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Abstract: Since December 2019 we have been living with the virus known as SARS-CoV-2, a situation
which has led to health policies being given prevalence over economic ones and has caused a paralysis
in the demand for raw materials for several months due to the number confinements put in place
around the world. Since the worst days of the pandemic caused by COVID-19, most commodity
prices have been recovering. The main objective of this research work is to learn about the evolution
and impact of COVID-19 on the prices of raw materials in order to understand how it will affect
the behavior of the economy in the coming quarters. To this end, we use fractionally integrated
methods and an Artificial Neural Network (ANN) model. During the COVID-19 pandemic episode,
we observe that commodity prices have a mean reverting behavior, indicating that it will not be
necessary to take additional measures since the series will return, by themselves, to their long term
projections. Moreover, in our forecast using ANN algorithms, we observe that the Bloomberg Spot
Commodity Index will recover its upward trend, increasing some 56.67% to the price from before the
start of the COVID-19 pandemic episode.

Keywords: commodity prices; COVID-19; ARFIMA (p, d, q) model; machine learning

JEL Classification: C22; C45; E30; G10; G17; Q02

1. Introduction

The pandemic episode, caused by the SARS-CoV-2 virus, resulted in the paralysis of
the demand for raw materials over several months due to the confinements and lockdowns
that were imposed throughout the world, bringing about a collapse in prices.

Following the worst period of the COVID-19 pandemic, the demand for industrial
metals, along with the demand for other raw materials, is now recovering. Many economic
analysts (see Manuel and Poza 2021; Monge and Gil-Alana 2021; among others) assume
that a new cycle of economic growth will take place or, indeed, is already taking place,
supported by various stimuli from governments and the main central banks.

The new projects put in place, or which will be launched to reform infrastructures (the
Biden Administration in the United States, Recovery Funds in Europe, among others), will
mean an increase in the demand for raw materials, with markets entering a new bullish
cycle.

The beginning of the increase in the prices can already be seen in the various com-
modity markets. For example, the price of wood used for construction in the United States,
such as pine or fir, has undergone strong price growth due to the high demand for houses
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and the shortage in the supply of this raw material. The price increase in wood futures is
63.5% this year and stands at 450%, approximately, compared to the price trough in 2020.

The rapid increase in the prices of raw materials underlines the importance of deter-
mining the evolution of prices and of analyzing the impact of this increase in economies, as
well as the possible indirect effects deriving from it, such as the increase in the prices of
basic necessities passed on to the final consumer. To this end, a study of the persistence of
the current behavior of prices is required.

History has proven that market crises caused by the spread of disease often have a
short-term impact. Following the detection of SARS on 12 March 2003, the Bloomberg
Commodity Index fell 8% in the following two weeks, and it had fallen 4% by the time
SARS had been brought under control.

In 2020, the Bloomberg Commodity Index fell by 9% in the month after the coronavirus
was recognized by the WHO as a pandemic disease, dropping to 59.5 points in March 2020,
and eventually recovering to 86 points in February 2021, which is a 44.5% increase.

Although last year’s rebound could be seen as a V-shaped recovery period, between
January and April 2020, energy prices fell by nearly 60%, while metal and food prices fell
by 15 and 10%, respectively. Metal prices rebounded in response to shocks to supply and
a faster-than-expected recovery in China’s industrial activity, and food prices stabilized
as concerns about restrictive policy measures faded. Goldman Sachs anticipated a new
bull market in December 2020 because of the mismatch between supply and an expected
increase in demand, caused by the greater maritime movement of medical supplies and the
hope that vaccines against COVID-19 would return normality to the markets.

Due to the wide variety of assets included in the Bloomberg Commodity Index,
volatility is very low, so events in specific industries may be prevented from having a
significant impact.

According to (Erten and Ocampo 2013), the supercycles of raw materials are character-
ized by decade-long periods in which commodities are traded above their long-term price
trend. The history of these markets shows that these supercycles last 20 to 70 years between
peaks (Erdem and Ünalmış 2016). Some banks and market analysts are seeing signs of the
start of a new supercycle, caused by the weakening of the dollar and central banks, along
with the fiscal stimuli aimed at renewable energy and infrastructure spending.

