Commodity Prices after COVID-19: Persistence and Time Trends
Abstract
:1. Introduction
2. Literature Review
2.1. Commodity Prices
2.2. Supercycles
2.3. Supercycle Analysis Methods
2.4. The Economic Impact of COVID-19
2.5. Multilayer Neural Networks in Commodity Forecasting
3. Data and Methodology
3.1. Dataset
3.2. Unit Roots
3.3. ARFIMA (p, d, q) Model
3.4. Forecasting with Artificial Neural Networks
4. Empirical Results
5. Concluding Comments
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
1 | https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/ (access date 25 April 2021). |
2 | https://www.who.int/csr/don/2004_05_18a/en/ (access date on 25 April 2021). |
3 | A point of caution should be adopted here since the AIC and BIC may not necessarily be the best criteria for applications involving fractional models (Hosking 1981). |
References
- Adekoya, Oluwasegun B., and Johnson A. Oliyide. 2020. How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques. Resources Policy 70: 101898. [Google Scholar] [CrossRef] [PubMed]
- Akaike, Htrotugu. 1973. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60: 255–65. [Google Scholar] [CrossRef]
- Akaike, Hirotugu. 1979. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66: 237–42. [Google Scholar] [CrossRef]
- Akhtaruzzaman, Md, Sabri Boubaker, and Ahmet Sensoy. 2021a. Financial contagion during COVID–19 crisis. Finance Research Letters 38: 101604. [Google Scholar] [CrossRef]
- Akhtaruzzaman, Md, Sabri Boubaker, Brian M. Lucey, and Ahmet Sensoy. 2021b. Is gold a hedge or safe haven asset during COVID19 crisis? Economic Modelling. [Google Scholar] [CrossRef]
- Akhtaruzzaman, Md, Sabri Boubaker, Mardy Chiah, and Angel Zhong. 2020. COVID-19 and oil price risk exposure. Finance Research Letters 42: 101882. [Google Scholar] [CrossRef]
- Arana, Estanislao, Martí-Bonmatí Luis, D. Bautista, and Paredes Roberto. 2003. Diagnóstico de las lesiones de la calota. Selección de variables por redes neuronales y regresión logística. Neurocirugía 14: 377–84. [Google Scholar] [CrossRef]
- Arbib, Michael A. 1995. Brain Theory and Neural Networks. Cambridge: MIT Press. [Google Scholar]
- Arbib, Michael A., Péter Érdi, and János Szentágothai. 1997. Neural Organization. Cambridge: MIT Press. [Google Scholar]
- Aslam, Faheem, Saqib Aziz, Duc Khuong Nguyen, Khurrum S. Mughal, and Maaz Khan. 2020. On the efficiency of foreign exchange markets in times of the COVID-19 pandemic. Technological Forecasting and Social Change 161: 120261. [Google Scholar] [CrossRef]
- Atsalakis, George S., and Kimon P. Valavanis. 2009. Surveying stock market forecasting techniques—Part II: Soft computing methods. Expert Systems with Applications 36: 5932–41. [Google Scholar] [CrossRef]
- Banerjee, Ameet Kumar. 2021. Futures market and the contagion effect of COVID-19 syndrome. Finance Research Letters 43: 102018. [Google Scholar] [CrossRef]
- Barkoulas, John T., Walter C. Labys, and Joseph I. Onochie. 1999. Long memory in futures prices. Financial Review 34: 91–100. [Google Scholar] [CrossRef]
- Barrow, Devon K., and Sven F. Crone. 2016. Cross-validation aggregation for combining autoregressive neural network forecasts. International Journal of Forecasting 32: 1120–37. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, Francisco, Samyuktha Kannan, and Berber Kramer. 2020. Impacts of a national lockdown on smallholder farmers’ income and food security: Empirical evidence from two states in India. World Development 136: 105069. [Google Scholar] [CrossRef]
- Chen, Shyi-Ming, and Kurniawan Tanuwijaya. 2011. Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques. Expert Systems with Applications 38: 10594–605. [Google Scholar] [CrossRef]
- Christiano, Lawrence J., and Terry J. Fitzgerald. 2003. The Band Pass Filter. International Economic Review 44: 435–65. [Google Scholar] [CrossRef]
- Clavijo-Cortes, Pedro, Jacobo Campo Robledo, and Henry Antonio Mendoza Tolosa. 2020. Threshold effects and unit roots of real commodity prices since the mid-nineteenth century. Economics and Business Letters 9: 342–49. [Google Scholar] [CrossRef]
