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Abstract: Due to the low demand for conventional annuities, alternative retirement products are
sought. Quite recently, tontines have been frequently brought up as a promising option in this respect.
Inspired by unit-linked life insurance and retirement products, we introduce unit-linked tontines
in this article, where the tontine payoffs are directly linked to the development of the underlying
financial market. More specifically, we consider two different tontine payoff structures differing in
the (non-)inclusion of guaranteed payments. We first price the unit-linked tontines by using the
risk-neutral pricing approach. Consequently, we study the attractiveness of these products for a
utility-maximizing policyholder and compare them with non-unit-linked tontines. Our numerical
analysis sheds light on the design challenges and gives explanations why similar products might not
be widely adopted already.

Keywords: unit-linked tontine; product design; risk neutral pricing; utility optimization; utility
performance

JEL Classification: G13; G22

1. Introduction

Unit-linked insurance policies belong to the most frequently concluded contracts in
the life insurance sector; for example, more than 50% of the UK life (re)insurance gross
written premiums were attributed to the index- and unit-linked insurance field in 2019
according to Statista (2020b). Among other attractive features, higher return expectations,
flexibility, design possibilities and tax advantages (see, e.g., Schiereck et al. 2020) certainly
play a driving role in the attractiveness of these policies. Interesting subject areas related to
unit-linked insurance contracts, such as variable annuities, include pricing and valuation
from the insurer’s or the customers’ perspective (see, e.g., Aase and Persson 1994; Ekern
and Persson 1996; Gatzert et al. 2011), hedging strategies (see, e.g., Møller 1998), impact
of stochastic interest rates (see, e.g., Schrager and Pelsser 2004) or guarantee components
(see, e.g., Ledlie et al. 2008). In this paper, inspired by variable annuities, we design
and investigate a new type of tontine that is directly linked to the developments in the
financial market.

Yet, why is it even reasonable to consider tontines when dealing with old-age provi-
sion? From a theoretical point of view, actuarially fairly priced annuities should actually
be regarded favorably by rational customers (see, e.g., Peijnenburg et al. 2016; Yaari 1965).
However, annuitization rates are rather low in reality (see, e.g., Hu and Scott 2007). This
adverse phenomenon known as the annuity puzzle (see, e.g., Ramsay and Oguledo 2018)
is hitting conventional annuities. Moreover, due to low interest rate environments and
tightening solvency regulations, it is hard to expect that annuitization rates will go up any
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time soon. Therefore, alternative retirement products are naturally searched by insurers and
customers, which brings up tontines as an option. Due to the backdrop of the demographic
change (see, e.g., Margaras 2019), the so-called tontine retirement investment has become
more and more important (see, e.g., Milevsky and Salisbury 2015; Sabin 2010). A main
characteristic of tontines is that, in contrast to annuities, longevity risk is borne, to a great
extent, by the pooled policyholders themselves. Hence, tontines are normally cheaper
and, thus, potentially more attractive. Further discussions on practicalities, qualitative
regulatory, technological and risk management issues associated with a tontine product
can be found in Milevsky et al. (2018); Winter and Planchet (2021).

Let us briefly mention some of the recent literature that has addressed relevant topics
related to tontine products. A general and historical view on tontines, as well as their possible
applications for retirement income planning, is given in Milevsky (2015). Specific forms for the
tontine payout structure are discussed in, e.g., Milevsky and Salisbury (2015). The question
regarding how the tontine principle can be used to create tontine pensions for employees is
studied in Forman and Sabin (2015). In Gemmo et al. (2020), investment possibilities in both
tontines and traditional financial assets are investigated. Fairness issues when considering
heterogeneous cohorts are considered in, e.g., Chen et al. (2020); Denuit (2019); Donnelly et al.
(2014); Milevsky and Salisbury (2016); Sabin (2010). Bernhardt and Donnelly (2019) study
the inclusion of bequest motives in tontine products. Recently, research on reasonable ways
to combine tontines and annuities has been more extensively explored, see, e.g., Chen and
Rach (2019); Chen et al. (2019, 2020); Weinert and Gründl (2020). However, to the best of our
knowledge, the idea to consider a tontine as a unit-linked product has not yet been considered
in detail in the literature.

In this article, inspired by unit-linked life and retirement insurance products, we
introduce unit-linked tontines (see Sehner (2021)). We analyze the pricing and attractiveness
of such products where two concrete unit-linked tontine payoffs are considered. We
base our product model on the tontine concept applied in, e.g., Milevsky and Salisbury
(2015), where the deterministic payout function is replaced by a stochastic payout process
that depends on the developments in the financial market. In the specific setting, one
tontine payoff is designed to coincide with the pure value of a portfolio following a certain
investment strategy in the financial market, while the other one includes guaranteed
payments, such that the policyholders participate in high portfolio values, but are secured
in bad market scenarios. We rely on the risk-neutral pricing approach to determine the
premiums required to buy the corresponding unit-linked tontines. In order to highlight the
potential of our unit-linked tontine variant, we conduct an expected utility analysis that is
commonly used in such a context (see, e.g., Mitchell 2002; Yaari 1965). More specifically,
we first search for the optimal investment strategy that maximizes the expected utility of
the policyholder for a given unit-linked tontine variant. We then numerically compare the
maximum expected utilities of the two variants. Our comparison also takes two traditional
tontine alternatives without unit-linked payments into account, namely the optimal and
the natural traditional tontine.

The main observations and results, which can be drawn from our numerical analysis,
are as follows: The unit-linked tontine may perform better than the traditional tontine
alternatives if the following circumstances are present: First, the initial number of pooled
individuals is either very low or high. Second, the expected return of the tradable risky
asset is high or its volatility is low, which leads to a higher market price of risk, working
naturally in favor of the unit-linked tontine. Third, the policyholder’s risk aversion or
subjective discount rate is low. The additional financial risk component in the unit-linked
tontine and the steady increase of the expected payment of the unit-linked tontine over
time are respectively responsible for this. For our baseline parametrization, the certainty
equivalent induced by the variant, whose payout process is defined by the pure portfolio
value, is, for instance, about 8% higher than the one belonging to the optimal traditional
tontine and about 11% higher than the one belonging to the natural traditional tontine.
As the unit-linked tontine can be more successful among customers than the traditional
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counterpart, it seems reasonable to further study it. We further observe that, if the pure
portfolio value stipulates its payout process, the unit-linked tontine may yield a higher
utility level than in the case where it includes guaranteed payments. For our baseline
parametrization, the corresponding certainty equivalent is, for instance, about 27% higher.
Nevertheless, the latter case might be attractive, especially to customers who consider
additional guarantee components important. In particular, its performance approaches that
of the superior variant if the expected return of the risky asset decreases or if the volatility
of the risky asset or the policyholder’s risk aversion increases.

The remainder of this article is organized as follows: Section 2 introduces the model
setting including the general nature of the unit-linked tontine product and the underlying
financial and mortality risks. In Section 3, we derive the pricing formulas not only for the
general payment structure, but also for both concrete variants of the unit-linked tontine. In
Section 4, we discuss the solution of the utility optimization problem for our two particular
unit-linked payment designs. In Section 5, we conduct the numerical study and present its
outputs. Section 6 concludes the article. Some additional mathematical derivations can be
found in the Appendices A–D.

