Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Plasma Magnesium
2.3. Primary Outcome: Brain MRI Score
2.4. Miscellaneous Data
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Infants with Moderate to Severe Brain Lesions Showed a Particular Trend of Plasma Magnesium during the First 24 h of Life
3.3. The Injury Pattern on Brain MRI Is Associated with Early Plasma Magnesium Values
3.4. Perinatal Factors and Neonatal Plasma Magnesium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gale, C.; Statnikov, Y.; Jawad, S.; Uthaya, S.N.; Modi, N. Neonatal Brain Injuries in England: Population-Based Incidence Derived from Routinely Recorded Clinical Data Held in the National Neonatal Research Database. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F301–F306. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, S.; McDonald, S.A.; Laptook, A.R.; Hintz, S.R.; Barnes, P.D.; Das, A.; Pappas, A.; Higgins, R.D.; Das, A.; McDonald, S.A.; et al. Neonatal Magnetic Resonance Imaging Pattern of Brain Injury as a Biomarker of Childhood Outcomes Following a Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy. J. Pediatr. 2015, 167, 987–993.e3. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, M.; Ramenghi, L.A.; Edwards, A.D.; Brocklehurst, P.; Halliday, H.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Assessment of Brain Tissue Injury after Moderate Hypothermia in Neonates with Hypoxic–Ischaemic Encephalopathy: A Nested Substudy of a Randomised Controlled Trial. Lancet Neurol. 2010, 9, 39–45. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Hajnal, B.L.; Vigneron, D.; Sola, A.; Partridge, J.C.; Allen, F.; Ferriero, D.M. Prediction of neuromotor out-come in perinatal asphyxia: Evaluation of MR scoring systems. Anjr. Am. J Neuroradiol. 1998, 19, 143–195. [Google Scholar] [PubMed]
- Shankaran, S.; Pappas, A.; McDonald, S.A.; Vohr, B.R.; Hintz, S.R.; Yolton, K.; Gustafson, K.E.; Leach, T.M.; Green, C.; Bara, R.; et al. Childhood Outcomes after Hypothermia for Neonatal Encephalopathy. N. Engl. J. Med. 2012, 366, 2085–2092. [Google Scholar] [CrossRef]
- Azzopardi, D.; Strohm, B.; Marlow, N.; Brocklehurst, P.; Deierl, A.; Eddama, O.; Goodwin, J.; Halliday, H.L.; Juszczak, E.; Kapellou, O.; et al. Effects of Hypothermia for Perinatal Asphyxia on Childhood Outcomes. N. Engl. J. Med. 2014, 371, 140–149. [Google Scholar] [CrossRef]
- Graham, E.M.; Everett, A.D.; Delpech, J.-C.; Northington, F.J. Blood Biomarkers for Evaluation of Perinatal Encephalopathy: State of the Art. Curr. Opin. Pediatr. 2018, 30, 199–203. [Google Scholar] [CrossRef]
- Chakkarapani, A.A.; Aly, H.; Benders, M.; Cotten, C.M.; El-Dib, M.; Gressens, P.; Hagberg, H.; Sabir, H.; Wintermark, P.; Robertson, N.J. Therapies for Neonatal Encephalopathy: Targeting the Latent, Secondary and Tertiary Phases of Evolving Brain Injury. Semin. Fetal. Neonatal Med. 2021, 26, 101256. [Google Scholar] [CrossRef]
- Koning, G.; Leverin, A.-L.; Nair, S.; Schwendimann, L.; Ek, J.; Carlsson, Y.; Gressens, P.; Thornton, C.; Wang, X.; Mallard, C.; et al. Magnesium Induces Preconditioning of the Neonatal Brain via Profound Mitochondrial Protection. J. Cereb. Blood Flow Metab. 2019, 39, 1038–1055. [Google Scholar] [CrossRef]