- Coakley, Jerry, Jian Dollery, and Neil Kellard. 2011. Long memory and structural breaks in commodity futures markets. Journal of Futures Markets 31: 1076–113. [Google Scholar] [CrossRef]
- Corbet, Shaen, John W. Goodell, and Samet Günay. 2020. Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19. Energy Economics 92: 104978. [Google Scholar] [CrossRef]
- Coulombe, Philippe Goulet, Maxime Leroux, Dalibor Stevanovic, and Stéphane Surprenant. 2020. How is machine learning useful for macroeconomic forecasting? arXiv arXiv:2008.12477. [Google Scholar] [CrossRef]
- Cox, John C., Jonathan E. Ingersoll Jr., and Stephen A. Ross. 1981. The relation between forward prices and futures prices. Journal of Financial Economics 9: 321–46. [Google Scholar] [CrossRef]
- Cuddington, John, and Abdel Zellou. 2012. Is there evidence of super-cycles in crude oil prices? SPE Economics and Management 4: 171–81. [Google Scholar]
- de Lillo, Antonio, and Cinzia Meraviglia. 1998. The role of social determinants on men’s and women’s mobility in Italy. A comparison of discriminant analysis and artificial neural networks. Substance Use & Misuse 33: 751–64. [Google Scholar]
- Deaton, Angus, and Guy Laroque. 1995. Estimating a Nonlinear Rational Expectations Commodity Price Model with Unobservable State Variables. Journal of Applied Econometrics 10: S9–S40. [Google Scholar] [CrossRef]
- Dickey, David A., and Wayne A. Fuller. 1979. Distributions of the estimators for autoregressive time series with a unit root. Journal of American Statistical Association 74: 427–81. [Google Scholar]
- Diebold, Francis, and Glen Rudebush. 1991. On the power of Dickey-Fuller tests against fractional alternatives. Economics Letters 35: 155–60. [Google Scholar] [CrossRef]
- Dittmann, Ingolf, and Clive W. J. Granger. 2002. Properties of nonlinear transformations of fractionally integrated processes. Journal of Econometrics 110: 113–33. [Google Scholar] [CrossRef] [Green Version]
- El-Henawy, Ibrahim Mahmoud, Kamal Hala, Hassan Abbas Abdelbary, and Ahmed R. Abas. 2010. Predicting stock index using neural network combined with evolutionary computation methods. Paper presented at 2010 The 7th International Conference on Informatics and Systems (INFOS), Cairo, Egypt, March 28–30; pp. 1–6. [Google Scholar]
- Elliott, Graham, Thomas J. Rothenberg, and James H. Stock. 1996. Efficient Tests for an Autoregressive Unit Root. Econometrica 64: 813–36. [Google Scholar] [CrossRef] [Green Version]
- Erdem, Fatma Pınar, and İbrahim Ünalmış. 2016. Revisiting super-cycles in commodity prices. Central Bank Review 16: 137–42. [Google Scholar] [CrossRef]
- Erten, Bilge, and José Antonio Ocampo. 2013. Super Cycles of Commodity Prices Since the Mid-Nineteenth Century. World Development 44: 14–30. [Google Scholar] [CrossRef] [Green Version]
- Erten, Bilge, and José Antonio Ocampo. 2021. The future of commodity prices and the pandemic-driven global recession: Evidence from 150 years of data. World Development 137: 105164. [Google Scholar] [CrossRef] [PubMed]
- Fassas, Athanasios P. 2020. Risk aversion connectedness in developed and emerging equity markets before and after the COVID-19 pandemic. Heliyon 6: e05715. [Google Scholar] [CrossRef] [PubMed]
- Fu, Li-Ming. 1994. Neural Networks in Computer Intelligence. New York: McGraw-Hill. [Google Scholar]
- Fuller, Wayne A. 1976. Introduction to Statistical Time Series. Fuller Introduction to Statistical Time Series 1976; New York: JohnWiley. [Google Scholar]
- Garbade, Kenneth D., and William L. Silber. 1983. Price Movement and Price Discovery in Futures and Cash Markets. The Review of Economics and Statistics 65: 289–97. [Google Scholar] [CrossRef]
- García, Ignacio, Alonso Marbán, Yenisse M. Tenorio, and José G. Rodriguez. 2008. Pronóstico de la Concentración de oxono en Guadalajara-México usando redes neuronales artificiales. Revista Información Tecnológica 19: 89–96. [Google Scholar]
- Geweke, John, and Susan Porter-Hudak. 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis 4: 221–38. [Google Scholar] [CrossRef]
- Gholamy, Afshin, Vladik Kreinovich, and Olga Kosheleva. 2018. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Available online: https://scholarworks.utep.edu/cs_techrep/1209/ (accessed on 15 May 2022).