2. Model Setting
2.1. Unit-Linked Tontine Product

In order to model the unit-linked tontine product, we employ the tontine concept
presented in, e.g., Milevsky and Salisbury (2015), and modify it according to our purposes.
Threfore, the idea behind the tontine type established in Milevsky and Salisbury (2015), to
which we also refer as the traditional tontine, is shortly reviewed here first. Initially, i.e., at
time 0, the buyer of such a tontine pays a single premium to the providing life insurance
company. After the insurer has issued tontines to n ∈ N individuals at time 0, they are
grouped together into a pool. For simplicity, it is assumed that these n individuals, who
are also referred to as policyholders or participants, are homogeneous, i.e., they are all
of the same age x ≥ 0 at time 0 and of the same gender (which implies that they all have
the same mortality rate). As time goes by, the insurance company disburses contractually
predetermined payments to living participants. Specifically, a living individual holding one
of the traditional tontine contracts receives at time t ≥ 0, in the first place, a specific amount
of money determined by the so-called tontine payout function denoted by dt, which is
deterministic and initially stipulated. What is more, contingent on being alive at time t, there
is the possibility that she obtains more than dt due to the fact that the theoretical payments
to the dead participants, if existent, are distributed among the survivors in the pool. Owing
to the homogeneity between the participants, this extra payment is given by (n−Nt)dt

Nt
,

where the random variable Nt denotes the stochastic number of participants alive at time t.
Overall, we can summarize the total payment that is disbursed to the considered traditional
tontine holder at time t, given that she is alive, in the following expression:(

(n− Nt)dt

Nt
+ dt

)
1{ζx>t} =

ndt

Nt
1{ζx>t}, (1)

where the random variable ζx represents the stochastic remaining lifetime of the individual
aged x at time 0. As there are no death benefits, it is clear that the policyholder’s payments
proportionally increase if more individuals in the pool pass away. Note that throughout the
following sections, we always assume that the payments of the insurer to a tontine holder
are continuously disbursed.

When considering the unit-linked tontine product, we focus on payments stemming
from the purchase of this tontine that are explicitly linked to the financial market. In this
way, the participants directly partake in the developments in the financial market. Our
corresponding product model is adopted, to a great extent, from the traditional tontines
described above. The only difference is that the deterministic tontine payout function dt is
replaced by the so-called tontine payout process denoted by the stochastic process Ψt. This
process depends on the performance of the financial market and, hence, makes the tontine
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a unit-linked product. Apart from that, the role of Ψt stays the same as the one of dt. Note
that in this article, we study two specified variants for Ψt that are introduced in Section 3.2.
On the whole, similar to (1), the total payment being disbursed to a unit-linked tontine
holder at time t and described by the stochastic process Dt is given by

Dt =
nΨt

Nt
1{ζx>t}. (2)

2.2. Financial Market and Mortality Risk

For the examination of the unit-linked tontine introduced in Section 2.1, we need
to model the financial market. Hereinafter, we always consider the financial market in
continuous time that consists of one risky and one risk-free asset. We assume that there
are no transaction costs or liquidity risk when trading the assets in the market. Following
the well-known Black–Scholes model (see Black and Scholes 1973), the stochastic value of
the risky asset at time t, denoted by St, is described by the following geometric Brownian
motion:1

dSt = µStdt + σStdWt, S0 > 0, (3)

where W is a standard Brownian motion. The dynamics of the risk-free asset is given by

dBt = rBtdt, B0 = 1, (4)

where r is the risk-free interest rate. The three parameters µ, σ and r are constant over time
in our setting and µ > r is assumed. Note that possible dividend payments existing in the
described financial market are neglected in our framework.

Let Vt be the value of a portfolio at time t that is generated by the investments of
the insurer in the financial market. We assume that the fraction of the portfolio invested
in the risky asset at time t is described by the deterministic trading strategy πt∈ [0, 1].
This means that neither short selling of the risky portfolio nor leverage is allowed. The
remaining fraction (1− πt) is invested in the risk-free asset. By the self-financing property,
the dynamics of Vt under P is given by

dVt = πt
Vt

St
dSt + (1− πt)

Vt

Bt
dBt = (r + πt(µ− r))Vtdt + σπtVtdWt, V0 > 0. (5)

It can be shown that the explicit solution of the stochastic differential Equation (5) is
given by

Vt = V0ert+(µ−r)
∫ t

0 πsds− σ2
2
∫ t

0 π2
s ds+σ

∫ t
0 πsdWs . (6)

Besides the financial risk, mortality risk is also contained in the unit-linked tontine.
It stems from two sources, namely the unsystematic mortality risk and the systematic
mortality risk (see, e.g., Dahl et al. 2008). The unsystematic mortality risk arises from the
randomness of deaths in the pool with a known mortality law. This risk is diversifiable,
i.e., it disperses if the size of the pool grows. In contrast, the systematic mortality risk is
not diversifiable, even if the pool size is large, as it results from overarching changes in the
underlying mortality intensity. For the traditional tontines (with mortality risk exclusively)
and an infinite pool size, all the mortality risk is shared by the policyholders. With a finite
pool size, the insurer only has the risk generated by the death time of the last survivor, at
which the insurer stops its payment. Additionally, in unit-linked tontines, there is financial
market risk. Depending on the risk management strategies the insurer chooses, the insurer
might still retain some financial market risk.

To model the mortality risk, we use the following framework: The probability (under P)
that the considered individual survives the next t years from time 0 on, at which she is x
years old, is denoted by t px ∈ (0, 1]. To include the above-mentioned systematic mortality
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risk component, we, similar to, e.g., Lin and Cox (2005), allow for a mortality shock
that is represented by a random variable denoted by ε. We assume that ε has a density
function denoted by fε and that its moment-generating function denoted by Mε exists.
The shocked survival curve is then given by t px

1−ε. We set the range of ε to (−∞, 1),
so that t px

1−ε ∈ (0, 1] is preserved. If no mortality shock is existent, simply let ε = 0
a.s. We remark that the latest insurance solvency regulations require insurers to test
their balance sheets against various stress-test scenarios. For instance, in the Canadian
solvency regulation, a 10–20% decrease of mortality rates (depending on the type of annuity
is assumed for a longevity shock). The U.S. regulation assumes a stress on mortality
improvement between 16–40% (depending on the age). This results in lower mortality rates
between 0.7–6%. In Solvency II, which is implemented for insurance undertakings in the
EU, a longevity shock is defined as a decrease of annual death probabilities by 20%. The
simple model we have chosen reflects the spirit of these realistic regulation frameworks.

For the random variable Nt, which is affected by mortality risk, we can obtain the
following distribution under P when conditioning on the survival of the considered policy-
holder and on ε:

(Nt − 1|ζx > t, ε)
P∼ Bin

(
n− 1, t px

1−ε
)

, (7)

where we use the assumption that the lifetimes of the participants are stochastically inde-
pendent under P.

Following the main stream of unit-linked insurance products (e.g., Aase and Persson
1994; Bacinello et al. 2018; Bernhardt and Donnelly 2019; Briys and de Varenne 1994), we
suppose that W, constituting the financial risk, is stochastically independent of (ζx, N, ε)
under P. Note that this requirement does usually not pose a restriction as the development
of the value of the risky asset and the chances of survival do generally not interact. We
remark that the independence assumption of actuarial and financial risk in the real world
may be quite reasonable in many situations. Recent research however finds that shocks in
stock market wealth might have an impact on mortality. For example, Giulietti et al. (2020)
provide evidence that daily fluctuations in the stock market have important effects on fatal
car accidents. Schwandt (2018) demonstrates that stock wealth shocks that lead to losses
in the wealth of stock-holding retirees affect the health of retirees in the US. In our paper,
the independence assumption of these risks allows us to analyze the pricing problem and
individual welfare of the unit-linked tontine in a semi-explicit way.

Let G = {Gt}t≥0 be the filtration generated by the Brownian motion W and denote
the natural filtration with respect to ζx, N and ε by H = {Ht}t≥0. The resulting progres-
sively enlarged filtration is given by F = {Ft}t≥0, whose element Ft = Gt ∨Ht contains
all relevant information revealed until time t.

3. Pricing

In this section, we aim at pricing the unit-linked tontine product established in
Section 2.1, i.e., we determine the single initial premium denoted by P0 > 0 that needs
to be paid by a policyholder to the insurance company. As we employ the standard
risk-neutral pricing approach to find P0, we have to clarify how a risk-neutral probability
measure denoted by Q is chosen when mortality risk is also taken into account. First,
it is clear that, due to the dependence of D on the survival of the policyholder and the
other participants, the market, in which the unit-linked tontine is traded, is incomplete.
Thus, a risk-neutral probability measure is not unique and, hence, there is, in general,
also no unique price P0. For a concrete choice of Q, we assume that the insurer considers
the financial risk and the mortality risk separately when determining Q, whereby the
stochastic independence of these two risk categories is also supposed under Q. Further
discussions about the independence property between financial and actuarial risks in the P-
and the Q-worlds can be found in, e.g., Dhaene et al. (2013), where the authors investigate



Risks 2022, 10, 78 6 of 27

the conditions under which it is possible (or not) to transfer the independence assumption
from the physical measure P to the risk-neutral pricing measure Q.