The main objective of this article is to analyze the impact that the COVID-19 disease has
had on commodity prices, recorded in the Thomson Reuters Eikon Bloomberg Commodity
index, and to identify the possible appearance of a new commodity supercycle beginning
after the 2020 health crisis, while studying, for this purpose, the trend and persistence of
prices. To this end, various standard unit root tests and fractionally integrated methods
based on ARFIMA (p, d, q) models were used. In addition, the results were supported by
an Artificial Neural Network model using a Multilayer Perceptron (MLP) neural network
for time series prediction. We examine the time series properties of commodity prices, from
2 January 1991 to 2 April 2021, using monthly data.

One of the interesting results is that, while focusing on the COVID-19 pandemic
episode, we observe that both time series (the Bloomberg Spot Commodity Index and the
Bloomberg Commodity Index Total Return) have a mean reversion behavior, indicating
that it will not be necessary to take additional measures since the series will return, by
themselves, to their long-term projections, but given the very wide confidence intervals
(clearly due to the small sample sizes in some of the periods examined), we cannot reject
Hypothesis I(1), in which the effect of the shock persists indefinitely. Thus, we observe an
increase in the index price, from before the start of the COVID-19 pandemic episode, of
52.2%, using the Artificial Neural Network algorithm.

The rest of the paper is structured as follows. The next section briefly reviews the
literature on the commodity prices and their cycles. In the following two sections, the data
source and the methodology applied in the paper are detailed. Section 5 presents the main
empirical results, while the final section shows the main conclusions of this work.
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2. Literature Review
2.1. Commodity Prices

(Marshall 1890) describes the functioning of the commodity markets, how supply
and demand determine the price, with buyers and sellers as the main actors, and how the
market demand curve is determined by the consumer demand curves. When the supply
of the good is equal to the demand, this is called the equilibrium price; however, we are
dealing with a competitive market in which each economic agent considers that the price is
beyond their control.

In recent decades, the evolution of commodity prices has been the subject of a recurrent
debate. The growth of the world economy has also stimulated the growth of commodity
markets, while supply is less and less able to adapt to changes in demand, as access to
resources becomes more expensive. As supply becomes increasingly insensitive to demand,
a small change in this demand can lead to significant price changes.

Whether the spot or futures market is the focus of price discovery in commodity
markets has been widely discussed in the literature, with (Stein 1961) arguing that the spot
and futures prices of a commodity are determined simultaneously. (Garbade and Silber
1983) developed a model of simultaneous price dynamics, while (Cox et al. 1981), (Jarrow
and Oldfield 1981), and (Richard and Sundaresan 1981) argued that a futures contract can
be thought of as a series of one-day spot contracts, in which there is a profit or loss on each
day of a new contract.

(Pindyck 2004) studies how commodity markets tend to experience high levels of
volatility, which can affect the trading strategies adopted by investors. The volatility of
commodity prices has also been considerably higher since the beginning of the century.
Although droughts, floods, labor strikes, and export restrictions have influenced short-term
volatility, it would seem that a more structural supply problem can be observed, which
affects long-term volatility.

Until the end of 1990, for 10 years, the prices of raw materials increased until a peak in
2008, by which time they tripled the levels of 1998 (Jacks 2013). During that period, there
was a debate about the influence of roles of fundamentals, against speculation, that drove
prices to those highs.

Along these lines, (Erdem and Ünalmış 2016) write that, while the majority of raw
material prices had undergone a general downward trend from the 1960s to the early 2000s,
between 2002 and the peak before the 2007 crisis, prices tripled. In response to the crisis,
there was a drop in prices, with a recovery in 2011, followed by a further drop in 2015.
They also show that energy prices increased almost five times between 1998 and 2008.
Subsequently, prices fell in 2009 and 2010 in response to the global financial crisis, followed
by a rapid recovery in 2011 and 2012. However, prices then fell rapidly, and in 2015, they
barely reached half the price registered in 2012.

(Jacks and Stuermer 2020) write that, after the peak in 2008, prices went in the opposite
direction, losing approximately 50% of their value.