- Gil-Alana, Luis A., Juncal Cunado, and Fernando Pérez de Gracia. 2012. Persistence, long memory, and unit roots in commodity prices. Canadian Journal of Agricultural Economics/Revue Canadienne D’agroeconomie 60: 451–68. [Google Scholar] [CrossRef]
- Glorot, Xavier, and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research 9: 249–56. [Google Scholar]
- Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. 2011. Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach. In Proc. of ICML. pp. 513–20. Available online: http://dblp.unitrier.de/rec/bib/conf/icml/GlorotBB11 (accessed on 12 May 2022).
- Goolsbee, Austan, and Chad Syverson. 2020. Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020. Journal of Public Economics 193: 104311. [Google Scholar] [CrossRef]
- Granger, Clive William John, and Roselyne Joyeux. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15–29. [Google Scholar] [CrossRef]
- Güler, Inan, and Elif Derya Übeyli. 2005. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods 148: 113–21. [Google Scholar] [CrossRef]
- Haidar, Imad, Siddhivinayak Kulkarni, and Heping Pan. 2008. Forecasting model for crude oil prices based on artificial neural networks. Paper presented at International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Sydney, NSW, Australia, December 15–18; pp. 103–08. [Google Scholar]
- Hassler, Uwe, and Jürgen Wolters. 1994. On the power of unit root tests against fractional alternatives. Economics Letters 45: 1–5. [Google Scholar] [CrossRef]
- Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313: 504–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9: 1735–80. [Google Scholar] [CrossRef] [PubMed]
- Holt, Matthew T., and Lee A. Craig. 2006. Nonlinear Dynamics and Structural Change in the U.S. Hog–Corn Cycle: A Time-Varying STAR Approach. American Journal of Agricultural Economics 88: 215–33. [Google Scholar] [CrossRef]
- Hosking, Jonathan Richard Morley. 1981. Fractional differencing. Biometrika 68: 165–76. [Google Scholar] [CrossRef]
- Hui, David S., Esam I. Azhar, Tariq A. Madani, Francine Ntoumi, Richard Kock, Osman Dar, Giuseppe Ippolito, Timothy D. Mchugh, Ziad A. Memish, Christian Drosten, and et al. 2020. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases 91: 264–66. [Google Scholar] [CrossRef] [Green Version]
- Jacks, David S. 2013. From Boom to Bust: A Typology of Real Commodity Prices in the Long Run. Cliometrica 13: 201–20. [Google Scholar] [CrossRef] [Green Version]
- Jacks, David S., and Martin Stuermer. 2020. What drives commodity price booms and busts? Energy Economics 85: 104035. [Google Scholar] [CrossRef]
- Jadevicius, Arvydas, Brian Sloan, and Andrew Brown. 2010. A Century of research on property cycles—A review of research on major and auxiliary business cycles. International Journal of Strategic Property Management 21: 129–43. [Google Scholar] [CrossRef] [Green Version]
- James, Nick, Max Menzies, and Jennifer Chan. 2021. Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19. Physica A: Statistical Mechanics and Its Applications 565: 125581. [Google Scholar] [CrossRef]
- Jarrett, Kevin, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. 2009. What is the best multi-stage architecture for object recognition? Paper presented at 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, September 29–October 2; pp. 2146–53. [Google Scholar]
- Jarrow, Robert A., and George S. Oldfield. 1981. Forward contracts and futures contracts. Journal of Financial Economics 9: 373–82. [Google Scholar] [CrossRef]
- Juglar, Clement. 1889. Des crises commerciales et leur retour périodique en France, en Angleterre et aux États-Units. Paris Alcan, Second Edition. Available online: https://gallica.bnf.fr/ark:/12148/bpt6k96055365.texteImage (accessed on 12 May 2022).