Regarding the financial risk that is captured by the filtration G, we expect the insurer
to use the risk-neutral probability measure, which, if we restrict ourselves to G, exists and
is unique due to the completeness of the financial market described in Section 2.2. Note that
the explicit solution for Vt, which is under P given in (6), changes accordingly under Q to

Vt = V0ert− σ2
2
∫ t

0 π2
s ds+σ

∫ t
0 πsdWQ

s , (8)

where
(

WQ
t

)
t≥0

is a standard Brownian motion under Q.

Following Chen and Rach (2019), we assume that the choice of Q on H for pricing
purposes depends on the nature of the overall insurance business of the life insurance
company. If a large product range is offered, there may already be some natural hedges
between the products and, thus, the insurer would be faced with less mortality risk than in
the case in which it solely concentrates on one specific product field. We assume that the
insurer only trades tontine products and that, also due to the resulting higher mortality
risk exposure, the insurer is prudent when charging premiums, i.e., safety loadings are to
be included in some way. If t p̃x ∈ (0, 1] denotes the survival probability under Q, and since
tontines belong to the retirement product type, a possibility to reflect the insurer’s pricing
prudence is to require that

t p̃x ≥ t px, (9)

and that the mortality shock ε follows the same distribution under Q as under P. Given
these requirements, to which we stick in the following, the (shocked) survival curve under Q
runs at a higher level than the one under P, which leads to the inclusion of implicit safety
loadings in premiums. If the insurer increases t p̃x, the company is more conservative about
pricing. The choice of the magnitude of t p̃x usually depends on the pool size n since, as
already pointed out in Section 2.2, the unsystematic mortality risk becomes less relevant if n
grows. Therefore, t p̃x normally attains a rather low value if the pool size is large. As it is
determined that changing the probability measure from P to Q does not have an impact on
the distribution type of the random variable Nt, we simply replace P by Q and t px by t p̃x
in (7) when specifying the distribution of Nt under Q. The stochastic independence of the
remaining lifetimes of the participants is preserved under Q accordingly.

Having clarified the risk-neutral probability measure Q, we discuss the pricing of the
unit-linked tontine in the following. We will start with a general tontine payout process Ψt
and then continue by examining specified alternatives for it. We always assume that
the rates of convergence of t px and t p̃x towards 0 if t goes to infinity exceed the rates of
convergence or divergence of the other time-dependent quantities in order to guarantee that
all improper integrals with respect to t necessary throughout the subsequent sections exist.2

3.1. General Payment Structure

First, let Ψt be a general tontine payout process. Next, the single initial premium P0
can be calculated via the risk-neutral pricing approach as

P0 = EQ

[∫ ∞

0
e−rtDtdt

∣∣∣∣F0

]
= EQ

[∫ ∞

0
e−rt nΨt

Nt
1{ζx>t}dt

]
= n

∫ ∞

0
e−rtEQ[Ψt]EQ

[
1{ζx>t}

Nt

]
dt,

(10)
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where the stochastic independence between WQ and (ζx, N, ε) is applied in the last step.
The latter expected value in (10) is given by

EQ

[
1{ζx>t}

Nt

]
=

1
n

It, (11)

where

It =
∫ 1

−∞

(
1−

(
1− t p̃x

1−z
)n)

fε(z)dz. (12)

The detailed derivation of (11) is reported in Appendix A. Consequently, we obtain
the following general pricing formula:

P0 =
∫ ∞

0
e−rt ItEQ[Ψt]dt. (13)

3.2. Specified Payment Structures

In the following, we consider two specified variants for the tontine payout process Ψt,
which can be interesting to examine and may have potential for tontine product design. We
determine the single premiums that need to be contributed by the individual if she wants
to buy the corresponding unit-linked tontine.

As our focus is on payments with a direct linkage to the financial market, i.e., to the
developments of the risky and of the risk-free asset, hereafter, we assume that for payout
purposes, the insurer creates a tontine payment account Ψ whose value can be amounted
to the portfolio given in (8). We assess the following cases on how to potentially define Ψt:

(A) Let us first consider the case where the tontine payout process is equal to the portfolio
value V explicitly given in (8), i.e.

Ψt = Vt. (14)

This means that the tontine payout process at time t simply complies with a money
stock amounting to Vt. To generate this amount, the insurance company can invest
in the risky and the risk-free asset according to the trading strategy applied in the
corresponding portfolio. By the choice given in (14), the full potential of the financial
market will be passed on to the customers within a tontine framework. By (2), the
total tontine payment to the policyholder at time t in this case is given by nVt

Nt
1{ζx>t}.

(B) Second, inspired by participating life insurance policies with guaranteed payments
(see, e.g., Briys and de Varenne 1994), we stipulate

Ψt = Gt + α(Vt − Gt)
+, (15)

where Gt > 0 denotes the guaranteed payment at time t and α ∈ (0, 1] is the constant
participation rate, and where (Vt − Gt)

+ = max{Vt − Gt, 0}. Thus, the tontine payout
process coincides here with a predetermined payment function represented by Gt
as long as the financial market performs poorly, i.e., Vt is low, so that Vt ≤ Gt holds.
On the contrary, if the financial market performs well, i.e., Vt is high, so that Vt > Gt,
an additional participation in the positive difference Vt − Gt at the rate α is included.
Employing the choice given in (15) can satisfy customers, who appreciate additional
guarantee components smoothing uncertain payout structures. By (2), the total tontine

payment to the policyholder at time t in this case is given by
n(Gt+α(Vt−Gt)

+)
Nt

1{ζx>t}.

The tontine pricing in Cases A and B is summarized in the following two propositions:
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Proposition 1 (Case A). If Ψt is defined as in (14), the single initial premium of the resulting
version of the unit-linked tontine product is given by

P0 = V0

∫ ∞

0
Itdt. (16)

Proof. With the aid of the general pricing formula given in (13) and by using

EQ[Ψt] = EQ[Vt] = V0ert

due to the fact that the discounted portfolio value process is a Q-martingale, we ob-
tain (16).

Proposition 2 (Case B). If Ψt is defined as in (15), the single initial premium of the resulting
version of the unit-linked tontine product is given by

P0 =
∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt, (17)

where Φ is the distribution function of the standard normal distribution and the functions d̃t and d̂t
are given by

d̃t =
ln
(

V0
Gt

)
+ rt + σ2

2

∫ t
0 π2

s ds

σ
√∫ t

0 π2
s ds

and d̂t = d̃t − σ

√∫ t

0
π2

s ds. (18)

Proof. The proof of Proposition 2 is reported in Appendix B.1.

Remark 1. From the insurer’s perspective, managing such unit-linked products would require
the insurer to pay transaction costs that are linked to hedging activities against fluctuations of the
risky asset in the financial market and of the mortality development. For instance, in Case B, if
we ignore the mortality risk, the insurer has to hedge against selling a guaranteed amount plus
the call option, which by put-call parity is equivalent to selling the portfolio value plus the put
option. In bad market scenarios when the risk asset price goes down, more hedging activities would
be needed; hence, it is true that the relative transaction price will be higher if the tail is longer. A
thorough analysis that includes transaction costs is interesting and left for future research. In the
real-world implementation, these transaction costs do impact the product design. We remark that
in the presence of transaction costs, hedging and pricing are no longer valid in the classical Black
and Scholes model. In such contexts, Leland’s increasing volatility method, as per Leland (1985),
would be helpful for compensating transaction costs and an approximately complete replication can
be expected by using the delta strategy calculated from a modified Black–Scholes equation with an
appropriate modified volatility. This prescription is based on the idea that the presence of transaction
costs implies an extra fee, which is necessary for the option seller in the replication problem, i.e.,
options become more expensive in the presence of transaction costs.