- Zeevalk, G.D.; Nicklas, W.J. Evidence That the Loss of the Voltage-Dependent Mg2+ Block at the N-Methyl-D-Aspartate Receptor Underlies Receptor Activation During Inhibition of Neuronal Metabolism. J. Neurochem. 1992, 59, 1211–1220. [Google Scholar] [CrossRef]
- Sugimoto, J.; Romani, A.M.; Valentin-Torres, A.M.; Luciano, A.A.; Ramirez Kitchen, C.M.; Funderburg, N.; Mesiano, S.; Bernstein, H.B. Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism. J. Immunol. 2012, 188, 6338–6346. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Marro, P.J.; McGowan, J.E.; Mishra, O.P.; Delivoria-Papadopoulos, M. Protective Effect of MgSO4 Infusion on NMDA Receptor Binding Characteristics during Cerebral Cortical Hypoxia in the Newborn Piglet. Brain Res. 1994, 644, 144–149. [Google Scholar] [CrossRef]
- Bareyre, F.M.; Saatman, K.E.; Helfaer, M.A.; Sinson, G.; Weisser, J.D.; Brown, A.L.; McIntosh, T.K. Alterations in Ionized and Total Blood Magnesium After Experimental Traumatic Brain Injury: Relationship to Neurobehavioral Outcome and Neuroprotective Efficacy of Magnesium Chloride. J. Neurochem. 2002, 73, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Heath, D.L.; Vink, R. Blood-Free Magnesium Concentration Declines Following Graded Experimental Traumatic Brain Injury. Scand. J. Clin. Lab. Investig. 1998, 58, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ilves, P.; Blennow, M.; Kütt, E.; Mägi, M.; Kudrjavtseva, G.; Lagercrantz, H.; Talvik, T. Concentrations of Magnesium and Ionized Calcium in Umbilical Cord Blood in Distressed Term Newborn Infants with Hypoxic-Ischemic Encephalopathy. Acta Paediatr. 1996, 85, 1348–1350. [Google Scholar] [CrossRef] [PubMed]
- Ilves, P.; Kiisk, M.; Soopõld, T.; Talvik, T. Serum Total Magnesium and Ionized Calcium Concentrations in Asphyxiated Term Newborn Infants with Hypoxic-Ischaemic Encephalopathy. Acta Paediatr. 2000, 89, 680–685. [Google Scholar] [CrossRef]
- Thoresen, M.; Penrice, J.; Lorek, A.; Cady, E.B.; Wylezinska, M.; Kirkbride, V.; Cooper, C.E.; Brown, G.C.; Edwards, A.D.; Wyatt, J.S.; et al. Mild Hypothermia after Severe Transient Hypoxia-Ischemia Ameliorates Delayed Cerebral Energy Failure in the Newborn Piglet. Pediatr. Res. 1995, 37, 667–670. [Google Scholar] [CrossRef]
- Dammann, O.; Ferriero, D.; Gressens, P. Neonatal Encephalopathy or Hypoxic-Ischemic Encephalopathy? Appropriate Terminology Matters. Pediatr. Res. 2011, 70, 1–2. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Ehrenkranz, R.A.; Tyson, J.E.; McDonald, S.A.; Donovan, E.F.; Fanaroff, A.A.; Poole, W.K.; Wright, L.L.; Higgins, R.D.; et al. Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic Encephalopathy. N. Engl. J. Med. 2005, 353, 1574–1584. [Google Scholar] [CrossRef]
- Murray, D.M.; Boylan, G.B.; Ryan, C.A.; Connolly, S. Early EEG Findings in Hypoxic-Ischemic Encephalopathy Predict Outcomes at 2 Years. Pediatrics 2009, 124, e459–e467. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, S.I.; Glass, H.C.; Vanderpluym, J.; Agrawal, A.T.; Xu, D.; Barkovich, A.J.; Ferriero, D.M. Perinatal Events and Early Magnetic Resonance Imaging in Therapeutic Hypothermia. J. Pediatr. 2011, 158, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.; Nasser, R.; Eliasziw, M.; Kim, J.; Bilan, D.; Sauve, R. Validating the Weight Gain of Preterm Infants between the Reference Growth Curve of the Fetus and the Term Infant. Available online: https://pubmed.ncbi.nlm.nih.gov/23758808/ (accessed on 25 July 2020).