- Just, Małgorzata, and Krzysztof Echaust. 2020. Stock market returns, volatility, correlation and liquidity during the COVID-19 crisis: Evidence from the Markov switching approach. Finance Research Letters 37: 101775. [Google Scholar] [CrossRef] [PubMed]
- Kamdem, Jules Sadefo, Rose Bandolo Essomba, and James Njong Berinyuy. 2020. Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities. Chaos, Solitons & Fractals 140: 110215. [Google Scholar]
- Kellard, Neil, Paul Newbold, Tony Rayner, and Christine Ennew. 1999. The relative efficiency of commodity futures markets. The Journal of Futures Markets 19: 413–32. [Google Scholar] [CrossRef]
- Kilian, Lutz. 2009. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. American Economic Review 99: 1053–69. [Google Scholar] [CrossRef] [Green Version]
- Kondratiev, Nikolai D. 1925. The Major Economic Cycles. Moscow. Schumpeter’s business cycles. American Economic Review 30: 262–63. [Google Scholar]
- Kulkarni, Siddhivinayak, and Imad Haidar. 2009. Forecasting model for crude oil price using artificial neural networks and commodity futures prices. arXiv arXiv:0906.4838. [Google Scholar]
- Kuznets, Simon. 1940. Schumpeter’s Business Cycles. The American Economic Review 30: 257–71. [Google Scholar]
- Kwiatkowski, Denis, Peter C. B. Phillips, Peter Schmidt, and Yongcheol Shin. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics 54: 159–78. [Google Scholar] [CrossRef]
- Lee, Dongin, and Peter Schmidt. 1996. On the power of the KPSS test of stationarity against fractionally-integrated alternatives. Journal of Econometrics 73: 285–302. [Google Scholar] [CrossRef]
- Li, Yuhong, and Weihua Ma. 2010. Application of artificial neural networks in financial economics: A survey. International Symposium on Computational Intelligence and Design 1: 211–14. [Google Scholar]
- Lien, Donald, and Yiu Kuen Tse. 1999. Fractional cointegration and futures hedging. Journal of Futures Markets 19: 457–74. [Google Scholar] [CrossRef]
- Mandelbrot, Benoit B. 1977. The Fractal Geometry of the Nature. New York: Freeman. [Google Scholar]
- Mapuwei, Tichaona W., Oliver Bodhlyera, and Henry Mwambi. 2020. Univariate Time Series Analysis of Short-Term Forecasting Horizons Using Artificial Neural Networks: The Case of Public Ambulance Emergency Preparedness. Journal of Applied Mathematics, 1–11. [Google Scholar] [CrossRef]
- Marshall, Alfred. 1890. Principles of Economics. London: Macmillan. [Google Scholar]
- Mbah, Ruth Endam, and Divine Forcha Wasum. 2022. Russian-Ukraine 2022 War: A review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada, and Europe. Advances in Social Sciences Research Journal 9: 144–53. [Google Scholar] [CrossRef]
- Mensi, Walid, Ahmet Sensoy, Xuan Vinh Vo, and Sang Hoon Kang. 2020. Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices. Resources Policy 69: 101829. [Google Scholar] [CrossRef]
- Monge, Manuel, and Luis A. Gil-Alana. 2021. Lithium industry and the US crude oil prices. A Fractional Cointegration VAR and a Continuous Wavelet Transform analysis. Resources Policy 72: 102040. [Google Scholar] [CrossRef]
- Manuel, Monge, and Carlos Poza. 2021. Forecasting Spanish economic activity in times of COVID-19 by means of the RT-LEI and machine learning techniques. Working paper. Applied Economics Letters 1–6. [Google Scholar] [CrossRef]
- Nair, Vinod, and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In ICML. Available online: https://icml.cc/Conferences/2010/papers/432.pdf (accessed on 11 May 2022).