4. Utility Optimization

In the following, we conduct a utility maximization analysis to find out which of the
two unit-linked tontine variants suggested in Section 3.2 is more preferable to an individual
investor. To this end, for a given unit-linked tontine variant, we search for the optimal
investment strategy that maximizes the discounted expected utility of the policyholder in
this section. We numerically compare the utility optimums of the two variants with each
other and with those of the traditional tontine alternatives without unit-linked payments in
Section 5.
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Subsequently, we always assume that the policyholder’s utility function, denoted by u,
is of constant relative risk aversion:

u(c) =
c1−γ

1− γ
, (19)

where c > 0 represents the consumable input and γ > 0 adhering to γ 6= 1 is the measure
of the policyholder’s relative risk aversion. This choice is one of the most frequently used
utility functions to capture the preferences of individuals (see, e.g., Levy 1994; Sharpe
2017).3 In the design problems below, we assume that expectations are not subjective.

4.1. General Payment Structure

For a general tontine payout process Ψt, the objective of the optimization problem, i.e.,
the discounted expected utility, can be formulated and transformed as follows:

EP

[∫ ∞

0
e−ρtu

(
nΨt

Nt

)
1{ζx>t}dt

]
=

n1−γ

1− γ

∫ ∞

0
e−ρtκtEP

[
Ψ1−γ

t

]
dt, (20)

where ρ is the constant subjective discount rate of the individual and

κt = EP

[
1{ζx>t}

N1−γ
t

]

=
n−1

∑
k=0

1

(k + 1)1−γ

(
n− 1

k

) ∫ 1

−∞

(
t px

1−z
)k+1(

1− t px
1−z
)n−1−k

fε(z)dz. (21)

The formulation of the discounted expected utility in (20) arises from translating the
formula in (10) into the utility framework, while its transformation results from applying
the power utility function given in (19) and similar calculation techniques as before. Since
the individual has to provide a single initial premium out of her available initial wealth,
denoted by v > 0, to buy the tontine product, the pricing formula found in Section 3,
where the general version is given in (13) and the specified ones in (16) and (17), naturally
forms the budget constraint in the optimization problem. The decision variables in the
optimization problem are typically appropriate quantities occurring in the tontine payout
process Ψt. This means that we eventually search for the optimal specific form of Ψt, which
determines the tontine disbursements in such a way that the policyholder is endowed with
the highest utility level possible. The general representative maximization problem overall
is given by:

Problem 1.

max
(Ψt)t≥0

n1−γ

1− γ

∫ ∞

0
e−ρtκtEP

[
Ψ1−γ

t

]
dt

s.t. v = P0 =
∫ ∞

0
e−rt ItEQ[Ψt]dt.

Note that, strictly speaking, we shall put v ≥ P0 in the budget constraint. However, as
is typically done in this kind of optimization problem, the budget constraint is binding in
the optimal solution due to the steadily positive slope of u, such that we start immediately
with equality in the constraint.

4.2. Specified Payment Structures

Now, we consider the particular unit-linked payment designs from Section 3.2 spec-
ifying the tontine payout process Ψt in two different ways and modify Problem 1 ac-
cordingly. The emerging optimization problems are then, if possible, solved analytically.
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Concerning the fractions invested in the risky and the risk-free asset, we henceforth as-
sume that they stay constant over time and are non-negative and bounded from above
by 1, i.e., πt = π ∈ [0, 1] for all t. Note that these assumptions do not actually pose a
strict restriction: By their invariability, the fractions can also be regarded as the perpetual
average percentages which determine the long-term mean composition of the portfolio.
By generally forbidding short selling, we account for the fact that bans on short selling
(can) indeed exist, as in the case in Europe in March 2020 during the coronavirus pandemic
showed (see, e.g., Smith 2020). Applying a constant π simplifies the equations in (5), (6), (8)
and (18), accordingly.

Case A: Recall that we assume for Case A that Ψt = Vt holds. Therefore, it is reasonable to
choose π and V0 (note that V0 is not ν, the initial wealth) as the decision variables in the
corresponding optimization problem. In other words, we look for the optimal portfolio
parameter combination, namely for the fraction invested in the risky asset and the initial
investment amount that is supposed to be determined in such a way that the policyholder
comes off best.4 The appropriate maximization problem derived from Problem 1 and (16)
is given by

Problem 2 (Case A-bounded investment strategy).

max
(Ψt)t≥0

n1−γ

1− γ

∫ ∞

0
e−ρtκtEP

[
Ψ1−γ

t

]
dt

s.t. v = P0 =
∫ ∞

0
e−rt ItEQ[Ψt]dt.

The objective of Problem 2 results from employing EP
[
V1−γ

t

]
=

V0e

(
r+(µ−r)π− γσ2

2 π2
)

t
1−γ

.

As it is possible to solve this problem analytically, we summarize the related optimizing
quantities in a proposition:

Proposition 3. The optimal values π∗A and V∗0
A for π and V0 solving Problem 2 are given by

π∗A =
µ− r
γσ2 1{µ−r≤γσ2} + 1{µ−r>γσ2} and V∗0

A =
v∫ ∞

0 Itdt
. (22)

Proof. The proof of Proposition 3 is reported in Appendix B.2.

We observe that the optimal value for the trading strategy in Proposition 3 coincides
with Merton’s fraction if µ− r ≤ γσ2 (see Merton 1969).

Case B: As we assume for Case B that Ψt = Gt + α(Vt − Gt)
+ holds, it is sensible to again

choose π and V0 as the decision variables in the corresponding optimization problem.5

By means of Problem 1 and (17), the maximization problem for Case B can be formulated
as follows:

Problem 3 (Case B-bounded investment strategy).

max
(π,V0)∈[0,1]×(0,∞)

n1−γ

1− γ

∫ ∞

0
e−ρtκt

· G1−γ
t

(
Φ
(

dt

)
+
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)
dy
)

dt

s.t. v = P0 =
∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt.
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The objective of Problem 3 results from employing similar calculation techniques as
before, which, inter alia, leads to

EP

[(
Gt + α(Vt − Gt)

+
)1−γ

]
=G1−γ

t Φ
(

dt

)
+
∫ ∞

dt

(
Gt + α

(
V0ert+(µ−r)πt− σ2

2 π2t+σπ
√

tz − Gt

))1−γ

φ(z)dz

=G1−γ
t

(
Φ
(

dt

)
+
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)
dy
)

,

(23)

where φ is the density of the standard normal distribution. Further, the substitution y = z− dt
is applied in the third line and the function dt is given by

dt =
ln
(

Gt
V0

)
− rt− (µ− r)πt + σ2

2 π2t

σπ
√

t
. (24)

If we try to solve this problem by using the method of Lagrange multipliers (see, e.g.,
Bertsekas 2014), the corresponding Lagrange function L(π, V0, λ), where λ is the Lagrange
multiplier, is defined as

L(π, V0, λ) =
n1−γ

1− γ

∫ ∞

0
e−ρtκtG

1−γ
t

(
Φ
(

dt

)
+
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)
dy
)

dt

+ λ

(
v−

∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt
)

.
(25)

The first-order condition with respect to π is given as
∂

∂π
L(π, V0, λ) =

n1−γ

1− γ

∫ ∞

0
e−ρtκtG

1−γ
t

(
φ
(

dt

) 1
π

d̃t +
∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))−γ

φ
(

y + dt

)
·
(
(1− γ)αeσπ

√
tyσ
√

ty−
(

1 + α
(

eσπ
√

ty − 1
))(

y + dt

) 1
π

d̃t

)
dy
)

dt

− λαV0σ
∫ ∞

0
Itφ
(

d̃t

)√
tdt = 0.

(26)

The first-order condition with respect to V0 is given as

∂

∂V0
L(π, V0, λ) =

n1−γ

(1− γ)V0σπ

∫ ∞

0
e−ρtκtG

1−γ
t

1√
t

(∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

·φ
(

y + dt

)(
y + dt

)
dy− φ

(
dt

))
dt− λα

∫ ∞

0
ItΦ
(

d̃t

)
dt = 0,

(27)

and the one with respect to λ naturally coincides with the budget constraint:

v =
∫ ∞

0
e−rt It

(
Gt + α

(
V0ertΦ

(
d̃t

)
− GtΦ

(
d̂t

)))
dt. (28)

From (26) and (27), the following equation must hold true:∫ ∞

0
e−ρtκtG

1−γ
t

(
φ
(

dt

)
d̃t +

∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))−γ

φ
(

y + dt

)
·
(
(1− γ)αeσπ

√
tyσπ
√

ty−
(

1 + α
(

eσπ
√

ty − 1
))(

y + dt

)
d̃t

)
dy
)

dt
∫ ∞

0
ItΦ
(

d̃t

)
dt

=
∫ ∞

0
e−ρtκtG

1−γ
t

1√
t

(∫ ∞

0

(
1 + α

(
eσπ
√

ty − 1
))1−γ

φ
(

y + dt

)(
y + dt

)
dy− φ

(
dt

))
dt

·
∫ ∞

0
Itφ
(

d̃t

)√
tdt.

