tomography (CBCT): A systematic review and meta-analysis. Eur. J. Orthod. 2018, 41, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Portelli, M.; Militi, A.; Lo Giudice, A.; Lo Giudice, R.; Fastuca, R.; Ielo, I.; Mongelli, V.; Giudice, G.L.; Martintoni, A.; Manuelli, M.; et al. Standard and low-dose cone beam computer tomography protocol for orthognatodontic diagnosis: A comparative evaluation. J. Biol. Regul. Homeostatic. Agents. 2018, 32, 59–66. [Google Scholar]
Study | Ali et al., 2021 | Dogramaci et al., 2015 | Hadler-Olsen et al., 2015 | Lai et al., 2012 | Liu et al., 2008 | Oberoi & Knueppel, 2012 | Rafflenbeul et al., 2019 |
---|---|---|---|---|---|---|---|
CBCT acquisitions | CBCT: CS 9300 3D (Carestream Dental LLC., Atlanta, GA, USA), FOV: 8 × 8, 80 kVp, 10 mA, and 20 s. | CBCT: Accuitomo 80 (Morita, Osaka, Japan), 70–90 kV, 3.0–4.0 mA, FOV: 40 × 40 mm or 60 × 60 mm, 17.5 s | CBCT: SCANORA 3D (Soredex, Charlotte, NC, USA), FOV: 6 × 6 cm and 7.5 × 10 cm, 85 kV, 45 mAs, | CBCT: Accuitomo 3D (Morita, Osaka, Japan), FOV: 4 × 4, 6 × 6, 8 × 8 cm, Voxels: 0.08 mm, 80 kV, 5.0 mA | CBCT: QR-DVT 9000 (NewTom, Verona, Italy) | CBCT: Mercury (Hitachi, Tokyo, Japan), 120 kVp, 15 mA, FOV: 12 inches | CBCT: NewTomTM VGi unit (QR s.r.l., Verona, Italy), FOV 8 8, 100 kV, VOXEL SIZE 150 μm 3.6–5.4 s |
Total N | 41 | 85 | 37 | 113 | 175 | 29 | 60 |
Ethnicity | Multicultural | Multicultural | Caucasian | Caucasian | Multicultural | Multicultural | Caucasian |
Males | 9 | 25 | 15 | 39 | 55 | 7 | 26 |
Females | 32 | 60 | 22 | 74 | 120 | 22 | 34 |
Age mean | 20.8 | 18.1 | 11.9 | 19.35 | 16.9 | 16.6 | 12.2 |
Age SD | 11.1 | 10.3 | 9.26 | 13.65 | 6.9 | 9.26 | 1.9 |
Total impacted | 56 | 110 | 46 | 134 | 210 | 42 | 83 |
Bilateral | 30 | 50 | 24 | 42 | 70 | 26 | 46 |
Unilateral | 26 | 60 | 22 | 92 | 140 | 16 | 37 |
Total males impacted | 12 | 25 | 43 | ||||
Bilateral males | 3 | 8 | 24 | ||||
Unilateral males | 6 | 17 | 67 | ||||
Unilateral males Left | 6 | ||||||
Unilateral males Right | 11 | ||||||
Total females impacted | 44 | 60 | 143 | ||||
Bilateral females | 12 | 17 | 46 | ||||
Unilateral females | 20 | 43 | 97 | ||||
Unilateral females-left | 17 | ||||||
Unilateral females-right | 26 | ||||||
Root resorption (%) | 41 | 10.09 | 60.87 | 35.82 | 75 | 40.48 | 55.7 |
Mild | 85.71 | 50 | 67.86 | 39.58 | 46.67 | 64.71 | 81.8 |
Moderate | 9.52 | 20 | 14.29 | 12.5 | 31.43 | 23.53 | 15.9 |
Severe | 4.76 | 30 | 17.86 | 47.92 | 21.9 | 11.76 | 2.3 |
Cervical | 8 | 4 | 2 | 2 | |||
Middle | 30 | 31 | 22 | 22 | |||
Apical | 66 | 42 | 24 | 17 |
Study | Bias Due to Confounding | Bias in Selection of Participants into the Study | Bias in Classification of Interventions | Bias Due to Deviations from Intended Intervention | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of the Reported Results | Overall |
---|---|---|---|---|---|---|---|---|
Ali et al., 2021 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Dogramaci et al., 2015 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Hadler-Olsen et al., 2015 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Lai et al., 2012 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Liu et al., 2008 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Oberoi & Knueppel, 2012 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Rafflenbrul et al., 2019 | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsea, A.; Palikaraki, G.; Karamesinis, K.; Vastardis, H.; Gizani, S.; Sifakakis, I. Evaluation of Lateral Incisor Resorption Caused by Impacted Maxillary Canines Based on CBCT: A Systematic Review and Meta-Analysis. Children 2022, 9, 1006. https://doi.org/10.3390/children9071006
Mitsea A, Palikaraki G, Karamesinis K, Vastardis H, Gizani S, Sifakakis I. Evaluation of Lateral Incisor Resorption Caused by Impacted Maxillary Canines Based on CBCT: A Systematic Review and Meta-Analysis. Children. 2022; 9(7):1006. https://doi.org/10.3390/children9071006
Chicago/Turabian StyleMitsea, Anastasia, Georgia Palikaraki, Konstantinos Karamesinis, Heleni Vastardis, Sotiria Gizani, and Iosif Sifakakis. 2022. "Evaluation of Lateral Incisor Resorption Caused by Impacted Maxillary Canines Based on CBCT: A Systematic Review and Meta-Analysis" Children 9, no. 7: 1006. https://doi.org/10.3390/children9071006
APA StyleMitsea, A., Palikaraki, G., Karamesinis, K., Vastardis, H., Gizani, S., & Sifakakis, I. (2022). Evaluation of Lateral Incisor Resorption Caused by Impacted Maxillary Canines Based on CBCT: A Systematic Review and Meta-Analysis. Children, 9(7), 1006. https://doi.org/10.3390/children9071006