- Narayan, Paresh Kumar, Dinh Hoang Bach Phan, and Guangqiang Liu. 2020. COVID-19 lockdowns, stimulus packages, travel bans, and stock returns. Finance Research Letters 38: 101732. [Google Scholar] [CrossRef]
- Ng, Serena, and Pierre Perron. 2001. Lag length selection and the construction of unit root tests with good size and power. Econometrica 69: 1519–54. [Google Scholar] [CrossRef] [Green Version]
- Papadamou, Stephanos, Athanasios P. Fassas, Dimitris Kenourgios, and Dimitrios Dimitriou. 2020. Flight-to-quality between global stock and bond markets in the COVID era. Finance Research Letters 38: 101852. [Google Scholar] [CrossRef]
- Pedreira, Eduardo, and Canela Miguel-Angel. 2012. Modelling dependence in Latin American markets using copula functions. Journal of Emerging Market Finance 11: 231–70. [Google Scholar]
- Phillips, Peter C. B. 1987. Time series regression with a unit root. Econometrica 55: 277–301. [Google Scholar] [CrossRef]
- Phillips, Peter C. B. 1999. Discrete Fourier Transforms of Fractional Processes. Auckland: Department of Economics, University of Auckland. [Google Scholar]
- Phillips, Peter C. B. 2007. Unit root log periodogram regression. Journal of Econometrics 138: 104–24. [Google Scholar] [CrossRef] [Green Version]
- Phillips, Peter C. B., and Pierre Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–46. [Google Scholar] [CrossRef]
- Pindyck, Robert S. 2004. Volatility and commodity price dynamics. Journal of Futures Markets 24: 1029–47. [Google Scholar] [CrossRef] [Green Version]
- Radetzki, Marian. 2006. The anatomy of three commodity booms Resour. Policy 36: 56–64. [Google Scholar]
- Richard, Scott F., and Mahadevan Sundaresan. 1981. A continuous time equilibrium model of forward prices and futures prices in a multigood economy. Journal of Financial Economics 9: 347–71. [Google Scholar] [CrossRef]
- Robinson, Peter M. 1994. Efficient tests of nonstationary hypotheses. Journal of the American Statistical Association 89: 1420–37. [Google Scholar] [CrossRef]
- Robinson, Peter M. 1995a. Gaussian semi-parametric estimation of long range dependence. Annals of Statistics 23: 1630–61. [Google Scholar] [CrossRef]
- Robinson, Peter M. 1995b. Log periodogram regression of time series with long range dependence. Annals of Statistics 23: 1048–72. [Google Scholar] [CrossRef]
- Rumelhart, David E., George E. Hinton, and Ronald J. Williams. 1986. Learning representations by back-propagating errors. Nature 323: 533–36. [Google Scholar] [CrossRef]
- Salisu, Afees A., Godday U. Ebuh, and Nuruddeen Usman. 2020. Revisiting oil-stock nexus during COVID-19 pandemic: Some preliminary results. International Review of Economics & Finance 69: 280–94. [Google Scholar]
- Sanchez, Fernando, de Cos Juez, Francisco Javier, Ana Sánchez, Alicja Krzemień, and Pedro Fernández. 2015. Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resources Policy 45: 37–43. [Google Scholar] [CrossRef]
- Schiffling, Sarah, and Nikolaos Valantasis Kanellos. 2022. Five essential commodities that will be hit by war in Ukraine. The Conversation. Available online: https://researchonline.ljmu.ac.uk/id/eprint/16422/1/Five%20essential%20commodities%20that%20will%20be%20hit%20by%20war%20in%20Ukraine.pdf (accessed on 15 May 2022).
- Sharif, Arshian, Chaker Aloui, and Larisa Yarovaya. 2020. COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis 70: 101496. [Google Scholar] [CrossRef]
- Simpson, Patrick K., and Thomas M. Brotherton. 1995. Fuzzy neural network machine prognosis. In Applications of Fuzzy Logic Technology II. Orlando: International Society for Optics and Photonics, vol. 2493, pp. 21–27. [Google Scholar]
- So, Mike K. P., Amanda M. Y. Chu, and Thomas W. C. Chan. 2021. Impacts of the COVID-19 pandemic on financial market connectedness. Finance Research Letters 38: 101864. [Google Scholar]
- Sowell, Fallaw. 1992. Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics 53: 165–88. [Google Scholar] [CrossRef]
- Stein, Jerome L. 1961. The simultaneous determination of spot and future prices. American. Economic Review 51: 1012–25. [Google Scholar]
- Štifanić, Daniel, Jelena Musulin, Adrijana Miočević, Sandi Baressi Šegota, Roman Šubić, and Zlatan Car. 2020. Impact of COVID-19 on forecasting stock prices: An integration of stationary wavelet transform and bidirectional long short-term memory. Complexity 2020: 1846926. Available online: https://www.hindawi.com/journals/complexity/2020/1846926/ (accessed on 13 February 2022).