- Rooney, M.R.; Rudser, K.D.; Alonso, A.; Harnack, L.; Saenger, A.K.; Lutsey, P.L. Circulating Ionized Magnesium: Comparisons with Circulating Total Magnesium and the Response to Magnesium Supplementation in a Randomized Controlled Trial. Nutrients 2020, 12, 263. [Google Scholar] [CrossRef]
- Chakkarapani, E.; Chau, V.; Poskitt, K.J.; Synnes, A.; Kwan, E.; Roland, E.; Miller, S.P. Low Plasma Magnesium Is Associated with Impaired Brain Metabolism in Neonates with Hypoxic-Ischaemic Encephalopathy. Acta Paediatr. 2016, 105, 1067–1073. [Google Scholar] [CrossRef]
- Thoresen, M.; Haaland, K.; Løberg, E.M.; Whitelaw, A.; Apricena, F.; Hankø, E.; Steen, P.A. A Piglet Survival Model of Posthypoxic Encephalopathy. Pediatr. Res. 1996, 40, 738–748. [Google Scholar] [CrossRef]
- Karlsson, M.; Tooley, J.R.; Satas, S.; Hobbs, C.E.; Chakkarapani, E.; Stone, J.; Porter, H.; Thoresen, M. Delayed Hypothermia as Selective Head Cooling or Whole Body Cooling Does Not Protect Brain or Body in Newborn Pig Subjected to Hypoxia-Ischemia. Pediatr. Res. 2008, 64, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, S.L.; Van Meurs, K. Neonatal Neurocritical Care: Providing Brain-Focused Care for All at Risk Neonates. Semin. Pediatr. Neurol. 2019, 32, 100774. [Google Scholar] [CrossRef] [PubMed]
- Harvey-Jones, K.; Lange, F.; Tachtsidis, I.; Robertson, N.J.; Mitra, S. Role of Optical Neuromonitoring in Neonatal Encephalopathy—Current State and Recent Advances. Front. Pediatr. 2021, 9, 653676. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, M.; Sweetman, D.; Bonifacio, S.L.; El-Dib, M.; Austin, T.; Molloy, E.J. Management of Multi Organ Dysfunction in Neonatal Encephalopathy. Front. Pediatr. 2020, 8, 239. [Google Scholar] [CrossRef]
- Chavez-Valdez, R.; Miller, S.; Spahic, H.; Vaidya, D.; Parkinson, C.; Dietrick, B.; Brooks, S.; Gerner, G.J.; Tekes, A.; Graham, E.M.; et al. Therapeutic Hypothermia Modulates the Relationships Between Indicators of Severity of Neonatal Hypoxic Ischemic Encephalopathy and Serum Biomarkers. Front. Neurol. 2021, 12, 748150. [Google Scholar] [CrossRef] [PubMed]
- Baştuğ, O.; İnan, D.B.; Özdemir, A.; Çelik, B.; Baştuğ, F.; Karakükcü, Ç. Tubular Calcium, Magnesium, and Phosphate Excretion during Therapeutic Hypothermia for Neonatal Hypoxic–Ischemic Encephalopathy: A Prospective Study. Arch. Pédiatr. 2021, 28, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Prempunpong, C.; Efanov, I.; Sant’Anna, G. Serum Calcium Concentrations and Incidence of Hypocalcemia in Infants with Moderate or Severe Hypoxic-Ischemic Encephalopathy: Effect of Therapeutic Hypothermia. Early Hum. Dev. 2015, 91, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Weeke, L.C.; Groenendaal, F.; Mudigonda, K.; Blennow, M.; Lequin, M.H.; Meiners, L.C.; van Haastert, I.C.; Benders, M.J.; Hallberg, B.; de Vries, L.S. A Novel Magnetic Resonance Imaging Score Predicts Neurodevelopmental Outcome After Perinatal Asphyxia and Therapeutic Hypothermia. J. Pediatr. 2018, 192, 33–40.e2. [Google Scholar] [CrossRef] [PubMed]
- Machie, M.; Weeke, L.; de Vries, L.S.; Rollins, N.; Brown, L.; Chalak, L. MRI Score Ability to Detect Abnormalities in Mild Hypoxic-Ischemic Encephalopathy. Pediatr. Neurol. 2021, 116, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ní Bhroin, M.; Kelly, L.; Sweetman, D.; Aslam, S.; O’Dea, M.I.; Hurley, T.; Slevin, M.; Murphy, J.; Byrne, A.T.; Colleran, G.; et al. Relationship Between MRI Scoring Systems and Neurodevelopmental Outcome at Two Years in Infants with Neonatal Encephalopathy. Pediatr. Neurol. 2022, 126, 35–42. [Google Scholar] [CrossRef] [PubMed]
