Polygraphic EEG Can Identify Asphyxiated Infants for Therapeutic Hypothermia and Predict Neurodevelopmental Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Inclusion Criteria
2.2. p-EEG Recording
2.3. Brain Magnetic Resonance Imaging
2.4. Neurological Follow-Up
2.5. Assessment of General Movements
2.6. Neurodevelopmental Outcome
3. Statistical Analysis
4. Results
4.1. Cooled Infants (TH Group)
4.2. Non-Cooled Infants (No TH Group)
4.3. Mild HIE
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Statement
References
- Azzopardi, D.; Brocklehurst, P.; Edwards, D.; Halliday, H.; Levene, M.; Thoresen, M.; Whitelaw, A.; TOBY Study Group. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: A randomised controlled trial. BMC Pediatr. 2008, 8, 17–25. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef]
- Simbruner, G.; Mittal, R.A.; Rohlmann, F.; Muche, R.; neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: Outcomes of neo.nEURO.network RCT. Pediatrics 2010, 126, e771–e778. [Google Scholar] [CrossRef]
- Oliveira, V.; Singhvi, D.P.; Montaldo, P.; Lally, P.J.; Mendoza, J.; Manerkar, S.; Shankaran, S.; Thayyil, S. Therapeutic hypothermia in mild neonatal encephalopathy: A national survey of practice in the UK. Arch. Dis. Child Fetal Neonatal Ed. 2018, 103, F388–F390. [Google Scholar] [CrossRef]
- Thoresen, M.; Satas, S.; Løberg, E.M.; Løberg, E.M.; Whitelaw, A.; Acolet, D.; Lindgren, C.; Penrice, J.; Robertson, N.; Haug, E.; et al. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective. Pediatr. Res. 2001, 50, 405–411. [Google Scholar] [CrossRef]
- Walsh, B.H.; Neil, J.; Morey, J.; Yang, E.; Silvera, M.V.; Inder, T.E.; Ortinau, C. The Frequency and Severity of Magnetic Resonance Imaging Abnormalities in Infants with Mild Neonatal Encephalopathy. J. Pediatr. 2017, 187, 26–33.e1. [Google Scholar] [CrossRef]
- Finder, M.; Boylan, G.B.; Twomey, D.; Ahearne, C.; Murray, D.M.; Hallberg, B. Two-Year Neurodevelopmental Outcomes after Mild Hypoxic Ischemic Encephalopathy in the Era of Therapeutic Hypothermia. JAMA Pediatr. 2020, 174, 48–55. [Google Scholar] [CrossRef]
- Lee, W.L.A.; Michael-Titus, A.T.; Shah, D.K. Hypoxic-Ischaemic Encephalopathy and the Blood-Brain Barrier in Neonates. Dev. Neurosci. 2017, 39, 49–58. [Google Scholar] [CrossRef]
- Bersani, I.; Ferrari, F.; Lugli, L.; Ivani, G.; Conio, A.; Moataza, B.; Aboulgar, H.; Mufeed, H.; Iskander, I.; Kornacka, M.; et al. Monitoring the effectiveness of hypothermia in perinatal asphyxia infants by urinary S100B levels. Clin. Chem. Lab. Med. 2019, 57, 1017–1025. [Google Scholar] [CrossRef]
- Chalak, L.F. Inflammatory Biomarkers of Birth Asphyxia. Clin. Perinatol. 2016, 43, 501–510. [Google Scholar] [CrossRef]