- Taud, Hind, and J. F. Mas. 2018. Multilayer Perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios. Lecture Notes in Geoinformation and Cartography. Edited by Maria Camacho Olmedo, Martin Paegelow, Jean Francois Mas and Francisco Escobar. Cham: Springer. [Google Scholar]
- Trippi, Robert R., and Efraim Turban. 1996. Neural Networks in Finance and Investing. Edición Revisada, 821. New York: McGraw Hill, Nueva York, Estados Unidos. [Google Scholar]
- Villada, Fernando, Edwin García, and Juan D. Molina. 2011. Pronóstico del precio de la energía eléctrica usando redes neuro-difusas. Revista Información Tecnológica 22: 111–20. [Google Scholar] [CrossRef]
- Villada, Fernando, Nicolás Muñoz, and Edwin García. 2012. Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores. Información Tecnológica 23: 11–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Dabin, and William G. Tomek. 2007. Commodity Prices and Unit Root Tests. American Journal of Agricultural Economics 89: 873–89. [Google Scholar] [CrossRef]
- World Bank Group. 2022. Commodity Markets Outlook: The Impact of the War in Ukraine on Commodity Markets, April 2022. License: Creative Commons Attribution CC BY 3.0 IGO. Washington, DC: World Bank. [Google Scholar]
- Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola. 2020. Dive into Deep Learning. arXiv arXiv:2106.11342. [Google Scholar]
Table 1: U.S. Recessions | ||
1st period | 1 March 2001 | 2 November 2001 |
2nd period | 2 December 2007 | 2 June 2009 |
Source: Federal Reserve Bank of St. Louis (https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/, (access date on 25 April 2021)) | ||
Pandemic, epidemic diseases | ||
3rd period | 2 November 2002 | 2 May 2004 |
4th period | 3 September 2012 | 2 April 2021 |
5th period | 2 December 2019 | 2 April 2021 |
Source: World Health Organization |
ADF | PP | KPSS | ||||||
---|---|---|---|---|---|---|---|---|
(i) | (ii) | (iii) | (ii) | (iii) | (ii) | (iii) | ||
Original Time Series | ||||||||
Bloomberg Spot Commodity Index | 0.6465 | −0.9047 | −2.1624 | −1.008 | −2.4171 | 5.1135 | 0.6113 | |
Bloomberg Commodity Index Total Return | −0.3105 | −1.7857 | −1.5164 | −1.8792 | −1.6839 | 2.3298 | 1.152 | |
U.S. Recession | ||||||||
1st period: Mar 2001–Nov 2001 | Bloomberg Spot Commodity Index | 0.1622 | −1.5137 | −1.5828 | −1.6433 | −1.7796 | 1.173 | 0.174 |
Bloomberg Commodity Index Total Return | 0.6386 | −1.1752 | −1.5234 | −1.2505 | −1.693 | 1.8694 | 0.1527 | |
2nd period: Dec 2007–Jun 2009 | Bloomberg Spot Commodity Index | 0.4289 | −1.4341 | −2.3161 | −1.4816 | −2.2696 | 2.0018 | 0.1071 |
Bloomberg Commodity Index Total Return | 0.0431 | −1.8668 | −1.5957 | −1.8815 | −1.5408 | 1.6018 | 0.2196 | |
Pandemic, Epidemic diseases | ||||||||
3rd period: Nov 2002–May 2004 | Bloomberg Spot Commodity Index | 2.2295 | 1.7157 | 0.1609 | 1.8232 | −0.0636 | 2.0347 | 0.3185 |
Bloomberg Commodity Index Total Return | 2.5927 | 1.3852 | −0.3832 | 1.4408 | −0.5891 | 2.5761 | 0.1875 | |