(Erten and Ocampo 2021) study how, in 2020, after the initial impact of the pandemic,
the gradual lifting of restrictions on mobility, as of the second quarter (Q2), and the
economic stimulus packages boosted the recovery of activity and, therefore, led to an
increase in the demand for raw materials—particularly those linked to the economic cycle—
raising the possibility that we are facing a new supercycle in raw materials. Figure 1 reveals
the impact suffered by raw materials throughout the first year of the pandemic.
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Figure 1. Percent change in commodity prices (1 January 2020–1 May 2021). Source: https://el-
-ments.visualcapitalist.com/visualizing-the-rise-in-commodity-prices/, (access date on 25 April
2021).

2.2. Supercycles

In the literature, supercycles are defined as movements with periods of between 20 and
70 years, while being the most important cycles in current economic dynamics, among the
Juglar, Kuznets, and Kondratiev cycles. (Jadevicius et al. 2010). (Juglar 1889) described the
presence of short cycles as lasting between 8 and 11 years. (Kondratiev 1925) formulated,
for the first time, the basic principles of the theory of supercycles, which reflect large
variations in the prices of raw materials, industrial production, and foreign trade in periods
of 40 to 60 years.

(Kuznets 1940) presents long-term cycles of 25 years, coinciding with the life cycles of
innovations, which follow a cycle of medium duration.

(Radetzki 2006) identifies three booms in commodities. Based on the analysis of these
booms, there is the first one in the early 1950s, then one in 1970, and, subsequently, in
2003. In 2012, (Cuddington and Zellou 2012) conducted research on supercycles in other
commodities, while (Erten and Ocampo 2013) identified the magnitude and duration
of supercycles in commodity prices, attributing to both the strong global growth of the
economies and the last supercycle.

https://el--ments.visualcapitalist.com/visualizing-the-rise-in-commodity-prices/
https://el--ments.visualcapitalist.com/visualizing-the-rise-in-commodity-prices/
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(Pedreira and Miguel-Angel 2012) explain that not all raw materials show a similar
evolution in terms of supercycles, while energy products, with oil and metals as protago-
nists, represent the groups with the highest growth of prices from a long-time perspective.
Meanwhile, primary industrial and food products show a marked decline. This divergence
can be explained by the momentum in the price of energy and metals in the last 20 years
due to global growth, driven by an intense use of raw materials linked to energy, metals,
and their derivatives, by emerging countries in the early 1990s.

(Jacks 2013) conducted an investigation that aimed to gain an understanding of the
long and medium-term trend in raw material prices, concluding that raw material prices
have been increasing since 1950.

Since the beginning of the 21st century, the rise in the prices of most raw materials has
been considerable; however, it must be borne in mind that, between the mid and late 1990s,
these types of products fell to their lowest price levels in decades, including historical lows
in some cases.

The studies identify the presence of long and short duration cycles, caused by the
dynamics of supply and demand in the markets, while being highly influenced by the
accelerations in economic growth that have occurred throughout history.

The ascents of the supercycles are characterized by being prolonged, although they
may suffer a short recession. The recessions appear to be prolonged with weak and
short recoveries, which can cause severe depressions, such as those that occurred after
the years 1929 or 2008. An explanation for these cycles encompasses various factors,
including development and innovations, exploitation of resources, technical modifications,
or fluctuations in production.

2.3. Supercycle Analysis Methods

A major topic of discussion in applied economics is the long-term behavior of real
commodity prices, especially if these series have a stationary trend or contain a unit root.

(Deaton and Laroque 1995) explained that, because storage cannot be negative, com-
modity prices are inherently non-linear.

In 1999, (Barkoulas et al. 1999) tried to provide evidence of long memory for the prices
of commodity futures contracts that were traded on major U.S. exchanges. They compare it
with the presence of fractional dynamics, in futures prices, for varieties of major foreign
currencies and U.S. stock indices. They use fractional models investigated by (Mandelbrot
1977; Granger and Joyeux 1980; Hosking 1981; as well as Geweke and Porter-Hudak 1983).
From a single parameter, known as the fractional differentiation parameter, the long-term
dependence of these models is captured. The spectral regression method suggested by
(Geweke and Porter-Hudak 1983) was used to carry out the tests.

(Lien and Tse 1999) examine, in their article, the performance of various hedge indices,
using futures data from the NSA, along with the ARFIMA-GARCH approach, the EC model,
and the VAR model. This analysis identifies the prevalence of a fractional cointegration
relationship.

