Clinical Question Influence on Radiation Dose of Cardiac CT Scan in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Questions
- Extent of scanning in the z-axis (heart only): Yes or no. This differentiates between examinations that cover only the heart (from the tracheal carina to the caudal edge of the heart) and examinations that include the aortic arch or the entire chest. A longer extent of scanning leads to a higher radiation dose.
- Coronary artery evaluation: Yes or no. This differentiates between examinations where one of the questions is about anatomy, stenosis or compression of the coronary arteries versus examinations without the need for precise evaluation of the coronary arteries. The relevant assessment of the coronary arteries depends on the quality of the images, especially the absence of motion artefacts. Prospective single-shot high-pitch mode requires a lower heart rate (below <60 bpm), which is sometimes impossible in children. Therefore, we assume that retrospective gating mode is more often selected for coronary CT angiography, and this could lead to a higher radiation dose.
- Cardiac function assessment: Yes or no. This differentiates between examinations in which one of the clinical questions is about the measurement of cardiac ventricles and the calculation of the ejection fraction of the right and/or left ventricles. Assessment of function requires scanning through the whole heart cycle using retrospective gating mode, which therefore leads to a higher radiation dose than in examinations at a particular cardiac cycle phase only.
2.2. Radiation Dose
2.3. Statistical Analysis
3. Results
3.1. Extent of Scanning in the Z-Axis
3.2. Coronary Artery Evaluation
3.3. Cardiac Function Assessment
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stocker, T.J.; Deseive, S.; Leipsic, J.; Hadamitzky, M.; Chen, M.Y.; Rubinshtein, R.; Heckner, M.; Bax, J.J.; Fang, X.-M.; Grove, E.L.; et al. Reduction in Radiation Exposure in Cardiovascular Computed Tomography Imaging: Results from the PROspective Multicenter Registry on RadiaTion Dose Estimates of Cardiac CT AngIOgraphy iN Daily Practice in 2017 (PROTECTION VI). Eur. Heart J. 2018, 39, 3715–3723. [Google Scholar] [CrossRef] [Green Version]
- Hosseini Nasab, S.M.B.; Deevband, M.R.; Shabestani-Monfared, A.; Hoseini Amoli, S.A.; Fatehi Feyzabad, S.H. Organ Equivalent Dose and Lifetime Attributable Risk of Cancer Incidence and Mortality Associated with Cardiac Ct Angiography. Radiat. Prot. Dosim. 2020, 189, 213–223. [Google Scholar] [CrossRef]
- Williams, M.C.; Stewart, C.; Weir, N.W.; Newby, D.E. Using Radiation Safely in Cardiology: What Imagers Need to Know. Heart 2019, 105, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Alkadhi, H.; Leschka, S. Radiation Dose of Cardiac Computed Tomography—What Has Been Achieved and What Needs to Be Done. Eur. Radiol. 2011, 21, 505–509. [Google Scholar] [CrossRef]