(29)
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For the calculations in (26) and (27), the following identities are applied: ∂dt
∂π = 1

π d̃t,
∂d̂t
∂π = ∂d̃t

∂π − σ
√

t and

V0ertφ
(

d̃t

)
− Gtφ

(
d̂t

)
= 0. (30)

The detailed derivation of (30) is reported in Appendix A. The solution of the system
of Equations (28) and (29) (when it exists) provides the optimal values for π and V0 in
Case B. However, due to the complexity of this system of equations, we are unable to find
explicit formulas for the solution of Problem 3. Therefore, in what follows, we numerically

solve Problem 3 to find the optimal values π̃∗B and Ṽ∗0
B.

5. Numerical Analysis

In this section, we aim at discovering distinct characteristics of the introduced unit-
linked tontine product by means of numerical studies. For these studies, concrete as-
sumptions about definite numbers for the various appearing parameters and about other
modeling implementations need to be made initially. Subsequently, the specific main
objective is to compare, in terms of the utility of a policyholder, our two different variants
for the unit-linked tontine product established and priced in Section 3.2, and optimized
in Section 4.2 within several sensitivity analyses. Additionally, we seek to integrate the
traditional tontine with non-unit-linked payments into this comparison. Thereby, we are
able to indicate whether the individual, in the analyzed instances, prefers that the tontine
payment is linked to the financial market.

5.1. Setup

First, let us set up the overall framework with the different assumptions for our
numerical studies. We start with the determination of the modeling of the shocked survival
curves t px

1−ε and t p̃x
1−ε, respectively. We initially specify the survival probabilities t px

and t p̃x as

t px = e−
∫ t

0 mx+τdτ = e
e

x−g2
g1

(
1−e

t
g1

)
and t p̃x = e−

∫ t
0 m̃x+τdτ = e

e
x−g̃2

g1

(
1−e

t
g1

)
, (31)

where

mx+τ =
1
g1

e
x+τ−g2

g1 and m̃x+τ =
1
g1

e
x+τ−g̃2

g1 , (32)

are the individual’s forces of mortality at the age of x + τ with τ ≥ 0 following the Gom-
pertz law of mortality (see, e.g., Milevsky and Salisbury 2015) under P and Q, respectively.
We refer to g1 > 0, g2 > 0 and g̃2 > 0 as the first Gompertz parameter describing the dis-
persion and the second Gompertz parameters describing the modal ages at death. Note
that we assume that g1 remains the same under both probability measures P and Q, and
that g̃2 ≥ g2, so that (9) is fulfilled. For the mortality shock ε, following Chen et al. (2019),
we assume its distribution to be truncated normal:

ε ∼ N(−∞,1)

(
η1, η2

2

)
, (33)

where η1 and η2
2 are the mean and the variance parameter of the normal distribution

truncated on the interval (−∞, 1), respectively. Table 1 summarizes the assumed baseline
values for the relevant parameters and their corresponding ranges for n, µ, σ, γ and ρ, used
in our sensitivity analyses.

When choosing the parameter values given in Table 1, we include the following
considerations:
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• For the choice of the value for r, we take account of the current low interest rate
environments in many European countries. For example, the average risk-free rate
on investments in the United Kingdom in the year 2020 equals only 1.1% (see Statista
2020a);

• For the choice of the value for γ, we refer to Thomas (2016); Thomas et al. (2010), who
mention an estimate of the average risk aversion of British citizens that amounts to 0.85
when considering the power utility function. In Thomas et al. (2010); Waddington
et al. (2013), an average risk aversion γ ∈ (0.8, 1) is obtained;6

• For simplicity, we equate the value for ρ with the one of the risk-free interest rate.
This is a common assumption. However, note that the cases r > ρ and r < ρ are also
considered when letting ρ vary in the sensitivity analyses;

• For the choice of the value for v, we are guided by Royal London (2018). In this report,
it is estimated that an average British employee needs to invest £260,000 in her private
pension provision to maintain the same standard of living as in her working period
during the retirement phase;

• For the choices of the values for g1 and g2, we follow Milevsky (2020), who presents 9.38
and 88.85 for the two Gompertz parameters for British females. For the choice of the
value for g̃2, we roughly convert the corresponding applied numbers from Chen
and Rach (2019) into our framework, where we take into account that the (implicit)
safety loadings included in the premiums, that stem from the usage of the risk neutral
probability measure Q during pricing can depend on the pool size n. As described
in Section 3, a higher n implies that less unsystematic mortality risk is incorporated
in the tontines and, consequently, lower (implicit) safety loadings can be chosen.
We handle this by considering g̃2 as a function of n. By linearly interpolating, we
find g̃2(n) = −0.0062n + 95.08. Using this relation guarantees that t p̃x, and thereby
also the (implicit) safety loadings, decreases in n. Note that the condition g̃2(n) ≥ g2
is fulfilled in all considered instances, such that t p̃x(n) ≥ t px.

Table 1. Specification of relevant parameters for numerical studies.

Symbol Description Value Range

n Initial number of participants 100 [1, 1000]
x Initial age of the participants 65 −
µ Drift rate of the risky asset 0.1 (0.01, 0.2]
σ Volatility of the risky asset 0.35 (0, 0.7]
r Risk-free interest rate 0.01 −
γ Measure of the policyholder’s risk aversion 0.85 (0, 5]\{1}
ρ Subjective discount rate 0.01 [0, 0.05]
v Available initial wealth £260,000 −
g1 First Gompertz parameter 9.38 −
g2 Second Gompertz parameter under P 88.85 −
g̃2 Second Gompertz parameter under Q 94.46 −
η1 Mean parameter of the truncated normal distribution −0.0035 −
η2

2 Variance parameter of the truncated normal distribution 0.08142 −

We also need to introduce a practicable choice in Case B for the guaranteed payment Gt,
which has not been specified so far. Since we aim at taking account of the circumstance
that the individual’s attitude towards the guaranteed payment can change if she gets older,
we choose

Gt = Geδt, (34)

where G > 0 is the prescribed constant initial guarantee amount and δ the guarantee growth
rate. By this stipulation, we can consider different situations, such as the case in which the
liquidity needs of the policyholder increase with age, which can be modeled by choosing a
positive δ. If it is required that Gt is time-independent, i.e., a constant over time, simply
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let δ = 0. We choose G in such a way that the value of the guaranteed payments at time 0
corresponds to a fraction, say g ∈ (0, 1), of the total premium. Relying on (13), which
represents the described correspondence if P0 = v is multiplied by g and Ψt is replaced
by Gt, we obtain

G =
gv∫ ∞

0 e−(r−δ)t Itdt
. (35)

For the three case-related parameters α, δ and g, we summarize their assumed baseline
values in Table 2. For the sensitivity analyses below, the corresponding ranges of δ and g
are also presented in Table 2.

Table 2. Specification of relevant parameters related to Case B for numerical studies.

Symbol Description Value Range

α Participation rate 0.9 −
δ Guarantee growth rate 0.01 [−0.03, 0.05]
g Guaranteed premium fraction 0.75 (0, 1)

The following considerations are taken into account when choosing the parameter
values given in Table 2:

• For the choice of the value for α, we first notice that participation rates between 80%
and 100% are commonly practiced in reality (see, e.g., Bacinello et al. 2018). Applying
the mean value appears appropriate;

• We choose the value for δ to be equal to r = 0.01. Note that the cases where r > δ
or r < δ are also considered when letting δ vary in the sensitivity analyses;

• For the choice of the value for g, we first notice that the guaranteed premium fraction is
often chosen between 60% and 90% in practice, as this can be exemplarily observed for
the product “GarantieRente Performance” offered by Gothaer (2021). Again, applying
the mean value appears appropriate.