- Al Naqeeb, N.; Edwards, A.D.; Cowan, F.M.; Azzopardi, D. Assessment of neonatal encephalopathy by amplitude-integrated electroencephalography. Pediatrics 1999, 103, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Ter Horst, H.J.; Sommer, C.; Bergman, K.A.; Fock, J.M.; van Weerden, T.W.; Bos, A.F. Prognostic significance of amplitude-integrated EEG during the first 72 hours after birth in severely asphyxiated neonates. Pediatr. Res. 2004, 55, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Wyatt, J.S.; Azzopardi, D.; Ballard, R.; Edwards, A.D.; Ferriero, D.M.; Polin, R.A.; Robertson, C.M.; Thoresen, M.; Whitelaw, A.; et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 2005, 365, 663–670. [Google Scholar] [CrossRef]
- Murray, D.M.; Boylan, G.B.; Ryan, C.A.; Connolly, S. Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. Pediatrics 2009, 124, e459–e467. [Google Scholar] [CrossRef]
- Lamblin, M.D.; de Villepin-Touzery, A. EEG in the neonatal unit. Neurophysiol. Clin. 2015, 45, 87–95. [Google Scholar] [CrossRef]
- Shalak, L.F.; Laptook, A.R.; Velaphi, S.C.; Perlman, J.M. Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 2003, 111, 351–357. [Google Scholar] [CrossRef]
- Lago, P.; Spada, C.; Lugli, L.; Garetti, E.; Pirelli, A.; Savant Levet, P.; Ancora, G.; Merazzi, D.; Pain Study Group of Italian Society of Neonatology. Pain management during therapeutic hypothermia in newborn infants with hypoxic-ischaemic encephalopathy. Acta Paediatr. 2020, 109, 628–629. [Google Scholar] [CrossRef]
- Ancora, G.; Pomero, G.; Ferrari, F. Recommendation for Therapeutic Hypothermia in Infants with Hypoxic-Ischemic Encephalopathy; Italian Society of Neonatology: Biomedia Ed. II; Neurology Study Group Italy, 2012. [Google Scholar]
- Sarnat, H.B.; Sarnat, M.S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol. 1976, 33, 696–705. [Google Scholar] [CrossRef]
- Lugli, L.; Spada, C.; Garetti, E.; Guidotti, I.; Roversi, M.F.; Della Casa, E.; Bedetti, L.; Lucaccioni, L.; Pugliese, M.; Ferrari, F.; et al. Fentanyl analgesia in asphyxiated newborns treated with therapeutic hypothermia. J. Matern.-Fetal Neonatal Med. 2021, 5, 1–7. [Google Scholar] [CrossRef]
- Lugli, L.; Balestri, E.; Berardi, A.; Cavalleri, F.; Todeschini, A.; Pugliese, M.; Muttini Della Casa, E.; Lucaccioni, L.; Ferrari, F. Brain cooling reduces the risk of post-neonatal epilepsy in newborns affected by moderate to severe hypoxic-ischemic encephalopathy. Minerva Pediatr. 2018, 2, 10–18. [Google Scholar] [CrossRef]
- Guidotti, I.; Lugli, L.; Guerra, M.P.; Ori, L.; Gallo, C.; Cavalleri, F.; Ranzi, A.; Frassoldati, R.; Berardi, A.; Ferrari, F. Hypothermia reduces seizure burden and improves neurological outcome in severe hypoxic-ischemic encephalopathy: An observational study. Dev. Med. Child Neurol. 2016, 58, 1235–1241. [Google Scholar] [CrossRef]