4th period: Sept 2012–Apr 2021 | Bloomberg Spot Commodity Index | −0.4646 | −1.9743 | −1.0244 | −1.9642 | −1.1442 | 0.6592 | 0.3453 |
Bloomberg Commodity Index Total Return | −2.1408 | −2.5472 | −1.3201 | −2.2194 | −1.3748 | 1.6664 | 0.3902 | |
5th period: Dec 2019–Apr 2021 | Bloomberg Spot Commodity Index | 0.6697 | −0.2363 | −2.9693 | −0.2337 | −1.6612 | 0.4816 | 0.152 |
Bloomberg Commodity Index Total Return | −0.0165 | −1.3443 | −2.8273 | −1.0219 | −1.4235 | 0.2797 | 0.1546 |
Original Time Series | ||||||
---|---|---|---|---|---|---|
Data Analyzed | ARFIMA Model | d | Std. Error | Interval | I(d) | |
Bloomberg Spot Commodity Index | ARFIMA (2, d, 2) | 0.618112 | 0.208399 | [0.28, 0.96] | I(d) | |
Bloomberg Commodity Index Total Return | ARFIMA (2, d, 2) | 0.7368393 | 0.1563650 | [0.48, 0.99] | I(d) | |
U.S. Recession periods | ||||||
Period | Data Analyzed | ARFIMA model | d | Std. Error | Interval | I(d) |
1st period: Jan 1991–Nov 2001 | Bloomberg Spot Commodity Index | ARFIMA (2, d, 2) | 1.2852611 | 0.1965197 | [0.96, 1.61] | I(1) |
Bloomberg Commodity Index Total Return | ARFIMA (1, d, 1) | 1.335611 | 0.161152 | [1.07, 1.60] | I(1) | |
2nd period: Dec 2007–Jun 2009 | Bloomberg Spot Commodity Index | ARFIMA (2, d, 2) | 0.08692761 | 0.31085366 | [−0.42, 0.60] | I(0) |
Bloomberg Commodity Index Total Return | ARFIMA (2, d, 2) | 0.2668279 | 0.3982462 | [−0.39, 0.92] | I(0) | |
Pandemic, Epidemic diseases | ||||||
3rd period: Nov 2002–May 2004 | Bloomberg Spot Commodity Index | ARFIMA (1, d, 1) | 1.283334 | 0.162049 | [1.02, 1.55] | I(1) |
Bloomberg Commodity Index Total Return | ARFIMA (1, d, 1) | 1.323594 | 0.151526 | [1.07, 1.57] | I(1) | |
4th period: Sept 2012–Apr 2021 | Bloomberg Spot Commodity Index | ARFIMA (0, d, 1) | 1.1489924 | 0.1374773 | [0.92, 1.38] | I(1) |
Bloomberg Commodity Index Total Return | ARFIMA (0, d, 1) | 1.126025 | 0.137913 | [0.90, 1.35] | I(1) | |
5th period: Dec 2019–Apr 2021 | Bloomberg Spot Commodity Index | ARFIMA (2, d, 1) | 0.5139049 | 0.4956813 | [−0.30, 1.33] | I(0), I(1) |
Bloomberg Commodity Index Total Return | ARFIMA (2, d, 1) | 0.5100576 | 0.5038849 | [−0.32, 1.34] | I(0), I(1) |
Bloomberg Spot Commodity Index | |
---|---|
Spot price of BSCI (3 February 2022) | 559.03$ |
Result obtained in our forecast | 530.11$ |
MSE of the ANN model | 0.0005 |
Deviation from spot price | 0.0517 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monge, M.; Lazcano, A. Commodity Prices after COVID-19: Persistence and Time Trends. Risks 2022, 10, 128. https://doi.org/10.3390/risks10060128
Monge M, Lazcano A. Commodity Prices after COVID-19: Persistence and Time Trends. Risks. 2022; 10(6):128. https://doi.org/10.3390/risks10060128
Chicago/Turabian StyleMonge, Manuel, and Ana Lazcano. 2022. "Commodity Prices after COVID-19: Persistence and Time Trends" Risks 10, no. 6: 128. https://doi.org/10.3390/risks10060128
APA StyleMonge, M., & Lazcano, A. (2022). Commodity Prices after COVID-19: Persistence and Time Trends. Risks, 10(6), 128. https://doi.org/10.3390/risks10060128