- Halliburton, S.S.; Abbara, S.; Chen, M.Y.; Gentry, R.; Mahesh, M.; Raff, G.L.; Shaw, L.J.; Hausleiter, J. SCCT Guidelines on Radiation Dose and Dose-Optimization Strategies in Cardiovascular CT. J. Cardiovasc. Comput. Tomogr. 2011, 5, 198–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimelli, A.; Achenbach, S.; Buechel, R.R.; Edvardsen, T.; Francone, M.; Gaemperli, O.; Hacker, M.; Hyafil, F.; Kaufmann, P.A.; Lancellotti, P.; et al. Strategies for Radiation Dose Reduction in Nuclear Cardiology and Cardiac Computed Tomography Imaging: A Report from the European Association of Cardiovascular Imaging (EACVI), the Cardiovascular Committee of European Association of Nuclear Medicine (EANM), and the European Society of Cardiovascular Radiology (ESCR). Eur. Heart J. 2018, 39, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Podberesky, D.J.; Angel, E.; Yoshizumi, T.T.; Toncheva, G.; Salisbury, S.R.; Alsip, C.; Barelli, A.; Egelhoff, J.C.; Anderson-Evans, C.; Nguyen, G.B.; et al. Radiation Dose Estimation for Prospective and Retrospective ECG-Gated Cardiac CT Angiography in Infants and Small Children Using a 320-MDCT Volume Scanner. Am. J. Roentgenol. 2012, 199, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Ghoshhajra, B.B.; Lee, A.M.; Engel, L.-C.; Celeng, C.; Kalra, M.K.; Brady, T.J.; Hoffmann, U.; Westra, S.J.; Abbara, S. Radiation Dose Reduction in Pediatric Cardiac Computed Tomography: Experience from a Tertiary Medical Center. Pediatric Cardiol. 2014, 35, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Meinel, F.G.; Henzler, T.; Schoepf, U.J.; Park, P.W.; Huda, W.; Spearman, J.V.; Dyer, K.T.; Rao, A.G.; Hlavacek, A.M. ECG-Synchronized CT Angiography in 324 Consecutive Pediatric Patients: Spectrum of Indications and Trends in Radiation Dose. Pediatric Cardiol. 2015, 36, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Zhao, H.; Jia, Y.; Ren, J.; Xu, J.; Hao, Y.; Zheng, M. Image Quality and Radiation Dose of Dual-Source CT Cardiac Angiography Using Prospective ECG-Triggering Technique in Pediatric Patients with Congenital Heart Disease. J. Cardiothorac. Surg. 2016, 11, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koplay, M.; Kizilca, O.; Cimen, D.; Sivri, M.; Erdogan, H.; Guvenc, O.; Oc, M.; Oran, B. Prospective ECG-Gated High-Pitch Dual-Source Cardiac CT Angiography in the Diagnosis of Congenital Cardiovascular Abnormalities: Radiation Dose and Diagnostic Efficacy in a Pediatric Population. Diagn. Interv. Imaging 2016, 97, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Barrera, C.A.; Otero, H.J.; White, A.M.; Saul, D.; Biko, D.M. Image Quality and Radiation Dose of ECG-Triggered High-Pitch Dual-Source Cardiac Computed Tomography Angiography in Children for the Evaluation of Central Vascular Stents. Int. J. Cardiovasc. Imaging 2019, 35, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.-R.; Gao, W.; Sun, A.; Wang, Q.; Qiu, H.; Wang, F.; Hu, L.; Li, J.; Zhong, Y. A Prospective Evaluation of Contrast and Radiation Dose and Image Quality in Cardiac CT in Children with Complex Congenital Heart Disease Using Low-Concentration Iodinated Contrast Agent and Low Tube Voltage and Current. Br. J. Radiol. 2017, 90, 20160669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Radiation Protection. In European Guidelines on Diagnostic Reference Levels for Paediatric Imaging; Publications Office of the European Union: Luxembourg, 2018; p. 185. [Google Scholar]