- Okereafor, A.; Allsop, J.; Counsell, S.J.; Fitzpatrick, J.; Azzopardi, D.; Rutherford, M.A.; Cowan, F.M. Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 2008, 121, 906–914. [Google Scholar] [CrossRef]
- Touwen, B.C.L. Neurological Development in Infancy; Mac Keith Press: London, UK, 1976. [Google Scholar]
- Griffiths, R. Griffiths Mental Developmental Scale- Revised: Birth to 2 Years (GMDS-R); Hogrefe: Florence, Italy, 1996. [Google Scholar]
- Prechtl, H.F. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum. Dev. 1990, 23, 151–158.13. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.; Bos, A.F.; Ferrari, F.; Cioni, G. Prechtl’s Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants; Mac Keith Press: London, UK, 2004. [Google Scholar]
- Ferrari, F.; Todeschini, A.; Guidotti, I.; Martinez-Biarge, M.; Roversi, M.F.; Berardi, A.; Ranzi, A.; Cowan, F.M.; Rutherford, M.A. General movements in full-term infants with perinatal asphyxia are related to Basal Ganglia and thalamic lesions. J. Pediatr. 2011, 158, 904–911. [Google Scholar] [CrossRef]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Bedetti, L.; Guidotti, I.; Lugli, L.; Valeri, L.; Spaggiari, E.; Pugliese, M.; Roversi, M.F.; Della Casa Muttini, E.; Lucaccioni, L.; et al. Therapeutic hypothermia in newborns with hypoxic- ischemic encephalopathy: Outcome from an ongoing Italian area-based study. J. Matern.-Fetal Neonatal Med. 2021, 34 (Suppl. S1), 1–128. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef]
- Nash, K.B.; Bonifacio, S.L.; Glass, H.C.; Sullivan, J.E.; Barkovich, A.J.; Ferriero, D.M.; Cilio, M.R. Video-EEG monitoring in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neurology 2011, 76, 556–562. [Google Scholar] [CrossRef]
- Murray, D.M.; O’Connor, C.M.; Ryan, C.A.; Korotchikova, I.; Boylan, G.B. Early EEG Grade and Outcome at 5 Years after Mild Neonatal Hypoxic Ischemic Encephalopathy. Pediatrics 2016, 138, e20160659. [Google Scholar] [CrossRef]
- Gagne-Loranger, M.; Sheppard, M.; Ali, N.; Saint-Martin, C.; Wintermark, P. Newborns Referred for Therapeutic Hypothermia: Association between Initial Degree of Encephalopathy and Severity of Brain Injury (What About the Newborns with Mild Encephalopathy on Admission?). Am. J. Perinatol. 2016, 33, 195–202. [Google Scholar] [CrossRef]
- Massaro, A.N.; Murthy, K.; Zaniletti, I.; Cook, N.; DiGeronimo, R.; Dizon, M.; Hamrick, S.E.; McKay, V.J.; Natarajan, G.; Rao, R.; et al. Short-term outcomes after perinatal hypoxic ischemic encephalopathy: A report from the Children’s Hospitals Neonatal Consortium HIE focus group. J. Perinatol. 2015, 35, 290–296. [Google Scholar] [CrossRef]