5.2. Comparison

The main questions we intend to answer in this numerical analysis are as follows:

• From the individual’s viewpoint, which of the two introduced unit-linked tontine
variants is preferred? How does this preference depend on the parameter values?

• From the individual’s viewpoint, how does the introduced unit-linked tontine product
perform in comparison to the traditional tontine product with no financial market
component? How does this performance ordering depend on the parameter values?

These questions will be answered in Section 5.2.2, where we present our numerical re-
sults and sensitivity analyses based on the assumptions made in Section 5.1. In preparation
for this, a short overview of the necessary details on the traditional tontine is given and the
precise comparison approach is explained in Section 5.2.1.

5.2.1. Traditional Tontine and Comparison Approach

Recall that the traditional tontines established in Milevsky and Salisbury (2015) are
introduced in Section 2.1, where its total payment is given in (1). In order to buy a traditional
tontine, we assume that the individual also spends her available initial wealth v to pay the
single initial premium charged for it. By replacing the tontine payout process Ψt in (13) by
the tontine payout function dt, this premium can be calculated via

P0 =
∫ ∞

0
e−rt Itdtdt. (36)

We consider two different variants of specific forms of dt, one rather theoretical and
one rather practical. The first one, which is also examined in, e.g., Chen et al. (2019),
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arises directly from the maximization of the discounted expected utility associated with
the purchase of the traditional tontine. In the corresponding optimization problem, dt is
naturally chosen as the decision variable. Details on this problem and its solution that is
given by the optimal version d∗t for dt are reviewed in Appendix C. We refer to the resulting
product as the optimal traditional tontine. For the second specific form of dt, we use one
of the so-called natural tontines proposed by Milevsky and Salisbury (2015). This more
practicable payout function is given by

dt = EQ
[
1{ζx>t}

]
d = t p̃xEQ

[
e− ln(t p̃x)ε

]
d = t p̃x Mε(− ln(t p̃x))d, (37)

where d > 0 is constant over time and determined by plugging (37) in the budget con-
straint v = P0, where P0 is given in (36):

d∗ =
v∫ ∞

0 e−rt It t p̃x Mε(− ln(t p̃x))dt
. (38)

Note that by applying (37), the total payment to the living traditional tontine holder
is actually also constant over time if deaths in the pool occur as expected. We refer to the
product resulting from (37) and (38) as the natural traditional tontine.

For the comparison, we look at the (maximized) discounted expected utilities arising
from the optimal findings in Section 4.2 and from above that the individual attains when
acquiring the respective tontine product alternatives. They are denoted by EU∗A and EU∗B

in case of the two unit-linked tontines from Case A and Case B, respectively, by EU∗OT

in case of the optimal traditional tontine and by EU∗NT in case of the natural traditional
tontine. For the sake of completeness, an overview of the formulas for the different (max-
imized) discounted expected utilities is given in Appendix D.7 The reason why such a
direct comparison approach is valid within our framework is that the individual spends the
same initial wealth v for every product variant. Therefore, since the purchase costs for the
policyholder are always identical, she rationally prefers the tontine that provides her with
the highest utility. To make our comparison results easier to interpret, we do not straight-
forwardly consider the different (maximized) discounted expected utility levels, but the
corresponding certainty equivalents, which are the safe amounts that make the individual
indifferent between obtaining them and the optimal uncertain total payments of the tontine
products. These certainty equivalents, which are denoted by CE∗ j with j ∈ {A, B, OT, NT}
marking the respective product variant, are thus calculated by using the same concept as
in (20) and the quantities EU∗ j for equating:

EP

[∫ ∞

0
e−ρtu

(
CE∗ j

)
1{ζx>t}dt

]
= EU∗ j

⇔CE∗ j =

(
(1− γ)EU∗ j

(∫ ∞

0
e−ρt

∫ 1

−∞
t px

1−z fε(z)dzdt
)−1

) 1
1−γ

.

(39)

As EU∗ j is strictly increasing in CE∗ j, comparing the (maximized) discounted expected
utilities is equivalent to comparing the certainty equivalents.

5.2.2. Numerical Results and Sensitivity Analyses

In Table 3, we show the first numerical findings, namely the ones for CE∗ j, that emerge
from applying the baseline parameter values given in Tables 1 and 2 (for Case B).8
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Table 3. Certainty equivalents of different tontines with baseline parameter values.

CE∗A £15,180.83
CE∗B £11,948.69
CE∗OT £14,066.46
CE∗NT £13,647.26

Comparing the certainty equivalents reported in in Table 3 shows that the policyholder
is in the best position as long as she holds the unit-linked tontine designed in Case A. When
comparing only the unit-linked tontine variants, it is more beneficial for the individual
if the tontine payout process does not include an additional guaranteed payment as in
Case B, but rather simply complies with the entire portfolio value that arises entirely out
of optimally investing in the financial market. The unit-linked tontine variant from Case
B actually performs worse than the traditional tontine, where even the more practicable
version, the natural traditional tontine, surpasses it by far, i.e., CE∗NT � CE∗B. Do the
previous observations also hold if certain parameter values change?

In Figures 1 and 2, we show the numerical comparison findings that emerge from
applying the parameter ranges given in Table 1. In particular, we present the resulting
curves for CE∗ j if the parameters n, µ, σ, γ and ρ vary, respectively.9
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Figure 1. Effects of n (a), µ (b) and σ (c) on certainty equivalents.
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Figure 2. Effects of γ (a) and ρ (b) on certainty equivalents.

Two main observations can be universally drawn from Figures 1 and 2:

• Overall, we detect in each graph that, like in Table 3, the unit-linked product from
Case A provides the policyholder with a higher certainty equivalent than the one from
Case B. As such, varying parameter values does not seem to affect the performance
order between the two unit-linked tontine alternatives (at least not for the parameters
and their ranges under consideration). Nevertheless, the performance of the tontine
from Case B more and more approaches that of the one from Case A if µ decreases or
if σ or γ increases;

• There exist regions in which the unit-linked tontine variants make the individual
better off than the traditional tontine variants. This is not very surprising for Case A,
as is known. However, it reveals that our Case B can also outperform the traditional
tontine in some parameter constellations. This emphasizes the potential attractiveness
of this participating tontine, especially to customers who consider additional guar-
antee components important. We remark that participants preferring guarantees are
typically loss averse, see e.g., Berkelaar et al. (2004); Kahneman and Tversky (1979).
In particular, the unit-linked tontine performs well if n is either very low or high,
if µ is high or if σ, γ or ρ is low. On the whole, we conclude that if the traditional
tontine product is consulted as a basis for comparison, it is possible that the unit-linked
counterpart is more successful among the customers and, thus, it seems reasonable to
promote it.

As already pointed out by Chen et al. (2021) (Theorem 5.2), the impact of the pool
size on the attractiveness of a tontine is not monotonically increasing. In their context,
they compare tontines with annuities and the critical pool size determines the preference
ordering between annuities and tontines. After the pool size reaches a certain magnitude,
tontines will become, for instance, more attractive than conventional annuities. They
observe that this number is rather small for a conventional tontine case. Now, in our
unit-linked products, this number seems rather large, shown in Figure 1a to be larger than
200, beyond which the attractiveness of the unit-linked tontine products increases in the
pool size.