- Vañó, E.; Miller, D.L.; Martin, C.J.; Rehani, M.M.; Kang, K.; Rosenstein, M.; Ortiz-López, P.; Mattsson, S.; Padovani, R.; Rogers, A.; et al. ICRP Publication 135: Diagnostic Reference Levels in Medical Imaging. Ann. ICRP 2017, 46, 1–144. [Google Scholar] [CrossRef] [PubMed]
- The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 37, 1–332. [CrossRef]
- Patient Dosimetry for x Rays Used in Medical Imaging. J. ICRU 2005, 5, 1–113. [CrossRef]
- Trattner, S.; Chelliah, A.; Prinsen, P.; Ruzal-Shapiro, C.B.; Xu, Y.; Jambawalikar, S.; Amurao, M.; Einstein, A.J. Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose. Am. J. Roentgenol. 2017, 208, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Rompel, O.; Glöckler, M.; Janka, R.; Dittrich, S.; Cesnjevar, R.; Lell, M.M.; Uder, M.; Hammon, M. Third-Generation Dual-Source 70-KVp Chest CT Angiography with Advanced Iterative Reconstruction in Young Children: Image Quality and Radiation Dose Reduction. Pediatric Radiol. 2016, 46, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Habib Geryes, B.; Calmon, R.; Khraiche, D.; Boddaert, N.; Bonnet, D.; Raimondi, F. Radiation Dose Reduction in Paediatric Coronary Computed Tomography: Assessment of Effective Dose and Image Quality. Eur. Radiol. 2016, 26, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Mean ± SD (Min–Max) |
---|---|
Age | 10.6 ± 5.9 years (50 days–18.9 years) |
Height | 138.2 ± 38.0 cm (54–200) |
Weight | 40.1 ± 24.8 kg (3.7–103) |
BSA | 1.22 ± 0.55 (0.24–2.30) |
BMI | 18.3 ± 4.3 (11.4–33.3) |
Parameter | Heart Only: No (n = 89) | Heart Only: Yes (n = 27) | Comparison | p Value |
---|---|---|---|---|
Age [years] | 10.3 ± 5.9 | 11.5 ± 5.7 | 1.2 CI (−1.3 to 3.8) | 0.3322 |
Height [cm] | 136.1 ± 38.9 | 145.1 ± 34.4 | 9.0 CI (−6.6 to 24.7) | 0.2520 |
Weight [kg] | 39.2 ± 25.5 | 43.3 ± 22.9 | 4.1 CI (−6.3 to 14.5) | 0.4272 |
BSA [m2] | 1.19 ± 0.56 | 1.30 ± 0.51 | 0.11 CI (−0.12 to 0.34) | 0.3257 |
BMI [kg/m2] | 18.2 ± 4.6 | 18.6 ± 3.1 | 0.4 CI (−1.1 to 1.9) | 0.6131 |
DLP [mGy*cm] | 84 (6, 1133) | 129 (11, 584) | 1.54× | 0.3957 |
Parameter | Coronary Arteries: No (n = 56) | Coronary Arteries: Yes (n = 60) | Comparison | p Value |
---|---|---|---|---|
Age [years] | 10.1 ± 6.6 | 11.0 ± 5.1 | 0.9 (−1.3 to 3.1) | 0.4010 |
Height [cm] | 131.8 ± 42.7 | 144.2 ± 32.2 | 12.3 (−1.7 to 26.3) | 0.0833 |
Weight [kg] | 37.7 ± 26.5 | 42.4 ± 23.2 | 4.8 (−4.4 to 13.9) | 0.3069 |
BSA [m2] | 1.15 ± 0.60 | 1.28 ± 0.49 | 0.14 (−0.07 to 0.34) | 0.1873 |
BMI [kg/m2] | 18.0 ± 4.1 | 18.5 ± 4.5 | 0.6 (−1.0 to 2.2) | 0.4731 |
DLP [mGy*cm] | 71 (6, 831) | 133 (11, 1133) | 1.87× | 0.0072 |
Parameter | Function: No (n = 85) | Function: Yes (n = 31) | Comparison | p Value |
---|---|---|---|---|
Age [years] | 9.5 ± 5.8 | 13.3 ± 5.2 | 3.8 (1.5 to 6.1) | 0.0013 |
Height [cm] | 132.4 ± 39.5 | 154.0 ± 28.3 | 21.6 (8.31 to 34.8) | 0.0018 |
Weight [kg] | 36.0 ± 24.0 | 51.5 ± 23.8 | 15.6 (5.5 to 25.6) | 0.0030 |
BSA [m2] | 1.13 ± 0.55 | 1.46 ± 0.47 | 0.34 (0.13 to 0.55) | 0.0017 |
BMI [kg/m2] | 17.6 ± 3.9 | 20.2 ± 4.9 | 2.7 (0.7 to 4.6) | 0.0089 |
DLP [mGy*cm] | 59 (6, 796) | 348 (65, 1133) | 5.9× | <0.0001 |
Parameter | Function: No (n = 48) | Function: Yes (n = 27) | Comparison | p Value |
---|---|---|---|---|
Age [years] | 13.8 ± 3.4 | 14.9 ± 3.6 | 1.0 (−0.6 to 2.6) | 0.2177 |