- Guzzetta, A.; Mercuri, E.; Rapisardi, G.; Ferrari, F.; Roversi, M.F.; Cowan, F.; Rutherford, M.; Paolicelli, P.B.; Einspieler, C.; Boldrini, A.; et al. General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction. Neuropediatrics 2003, 34, 61–66. [Google Scholar] [CrossRef]
- Van Iersel, P.A.; Bakker, S.C.; Jonker, A.J.; Hadders-Algra, M. Quality of general movements in term infants with asphyxia. Early Hum. Dev. 2009, 85, 7–12. [Google Scholar] [CrossRef]
- Hadders-Algra, M. Putative neural substrate of normal and abnormal general movements. Neurosci. Biobehav. Rev. 2007, 31, 1181–1190. [Google Scholar] [CrossRef]
All HIE (n = 139) | Cooled HIE (n = 82) | Un-Cooled HIE (n = 57) | p | |
---|---|---|---|---|
Inborn Outborn | 59 (42.4%) 80 (57.66%) | 41 (50%) 41 (50%) | 18 (31.6%) 39 (68.4%) | 0.0470 * |
Sentinel event Present Absent | 114 (82.0%) 25 (18.0%) | 62 (75.6%) 20 (24.4%) | 52 (91.2%) 5 (8.8%) | 0.0329 * |
Delivery Vaginal Cesarean | 91 (65.5%) 48 (34.5%) | 52 (63.4%) 30 (36.6%) | 39 (68.4%) 18 (31.6%) | 0.6678 |
Weight | 3381.30 ± 488.7 | 3379.9 ± 520.6 | 3383.3± 443.3 | 0.2030 |
Gestational age | 39.66 ± 1.5 | 39.48 ± 1.41 | 39.9 ± 1.6 | 0.3240 |
Apgar 1st minute | 2.48 ± 1.9 | 1.93 ± 1.55 | 3.3 ± 2.1 | 0.0090 * |
Apgar 5th minute | 5.06 ± 2.0 | 4.16 ± 1.74 | 6.3 ± 1.4 | 0.0001 * |
Apgar 10th minute | 6.52 ± 1.9 | 5.70 ± 1.74 | 7.7 ± 1.6 | 0.0001 * |
pH | 6.98 ± 0.2 | 6.92 ± 0.15 | 7.1 ± 0.1 | 0.5530 |
BE | 15.96 ± 6.0 | 17.60 ± 6.08 | 13.6 ± 4.9 | 0.0001 * |
HIE -Mild -Moderate -Severe | 71 (51.17%) 45 (32.4%) 23 (16.5%) | 14 (17.1%) 45 (54.9%) 23 (28.0%) | 57 (100%) 0 (0%) 0 (0%) | <0.0001 * |
p-EEG -Normal -Mild abnormalities -Moderate abnormalities -Severe abnormalities -Inactive p-EEG | 10 (7.2%) 47 (33.8%) 43 (30.9%) 35 (25.2%) 4 (2.9%) | 0 0 43 (52.4%) 35 (42.7%) 4 (4.9%) | 10 (17.5%) 47 (82.5%) 0 0 0 | <0.0001 * |
Seizures -Absent -Present | 109 (78.4%) 30 (21.6%) | 52 (63.4%) 30 (36.6%) | 57 (100%) 0 | <0.0001 * |
Cerebral MRI -Pattern 1 -Pattern 2 -Pattern 3 -Pattern 4 -Pattern 5 | 13 (9.4%) 11 (7.9%) 7 (5.0%) 23 (16.5%) 85 (61.2%) | 13 (15.9%) 11 (13.4%) 2 (2.4%) 14 (17.1%) 42 (51.2%) | 0 0 5 (8.8%) 9 (15.8%) 43 (75.4%) | 0.0001 * |
FM -Normal -Abnormal -Absent | 108 (77.7%) 7 (5.0%) 24 (17.3%) | 59 (72.0%) 3 (36.6%) 20 (24.4%) | 49 (85.96%) 4 (7.2%) 4 (7.2%) | 0.0237 * |
Outcome -Normal -Moderately abnormal -Severe | 122 (87.8%) 7 (5.0%) 10 (7.2%) | 66 (80.5%) 7 (8.5%) 9 (11.0%) | 56 (98.2%) 0 1 (1.8%) | 0.0066 * |
GMDS-R -DQ -Locomotor subscale -Eye & Hand Coordination subscale -Personal & Social subscale -Hearing & Language subscale -Cognitive Performance subscale | 101.9 ± 15.6 100.8 ± 16.6 104.9 ± 16.8 97.4 ± 20.0 107.8 ± 15.4 101.8 ± 14.6 | 99.76 ± 17.9 97.72 ± 18.2 102.32 ± 18.2 95.30 ± 22.0 106.04 ± 17.9 100.64 ± 17.1 | 105.19 ± 10.8 105.26 ± 12.8 108.80 ± 13.7 100.26 ± 16.6 110.31 ± 10.2 103.42 ± 10.0 | <0.001 * 0.0050 * 0.0250 * 0.0280 * 0.0010 * <0.001 * |