In order to get a better understanding of the findings derived from Table 3 and of the
above-mentioned observations based on Figures 1 and 2, we show in Figure 3 the means
and 0.01-/0.99-quantiles under P of the optimal total payments for Cases A and B and the
traditional tontine with respect to age. For the generation of the graphs, we assume that
the considered policyholder is always alive and that the parameters attain their baseline
values given in Tables 1 and 2 (for Case B).10

By comparing Case A and Case B by means of Figure 3, the effect of the guaranteed
payment picked up in Case B becomes clear: In Figure 3c, we notice that the 0.01-quantile
curve for Case B is almost always significantly above the one for Case A. This implies
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that the inclusion of the guaranteed payment prevents the policyholder in Case B from
receiving a very low total payment in bad market scenarios. Yet, at the same time, the
guaranteed payment also limits a possible positive development of the total payment in
good market scenarios, which is, however, completely exploited by the unit-linked tontine
from Case A. This is recognizable by the 0.99-quantile curves displayed in Figure 3a,b.
Since the scale of the 0.99-quantiles, especially in Figure 3b, is much larger than the one
of the 0.01-quantiles in Figure 3c, the dominance of Case A in good market scenarios
clearly outperforms the dominance of Case B in bad market scenarios. Hence, as visible in
Figure 3a,b, the mean of the total payment for Case A is consistently higher than the one
for Case B. Due to the fact that the power utility function is strictly increasing, we can infer
from this finding that CE∗A > CE∗B holds, as observed above for the given parameters.
Moreover, we, particularly in Figure 3a,c, see that the curves for the traditional tontine,
which is represented here by the optimal version, can be above or below the ones for the
unit-linked tontine. That is why the policyholder prefers the traditional tontine to the unit-
linked tontine in some instances, while in others she does not, as apparent from Figures 1
and 2. The partial dominance of the traditional tontine explicitly shown in Figure 3 suffices
to beat the performance of the unit-linked tontine from Case B, but not the one from Case A.
This can be observed from Table 3, where all parameters also attain their baseline values.
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(a) Means (black) and 0.99-quantiles (grey).
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(b) Means (black) and 0.99-quantiles (grey).
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(c) 0.01-quantiles.

Figure 3. Means and 0.99-quantiles at earlier retirement ages (a) and at more advanced retirement
ages (b), and 0.01-quantiles (c) of optimal total payments for Cases A and B and the optimal traditional
tontine (OT) depending on age, assuming that the policyholder is always alive and the parameters
attain baseline values.

In the following, the impacts of the parameters n, µ, σ, γ and ρ and, eventually of the
varying parameters δ and g, being only related to Case B, will be discussed in detail.
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Sensitivity Analyses Regarding n

In Figure 1a, we notice right away the converse behavior of CE∗A and CE∗B with regard
to CE∗OT and CE∗NT as long as the initial number n of participants in the pool ranges within
relatively small values. Especially when an extremely small pool takes in a very few new
participants, the policyholder’s benefit drops sharply in case of the unit-linked tontine,
whereas it rises quickly for the traditional tontine. From around n = 250 on, the courses
of the curves belonging to the unit-linked tontine switch to an upward movement, which
becomes even steeper than the one for the traditional tontine. In summary, a purchase
decision in favor of the unit-linked tontine is wise if the pool size is either very small
or large.

In order to get a better understanding of the recorded observations, we let n vary again

and study the resulting optimal values V∗0
A and Ṽ∗0

B for the initial investment amount in
Figure 4.

0 200 400 600 800 1000
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Figure 4. Effect of n on optimal values for the initial investment amount.

We observe very similar curve shapes for V∗0
A and Ṽ∗0

B in Figure 4 compared to the
ones for CE∗A and CE∗B in Figure 1a, namely the strong decline in n at the beginning,
which quickly lessens and, from around n = 250 on, turns into an increase. Consequently,
it seems that the behavior of the initial investment amount for a varying pool size causes
the performance development of the unit-linked tontine described above. If we exemplarily
consider the formula in (22) for V∗0

A, only the initial decrease appears plausible at first
glance. However, when we recall that lower (implicit) safety loadings included in the
premiums can be chosen if n grows by reducing t p̃x, just like we do, it is comprehensible
why the decrease can be slowed down and possibly even be reversed at some point. Below,
we provide more interpretations to the impact of the pool size n:

• Unit-linked products can outperform the traditional tontines (both the natural tontine
and the optimal tontine), but can also be beaten by the traditional ones. With the
chosen parameters, the unit-linked tontine type A outperforms, while the unit-linked
tontine type B is beaten by, the traditional ones;

• For the given parameters, we observe that the unit-linked products with n = 1 leads
to the highest utility level. It is implied that the unit-linked annuity is most favored.
However, let us point out that the result depends substantially on the choice of the
parameters;

• The main message is that, depending on the design of the unit-linked tontine products
including the pool size, the unit-linked tontine product can be attractive for some
individuals. Among all these products, there is no dominance in terms of expected
utility. The unit-linked products enriches the variety of the products.

Sensitivity Analyses Regarding µ and σ

If the policyholder chooses the unit-linked tontine, we observe in Figure 1b,c that her
utility enhances more and more as long as the drift rate µ of the risky asset increases and
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its volatility σ decreases, respectively. This is because the risky asset, in which investments
are made within the framework of the unit-linked tontine, is clearly more profitable if
its return grows and its risk reduces, as can be seen, for example, from a higher Sharpe
ratio µ−r

σ , which eventually is naturally also more beneficial to the policyholder. As the
certainty equivalents associated with the traditional tontine are apparently not affected by
a varying µ or σ due to its payout’s independence of the financial market, there is a certain
level at which the performance of the risky asset is so good that the traditional tontine is no
longer preferred.

Sensitivity Analyses Regarding γ and ρ

In Figure 2a, we find that CE∗ j declines for all j for higher values of γ, which means
that each tontine variant gets less interesting for the individual when she becomes more
risk-averse. This is because the risk inherent in the tontines is borne, to a great extent, by
all participants in the pool, and the payments to the policyholder are, hence, uncertain to
some extent. If the policyholder embraces less of this risk, i.e., she is more risk-averse and
prefers more stable payments, her personal benefit is, thus, smaller. However, the curves
displaying CE∗A and CE∗B exhibit (partly much) steeper slopes than those for CE∗OT

and CE∗NT due to the fact that the unit-linked tontine alternatives contain more risk,
namely not only the mortality risk but also the financial risk component. Therefore, if the
policyholder tolerates more risk, i.e., she is less risk-averse (γ decreases) and prefers riskier
payments, the unit-linked tontine is definitely the better choice. In Figure 2b, it can be
observed that when the subjective discount rate ρ grows, the personal utilities induced
by buying the examined tontines constantly diminish. The only exception is the optimal
traditional tontine that regains some attractiveness for higher values of ρ in consequence of
the specific structure of d∗t , which is explicitly given in Appendix C. Since a higher subjective
discount rate means that the individual tends to consume more at earlier retirement ages,
the decreases of CE∗A and CE∗B in ρ are explainable by the steady increases of the means
of the total unit-linked tontine payments over time, as this is exemplarily illustrated in
Figure 3a,b. In these two figures, we also observe that the magnitudes of the two mean
curves for the unit-linked tontine variants are a lot greater compared to the traditional
tontine. This gives a reason for the steeper slopes of the curves displaying CE∗A and CE∗B

in Figure 2b.

Sensitivity Analyses Regarding δ and g

When considering the choice for Gt as introduced in (34) and (35) for Case B, we
are especially interested in the impact of the guarantee growth rate δ and the guaranteed
premium fraction g on the policyholder’s tontine product preference. To analyze this, we
look at the resulting curves for CE∗B, CE∗OT and CE∗NT depicted in Figure 5, where the
ranges given in Table 2 are applied.
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Figure 5. Effects of δ (a) and g (b) on certainty equivalents.
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Both graphs of Figure 5 demonstrate a similar curve progression for CE∗B. In particular,
the resulting certainty equivalents are negatively proportional to δ and g. However, as the
payout of the traditional tontine does not depend on δ and g, neither CE∗OT nor CE∗NT

changes. As a consequence, it is possible that the policyholder benefits more from the
unit-linked tontine designed in Case B than from the traditional tontine if the guaranteed
payment is low enough. On the other hand, a high guaranteed component in the unit-linked
tontine may adversely affect the performance of the product due to stronger limitations on
possible investment gains.