Height [cm] | 160.4 ± 21.7 | 162.9 ± 16.0 | 2.4 (−7.0 to 11.9) | 0.6070 |
Weight [kg] | 51.5 ± 19.3 | 57.1 ± 20.1 | 5.6 (−3.6 to 14.8) | 0.2313 |
BSA [m2] | 1.50 ± 0.38 | 1.59 ± 0.35 | 0.09 (−0.08 to 0.27) | 0.3065 |
BMI [kg/m2] | 19.2 ± 3.8 | 20.9 ± 4.9 | 1.5 (−0.8 to 3.7) | 0.1695 |
DLP [mGy*cm] | 84 (11, 796) | 358 (83, 1133) | 4.3× | <0.0001 |
Study | Total DLP (mGy*cm) | Scanner | Scanning Mode |
---|---|---|---|
Adla (this study) | 101 (6, 1751) | 128-slice DSCT | Prospective ECG-triggered high-pitch helical, retrospective ECG-gated helical with current modulation, retrospective ECG-gated helical without current modulation or prospective ECG-triggered axial. Selection of the scanning mode based on clinical question and supervising physician’s decision. |
Barrera 2019 [12] | 98.29 ± 66.02 (17.6, 204.9) ** | 128-slice DSCT | Prospective ECG-triggered high-pitch helical |
Hou 2017 [13] | 15.29 ± 1.91 * (Lower dose) 20.11 ± 2.13 * (Standard dose) | 64-slice MDCT | Prospective ECG-triggered axial |
Liu 2016 [10] | 19.71 ± 10.5 * | 64-slice DSCT | Prospective ECG-triggered axial |
Koplay 2016 [11] | 15.6 ± 9.6 * | 128-slice DSCT | Prospective ECG-triggered high-pitch helical |
Rompel 2016 [19] | 5.33 ± 3.05 * (128-slice DSCT) 9.17 ± 4.05 * (64-slice DSCT) | 64-slice DSCT 128-slice DSCT | Prospective ECG-triggered high-pitch helical |
Habib Geryes 2016 [20] | Mean varies from 28.4 to 189.2 (3 different protocols and 4 age groups) | 64-slice MDCT | Retrospective ECG-gated, prospective ECG-triggered |
Meinel 2015 [9] | 67 (1, 1788) | 64-slice MDCT 64-slice DSCT | Retrospective ECG-gated, prospective ECG-triggered, or an adaptive sequential technique depending on the patients’ heart rate and rhythm and whether or not an evaluation of myocardial function was indicated |
Ghoshhajra 2014 [8] | 107.0 (44.5, 282.3) | 64-slice MDCT 64-slice DSCT 128-slice DSCT | Retrospective ECG-gated helical, prospective ECG-triggered axial, or prospective ECG-triggered high-pitch helical. ECG-gating was selected per the scanner’s availability, scan indication and per the supervising physician’s discretion. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adla, T.; Kočí, M.; Suchánek, V.; Šalagovičová, Z.; Polovinčák, M.; Mikšík, L.; Janoušek, J.; Roček, M. Clinical Question Influence on Radiation Dose of Cardiac CT Scan in Children. Children 2022, 9, 1172. https://doi.org/10.3390/children9081172
Adla T, Kočí M, Suchánek V, Šalagovičová Z, Polovinčák M, Mikšík L, Janoušek J, Roček M. Clinical Question Influence on Radiation Dose of Cardiac CT Scan in Children. Children. 2022; 9(8):1172. https://doi.org/10.3390/children9081172
Chicago/Turabian StyleAdla, Theodor, Martin Kočí, Vojtěch Suchánek, Zuzana Šalagovičová, Michal Polovinčák, Lukáš Mikšík, Jan Janoušek, and Miloslav Roček. 2022. "Clinical Question Influence on Radiation Dose of Cardiac CT Scan in Children" Children 9, no. 8: 1172. https://doi.org/10.3390/children9081172
APA StyleAdla, T., Kočí, M., Suchánek, V., Šalagovičová, Z., Polovinčák, M., Mikšík, L., Janoušek, J., & Roček, M. (2022). Clinical Question Influence on Radiation Dose of Cardiac CT Scan in Children. Children, 9(8), 1172. https://doi.org/10.3390/children9081172