Severe Outcome (n = 9) | Normal or Moderately Abnormal Outcome (n = 73) | p | |
---|---|---|---|
Inborn Outborn | 2 (22.2%) 7 (77.8%) | 39 (53.4%) 34 (46.6%) | 0.154 |
Sentinel event * Present Absent | 2 (22.2%) 7 (77.8%) | 18 (24.7%) 55 (75.3%) | 0.028 |
Delivery Vaginal Cesarean section | 5 (55.6%) 4 (44.4%) | 47 (64.4%) 26 (35.6%) | 0.017 |
Gestational age | 39.8 ± 1.9 | 39.4 ± 1.3 | 0.1843 |
Weight | 2993.9 ± 629.3 | 3427.5 ± 489.8 | 0.0908 |
Apgar 1st minute | 1.6 ± 1.7 | 1.9 ± 1.5 | 0.4804 |
Apgar 5th minute | 3.5 ± 2.1 | 4.2 ± 1.7 | 0.2826 |
Apgar 10th minute | 5.0 ± 2.1 | 5.8 ± 1.7 | 0.3585 |
pH | 6.8 ± 0.1 | 6.9 ± 0.1 | 0.1964 |
BE | 21.1± 3.2 | 17.2 ± 6.2 | 0.0323 * |
Encephalopathy severity -Mild -Moderate -Severe | 0 1 (11.1%) 8 (88.9%) | 14 (19.2%) 44 (60.3%) 15 (20.6%) | 0.0002 * |
p-EEG -Moderate p-EEG abnormalities -Severe p-EEG abnormalities -Inactive p-EEG | 0 7 (77.8%) 2 (22.2%) | 43 (58.9%) 28 (38.4%) 2 (27.4%) | 0.0002 * |
Seizures Absent Present | 0 9 (100%) | 52 (71.2%) 21 (28.8%) | 0.0001 * |
Cerebral MRI -Pattern 1 -Pattern 2 -Pattern 3 -Pattern 4 -Pattern 5 | 4 (44.4%) 3 (33.3%) 1 (11.1%) 1 (11.1%) 0 | 9 (12.3%) 8 (11.0%) 1 (1.4%) 13 (17.8%) 42 (57.5%) | 0.0002 * |
FM -Normal -Abnormal -Absent | 1 (11.1%) 1 (11.1%) 7 (77.8%) | 58 (79.5%) 2 (2.7%) 13 (17.8%) | <0.0001 * |
GMDS-R -DQ -Locomotor subscale -Eye & Hand Coordination subscale -Personal & Social subscale -Hearing & Language subscale -Cognitive Performance subscale | 65.7 ± 23.8 65.7 ± 24.5 63.9 ± 21.6 53.6 ± 10.3 74.7 ± 30.8 72.00 ± 27.6 | 103.9 ± 11.5 101.7 ± 12.8 107.1 ± 10.7 99.4 ± 18.3 109.9 ± 10.9 104.2 ± 11.3 | <0.0001 * 0.0002 * <0.0001 * <0.0001 * 0.0029 * 0.0021 * |
Normal Outcome (n = 66) | Moderate Outcome (n = 7) | Severe Outcome (n = 9) | p | |
---|---|---|---|---|
p-EEG under age 6 h Normal p-EEG Mild p-EEG abnormalities Moderate p-EEG abnormalities Severe p-EEG abnormalities Inactive p-EEG | 0 0 42 (63.6%) 24 (36.4%) 0 | 0 0 1 (14.3%) 5 (71.4%) 1 (14.3%) | 0 0 0 7 (77.8%) 2 (22.2%) | <0.0001 * |
p-EEG at age 24 h Normal p-EEG Mild p-EEG abnormalities Moderate p-EEG abnormalities Severe p-EEG abnormalities Inactive p-EEG | 0 15 (22.7%) 42 (63.6%) 9 (13.6%) 0 | 0 1(14.3%) 2(28.6%) 4 (57.1%) 0 | 0 0 1 (11.1%) 6 (66.7%) 2(22.2%) | <0.0001 * |
p-EEG at age 48 h Normal p-EEG Mild p-EEG abnormalities Moderate p-EEG abnormalities Severe p-EEG abnormalities Inactive p-EEG | 0 34 (51.5%) 29 (43.9%) 3 (45.5%) 0 | 0 2 (28.6%) 1 (14.3%) 4 (57.1%) 0 | 0 0 1 (11.1%) 8 (88.9%) 0 | <0.0001 * |