6. Conclusions

In the present article, we propose unit-linked tontine products that combine the tontine
concept with the idea underlying unit-linked insurance policies, i.e., to tie payouts to the
developments in the financial market. We examine a general payment structure of the
product and analyze two specified payment structures. The two risk types contained in
the unit-linked product are the financial risk stemming from the risky asset existing in the
financial market and the mortality risk, for which we actually also incorporate the system-
atic part in our model. The premium required to buy the unit-linked tontine is determined
in a risk-neutral pricing framework. Further, we study the optimal expected utility of an
individual purchasing the unit-linked tontine by adjusting the payment structure. In our
numerical comparison and sensitivity analyses, we contrast the policyholder’s benefits
arising out of the two optimized unit-linked tontine variants, as well as the optimal and the
natural traditional tontine. In particular, we find that there exist circumstances in which the
unit-linked tontine endows the policyholder with a higher utility level than the traditional
tontine, emphasizing the potential of the suggested unit-linked tontines. More precisely,
under our numerical setting with power utility functions, the unit-linked tontines might
be a potential choice for the policyholder when the expected return of the risky asset is
high or if the volatility of the risky asset, the policyholder’s risk aversion or her subjective
discount rate is low. Moreover, we observe that if its payout process is stipulated by the
pure financial market portfolio value, the unit-linked tontine consistently makes the poli-
cyholder better off than in the case where it includes guaranteed payments. However, its
performance approaches more and more that of the superior variant if the expected return
of the risky asset decreases or if the volatility of the risky asset or the policyholder’s risk
aversion increases. Furthermore, when comparing the case with guaranteed payments with
the traditional tontine with no financial market component, this case can nevertheless be
attractive, especially to customers who consider additional guarantee elements important.
Our findings would give reason to further study this new type of product in more realistic
settings that take practical aspects into account, for instance, how the provider hedges the
mortality and financial market risks related to the unit-linked tontines and what the net
loss of the provider is. A thorough analysis of the hedging perspective requires a more
dynamic framework and will be left for future research.
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Appendix A. Detailed Derivations

The equality in (11) holds for all t as
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The equality in (30) holds for all t as, with π denoting the ratio of a circle’s circumfer-
ence to its diameter,
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Appendix B. Proofs

Appendix B.1. Proposition 2

Proof. With the aid of the general pricing formula given in (13), we obtain the claim since
the equality in (17) holds as

EQ[Ψt] = EQ
[

Gt + α(Vt − Gt)
+
]
= Gt + αEQ

[
(Vt − Gt)

+
]
,
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with

EQ
[
(Vt − Gt)

+
]
= EQ

[(
V0ert− σ2

2
∫ t

0 π2
s ds+σ

√∫ t
0 π2

s dsZ − Gt

)
1{Z>βt}

]
= V0ert

∫ ∞

βt
e−

σ2
2
∫ t

0 π2
s ds+σ

√∫ t
0 π2

s dsz
φ(z)dz− Gt

∫ ∞

βt
φ(z)dz

= V0ert
∫ ∞

βt−σ
√∫ t

0 π2
s ds

φ(z)dz− GtΦ(−βt)

= V0ertΦ

σ

√∫ t

0
π2

s ds− βt

− GtΦ(−βt) = V0ertΦ
(

d̃t

)
− GtΦ

(
d̂t

)
,

where

βt =
ln
(

Gt
V0

)
− rt + σ2

2

∫ t
0 π2

s ds

σ
√∫ t

0 π2
s ds

.

Appendix B.2. Proposition 3

Proof. As the budget constraint in Problem 2 depends only on V0 and not on π, the optimal
value for V0 is already completely determined by this constraint, so that we immediately
obtain

V∗0
A =

v∫ ∞
0 Itdt

,

which is obviously positive, so that we also stick to the condition that V0 > 0. Consequently,
the budget constraint is entirely taken care of by V∗0

A and, thus, the determination of the
optimal value of the trading strategy π can be done by simply maximizing the objective of
Problem 2 with respect to π. To this end, we realize the shape of the objective as a function
of π by considering the corresponding derivative:
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The identified derivative is positive (negative), i.e., the objective is strictly increasing
(decreasing) in π, if

µ− r− γσ2π >
(<) 0⇔ π <

(>)
µ− r
γσ2 .
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Since we also need to adhere to the condition that π ∈ [0, 1], it is clear that, as long
as µ− r ≤ γσ2, the optimal value for π is given by π∗A = µ−r

γσ2 . Otherwise, if µ− r > γσ2,

it is π∗A = 1. Overall, we find

π∗A =
µ− r
γσ2 1{µ−r≤γσ2} + 1{µ−r>γσ2}.

Appendix C. Review of Optimization Problem for Traditional Tontine

In the style of Problem 1, the maximization problem for the traditional tontine with
the decision variable dt can be, by using (36) and replacing Ψt by dt, formulated as follows:

max
(dt)t≥0
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0
e−ρtκtd

1−γ
t dt

s.t. v = P0 =
∫ ∞

0
e−rt Itdtdt.

By applying the techniques in Chen et al. (2019), it can be shown that the optimal
solution is given by

d∗t =
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λ∗e−rt It
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γ

,

where the optimal Lagrange multiplier is given by
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Appendix D. Overview of Formulas for (Maximized) Discounted Expected Utilities

The formulas for the different (maximized) discounted expected utilities EU∗ j with
j ∈ {A, B, OT, NT} that are applied for the comparison are listed in the following overview:
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where d
∗
t is given as in (24), but with π replaced by π̃∗B and V0 replaced by Ṽ∗0

B.

Notes
1 For simplicity, we have assumed log-normal risky asset dynamics, which, as well documented, may not be very realistic. It

would be interesting to look at the unit-linked tontine design problem in more general settings where the asset volatility is
random when fat-tailed returns and volatility clustering are taken into account (see, e.g., Cont and Tankov 2004; Fouque et al.
2000). The continuity assumption of the stock price is relaxed in order to capture sudden and unpredictable market changes (see,
e.g., Cont and Tankov 2004). Also, for such long-term investment problems, it would be more realistic to incorporate interest rate
fluctuations (see, e.g., Hull and White 1990; Vasicek 1977).
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2 This assumption is actually fulfilled for our specific choices of t px and t p̃x in our numerical analysis, where they are given in (31)
in Section 5.1.

3 Further properties of and a detailed discussion about the power utility function family can be found in, e.g., Wakker (2008).
4 In general, it is true that an optimal value for V0 can theoretically become arbitrarily large, which would not be feasible in reality.

However, due to the budget constraint, this can be prevented and, thus, choosing V0 as a decision variable is reasonable. For
example, the optimal value for V0 in Case A given in (22) is high only when it is justified, namely if the initial wealth spent by
the individual is large or if her survival probability is low, for instance.

5 It should be pointed out that Gt and α can theoretically also serve as decision variables. A practicable option for Gt is presented
and discussed in Section 5.1.

6 We remark that a baseline γ > 1 or another type of utility function may lead to different conclusions.
7 The discounted expected utility for the natural traditional tontine diverges for too high values of γ, i.e., EU∗NT goes to minus

infinity if γ� 1. Consequently, we do not consult the natural traditional tontine if γ attains rather large values.
8 If the two required values π̃∗B and Ṽ∗0

B for Case B introduced in Section 4.2 cannot be uniquely determined for the numerical
outcomes in this section, this is adequately reported in the related paragraphs hereinafter.

9 Due to the divergence of the discounted expected utility for the natural traditional tontine as soon as γ gets too large, we show,
in the case, where γ varies, CE∗NT only as long as γ ranges within (0, 1). Further note that as long as we assess the sensitivity
towards a parameter in any analysis in this section, all the remaining parameters attain their baseline values, if not stated
otherwise.

10 In detail, the applied total payments in Figure 3 are determined, for Case A, by nV∗t
Nt

, where V∗t = V∗0
Aert+(µ−r)π∗At− σ2

2 (π∗A)
2
t+σπ∗AWt ,

for Case B, by
n(Gt+α(V∗t −Gt)

+)
Nt

, where V∗t = Ṽ∗0
Bert+(µ−r)π̃∗Bt− σ2

2

(
π̃∗B

)2
t+σπ̃∗BWt , and, for the optimal traditional tontine, by nd∗t

Nt
.

Note that the computation of all depicted quantities is done numerically, where we divide the relevant time line running from t = 0
to t = 35 by a constant discretization step size of 0.025, which means that we overall analyze 1401 points, and simulate each occurring
random variable 450,000 times.
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