Normal (n = 68) | WM 1 Injury Pattern (n = 40) | BGT 2 Injury Pattern or Total Brain Pattern (n = 17) | |
---|---|---|---|
Grey matter | |||
0: Normal or isolated focal cortical infarct | 68 | 24 | 0 |
1: Abnormal signal in thalamus | 0 | 9 | 0 |
2: Abnormal signal in thalamus and lentiform nucleus | 0 | 5 | 5 |
3: Abnormal signal in thalamus, lentiform nucleus, and perirolandic cortex | 0 | 2 | 7 |
4: More extensive involvement | 0 | 0 | 5 |
White matter | |||
0: Normal | 68 | 0 | 7 |
1: Single focal infarction/punctuate lesions | 0 | 8 | 1 |
2: Abnormal signal in anterior or posterior watershed white matter | 0 | 5 | 4 |
3: Abnormal signal in anterior or posterior watershed cortex and white matter | 0 | 8 | 3 |
4: Abnormal signal in both anterior and posterior watershed zones | 0 | 16 | 1 |
5: More extensive cortical involvement | 0 | 3 | 1 |
Other brain lesions | |||
Brainstem injury | 1 | 6 | 9 |
Cerebellar injury | 2 | 3 | 0 |
Perinatal stroke | 0 | 7 | 1 |
Corpus callosum, optical radiations | 0 | 15 | 8 |
Extra-cerebral haemorrhage | 9 | 2 | 0 |
Intra-ventricular haemorrhage | 3 | 7 | 0 |
Low MRI 1 Score (n = 80) | High MRI 1 Score (n = 45) | p | |
---|---|---|---|
Mother and infant characteristics | |||
Maternal age (years), median [range] | 30 [16–43] | 30 [16–44] | 0.51 |
Parity, median [range] | 2 [1–7] | 2 [1–8] | 0.76 |
Gestational age (weeks days), median [range] | 40 0/7 [36 0/7–41 6/7] | 39 2/7 [36 2/7–41 5/7] | 0.17 |
Male infants, n (%) | 45 (56) | 26 (58) | 0.87 |
Birth weight (grams), mean (SD 2) | 3252 (527) | 3055 (524) | 0.04 |
Small for gestational age, n (%) | 13 (16.2) | 11 (24.4) | 0.11 |
Birth head circumference (cm), mean (SD 2) | 34.7 (1.6) | 34.3 (1.8) | 0.29 |
Context of delivery | |||
Outborn birth, n (%) | 54 (67.5) | 31 (68.9) | 0.87 |
Acute perinatal asphyxia, n (%) | 34 (42.5) | 12 (26.7) | 0.17 |
Arterial pH at birth, mean (SD 2) | 6.95 (0.15) | 6.98 (0.16) | 0.33 |
Lactate (mmol/L) at birth, mean (SD 2) | 11.7 (4.6) | 14.3 (4.8) | 0.006 |
Management in the birth room | |||
Intubation, n (%) | 70 (87.5) | 34 (75.5) | 0.09 |
Chest compressions, n (%) | 27 (33.7) | 20 (44.4) | 0.24 |
Epinephrine, n (%) | 16 (20) | 14 (31) | 0.16 |
10 min Apgar score, median [range] | 6 [0–10] | 5 [0–10] | 0.95 |
Encephalopathy characteristics and management | |||
Sarnat classification | 0.0005 | ||
Mild, n (%) | 27 (33.7) | 14 (31.1) | |
Moderate, n (%) | 45 (56.3) | 14 (31.1) | |
Severe, n (%) | 8 (10) | 17 (37.8) | |
Grade of the first EEG background | 0.0003 | ||
Grade 0 or 1, n (%) | 36 (45) | 6 (13.3) | |
Grade 2 or more, n (%) | 44 (55) | 39 (86.7) | |
Electric seizures, n (%) | 23 (28.7) | 39 (86.6) | <0.0001 |
Therapeutic hypothermia, n (%) | 59 (73.7) | 38 (84.4) | 0.17 |
Neonatal outcome | |||
Neonatal death, n (%) | 0 (0) | 12 (26.6) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhard, J.; Faussat, C.; Morel, B.; Laurent, E.; Favrais, G. Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia. Children 2022, 9, 1233. https://doi.org/10.3390/children9081233
Suhard J, Faussat C, Morel B, Laurent E, Favrais G. Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia. Children. 2022; 9(8):1233. https://doi.org/10.3390/children9081233
Chicago/Turabian StyleSuhard, Juliette, Cathie Faussat, Baptiste Morel, Emeline Laurent, and Geraldine Favrais. 2022. "Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia" Children 9, no. 8: 1233. https://doi.org/10.3390/children9081233
APA StyleSuhard, J., Faussat, C., Morel, B., Laurent, E., & Favrais, G. (2022). Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia. Children, 9(8), 1233. https://doi.org/10.3390/children9081233