p-EEG at age 72 h Normal p-EEG Mild p-EEG abnormalities Moderate p-EEG abnormalities Severe p-EEG abnormalities Inactive p-EEG | 2 (3.03%) 52 (78.79%) 12 (18.2%) 0 0 | 1(14.3%) 2 (28.6%) 4(57.1%) 0 0 | 0 0 3 (33.3%) 6 (66.7%) 0 | <0.0001 * |
Uni-Variate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | CI | p | OR | CI | p | |
p-EEG < 6 h | 11.1 | 2.3–53.4 | 0.0025 * | - | - | - |
p-EEG at 24 h | 26.2 | 3.3–207.1 | 0.0019 * | - | - | - |
p-EEG at 48 h | 36.9 | 4.3–316.9 | 0.0010 * | 27.6 | 2.8–267.5 | 0.0042 * |
FM | 5.0 | 1.9–13.0 | 0.0010 * | 3.2 | 1.0–10.0 | 0.0475 * |
HIE | 24.2 | 2.9–202.5 | 0.0033 * | - | - | - |
Cerebral MRI | 0.4 | 0.2–0.7 | 0.0020 * | - | - | - |
Apgar 1st minute | 0.9 | 0.5–1.4 | 0.5476 | - | - | - |
Apgar 5th minute | 0.8 | 0.5–1.2 | 0.2594 | - | - | - |
Apgar 10th minute | 0.8 | 0.5–1.2 | 0.2286 | - | - | - |
BE | 1.1 | 0.9–1.3 | 0.0892 | - | - | - |
PH | 0.1 | 0.0–4.4 | 0.1489 | - | - | - |
Seizures | 46.3 | 5.6–384.9 | 0.0004 * | - | - | - |
Mode of delivery | 1.5 | 0.4–5.9 | 0.6054 | - | - | - |
Inborn | 4.0 | 0.8–20.6 | 0.0962 | - | - | - |
Sentinel event | 0.9 | 0.2–4.6 | 0.8725 | - | - | - |
Sex | 0.7 | 0.2–2.6 | 0.6067 | - | - | - |
Sensitivity % (95% CI) | Specificity % (95% CI) | PPV % | NPV % | ROC (95% CI) | |
---|---|---|---|---|---|
HIE (criterion: >moderate) | 88.9 (51.7–98.2) | 79.5 (68.4–88.0) | 34.8 | 98.3 | 0.85 (0.7–0.9) |
p-EEG < 6 h (criterion > 2) | 100 (66.2–100) | 58.9 (46.8–70.3) | 23.1 | 100 | 0.83 (0.7–0.90) |
p-EEG 48 h (criterion > 2) | 88.9 (51.7–98.2) | 90.4 (81.2–96.0) | 53.1 | 98.5 | 0.92 (0.8–1) |
Seizure (criterion: present) | 100 (66.2–100) | 71.2 (59.4–81.2) | 30 | 100 | 0.85 (0.8–0.9) |
Cerebral MRI pattern (criterion: pattern ≤ 3) | 88.9 (51.7–98.2) | 75.3 (63.9–84.7) | 30.8 | 98.2 | 0.84 (0.7–0.9) |
FMs (criterion: abnormal or absent) | 88.9 (51.7–98.2) | 79.5 (68.4–88.0) | 34.8 | 98.3 | 0.84 (0.7–0.9) |
All Mild HIE (n = 71) | Un-Cooled Mild HIE (n = 57) | Cooled Mild HIE (n = 14) | p | |
---|---|---|---|---|
Weight | 3373.9 ± 426.7 | 3383.3 ± 443.3 | 3335.9 ± 363.3 | 0.8003 |
Gestational age | 39.8 ± 1.6 | 39.9 ± 1.6 | 39.5 ± 1.4 | 0.3550 |
Inborn Outborn | 46 (64.8%) 25 (35.2%) | 39 (68.4%) 18 (31.6%) | 7 (50.0%) 7 (50.0%) | 0.3267 |
Sentinel event Present Absent | 9 (12.7%) 62 (87.3%) | 5 (87.7%) 52 (9.2%) | 4 (18.6%) 10 (71.4%) | 0.1219 |
Delivery Vaginal Cesarean | 50 (70.4%) 21 (19.6%) | 39 (68.4%) 18 (31.6%) | 11 (78.6%) 3 (21.4%) | 0.6753 |
Apgar 1st minute | 3.1 ± 2.1 | 3.3 ± 2.1 | 2.3 ± 1.6 | 0.1837 |
Apgar 5th minute | 5.9 ± 1.9 | 6.3 ± 1.6 | 4.5 ± 2.1 | 0.0055 * |
Apgar 10th minute | 7.4 ± 1.6 | 7.7 ± 1.4 | 6.2 ± 1.9 | 0.0103 * |
pH | 7.1 ± 0.2 | 7.1 ± 0.2 | 7.0 ± 0.1 | 0.5019 |
BE | 13.7 ± 4.9 | 13.6 ± 4.6 | 13.6 ± 4.9 | 0.9821 |
p-EEG -Normal -Mild abnormalities -Moderate abnormalities -Severe abnormalities -Inactive p-EEG | 10 (14.1%) 47 (66.2%) 10 (14.1%) 4 (4.6%) 0 | 10 (17.5%) 47 (82.5%) 0 0 0 | 0 0 10 (71.4%) 4 (18.6%) 0 | 0.001 * |
Seizure Absent Present | 71 (100%) 0 | 57 (100%) 0 | 14 (100%) 0 | - |
Cerebral MRI -Pattern 1 -Pattern 2 -Pattern 3 -Pattern 4 -Pattern 5 | 0 0 5 (7.0%) 11 (15.5%) 55 (77.5%) | 0 0 5 (8.8%) 9 (15.8%) 43 (75.4%) | 0 0 0 2 (14.3%) 12 (85.7%) | 0.4972 |
Fidgety Movements Normal Abnormal Absent | 61 (85.9%) 5 (7.0%) 5 (7.0%) | 49 (86.0%) 4 (7.0%) 4 (7.0%) | 12 (85.7%) 1 (7.1%) 1 (7.1%) | 0.9997 |
Outcome -Normal -Moderately abnormal -Severe | 70 (98.6%) 0 1 (1.4%) | 56 (98.2%) 0 1 (1.8%) | 14 (100%) 0 0 | 0.4434 |
GMDS-R -DQ -Locomotor subscale -Eye & Hand Coordination subscale -Personal & Social subscale -Hearing & Language subscale -Cognitive Performance subscale | 104.7 ± 11.2 104.9 ± 12.0 108.5 ± 13.4 99.5 ± 17.8 109.5 ± 11.5 103.6 ± 11.4 | 105.2 ± 10.8 105.3 ± 12.8 108.8 ± 13.7 100.3 ± 16.6 110.3 ± 10.2 103.4 ± 16.4 | 102.6 ± 13.1 103.6 ± 8.4 107.3 ± 12.6 96.4 ± 22.6 106.0 ± 15.7 104.3 ± 19.9 | 0.3819 0.7781 0.3899 0.7746 0.2418 0.8737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugli, L.; Guidotti, I.; Pugliese, M.; Roversi, M.F.; Bedetti, L.; Della Casa Muttini, E.; Cavalleri, F.; Todeschini, A.; Genovese, M.; Ori, L.; et al. Polygraphic EEG Can Identify Asphyxiated Infants for Therapeutic Hypothermia and Predict Neurodevelopmental Outcomes. Children 2022, 9, 1194. https://doi.org/10.3390/children9081194
Lugli L, Guidotti I, Pugliese M, Roversi MF, Bedetti L, Della Casa Muttini E, Cavalleri F, Todeschini A, Genovese M, Ori L, et al. Polygraphic EEG Can Identify Asphyxiated Infants for Therapeutic Hypothermia and Predict Neurodevelopmental Outcomes. Children. 2022; 9(8):1194. https://doi.org/10.3390/children9081194
Chicago/Turabian StyleLugli, Licia, Isotta Guidotti, Marisa Pugliese, Maria Federica Roversi, Luca Bedetti, Elisa Della Casa Muttini, Francesca Cavalleri, Alessandra Todeschini, Maurilio Genovese, Luca Ori, and et al. 2022. "Polygraphic EEG Can Identify Asphyxiated Infants for Therapeutic Hypothermia and Predict Neurodevelopmental Outcomes" Children 9, no. 8: 1194. https://doi.org/10.3390/children9081194
APA StyleLugli, L., Guidotti, I., Pugliese, M., Roversi, M. F., Bedetti, L., Della Casa Muttini, E., Cavalleri, F., Todeschini, A., Genovese, M., Ori, L., Amato, M., Miselli, F., Lucaccioni, L., Bertoncelli, N., Candia, F., Maura, T., Iughetti, L., Ferrari, F., & Berardi, A. (2022). Polygraphic EEG Can Identify Asphyxiated Infants for Therapeutic Hypothermia and Predict Neurodevelopmental Outcomes. Children, 9(8), 1194. https://doi.org/10.3390/children9081194