Using cointegration methodologies, (Kellard et al. 1999) developed a measure of
relative efficiency for the presentation of fairness and efficiency tests in a variety of futures,
financial, and raw materials markets. Their findings suggest that spot and futures prices
are cointegrated with a slope coefficient, which is close to unity. This suggests that there
are market inefficiencies in the sense that traders can use past information to predict spot
price movements.

(Holt and Craig 2006) write about how that discrepancies between supply and demand
for raw materials originate from non-linearities in prices, while Wang and Tomek (2007)
argue that the primary terms of trade are better characterized by a stationary trend process.
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There is a lack of studies on the non-linearities of the terms of trade, despite the fact
that the real prices of the main categories of raw materials reflect periodic sharp spikes,
followed by prolonged declines.

(Kilian 2009) used autoregressive models to decompose changes in oil prices, from
which an extensive academic literature on oil prices since the 1970s has developed.

The study carried out by (Coakley et al. 2011) explores the impact of the time series
properties of the spot futures basis and the cost of forward market bias carry-over. The
main result is the existence of a robust long memory, even for the break-adjusted data,
which implies that the cost-of-carry has a long memory and is something that the empirical
results confirm using the interest cost as a proxy. These results suggest that forecast error
has a long memory and is inconsistent with bias.

(Erten and Ocampo 2013) used the asymmetric Band–Pass Filter (BP) method of
(Christiano and Fitzgerald 2003) for the identification of cycles in the different commodity
price indices. The BP filter allows a time series to be broken down into different frequency
components, which then identify the cycles at different commodity prices.

Using fractional integration techniques, (Gil-Alana et al. 2012) investigated the degree
of persistence of various weekly and monthly agricultural prices. They saw that, when a
structural break was taken into account, they found that, during the first subsamples, the
series were stationary, although very persistent, with large autoregressive coefficients and
with integration orders close to zero.

(Clavijo-Cortes et al. 2020) investigated whether a unit root process and nonlinearities
can characterize the real prices of raw materials for six main primary goods by using a
threshold autoregressive model of two regimes, without constraints, with an autoregressive
unit root. They concluded that the terms of trade of non-energy raw materials are non-linear
processes characterized by a unit root process.

2.4. The Economic Impact of COVID-19

The confinements imposed after the onset of the SARS-COV-2 virus pandemic resulted
in the cessation of a large part of commercial activity, causing important changes in the
economic situations of all countries. Thus, (So et al. 2021) studied the impact of the
pandemic on financial market connectivity in Hong Kong, comparing its impact with crises
from the previous 15 years. (Narayan et al. 2020) focused on the analysis of the government
responses of the G7 countries, to the COVID-19 pandemic, on stock market returns and
how governments tried to minimize the economic repercussions of the pandemic.

In addition to the consequences derived from the lockdowns, it is necessary to analyze
the behavior of consumers during the pandemic. (Goolsbee and Syverson 2020) examined
the drivers of the economic slowdown, concluding that the legal closure orders only
represent a part of the massive changes in behavior.

In the agricultural field, (Ceballos et al. 2020) analyzed, from telephone surveys, the
interruptions in agricultural production and food security due to COVID-19, thus analyzing
the impact of the measures adopted in agriculture and farms, which remained reflected in
the increase in derived products.

The literature about the economic consequences of the pandemic has been growing
continually. The effects of the restrictions have been evident in many sectors, especially in
the world financial markets, which were affected from the outset of the pandemic and also
by a decrease in the efficiency of the markets during the outbreak, thus exerting an even
greater effect on the Australian dollar (Aslam et al. 2020). This explains the increasing risk
aversion on the part of investors in developed and emerging equity markets, especially
during the pandemic (Fassas 2020), while (Just and Echaust 2020) examined the structural
breaks in the returns of the stock market, focusing on three financial market indicators:
expectations of volatility, correlation, and lack of liquidity during the COVID-19 crisis.
Along the same lines, (Papadamou et al. 2020) investigated the impact of the pandemic
on the time-varying correlation between stock and bond returns by using a panel data
specification and wavelet analysis. Other studies focus on the analysis of the impact of
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the health crisis on cryptocurrencies, such as the one carried out by (James et al. 2021),
in which they present new methods for the analysis of behavior in the dynamics of the
cryptocurrency market types of currencies by studying 51 cryptocurrencies.

Much of the research focuses on how the health crisis and lockdowns have affected
commodity prices, as many commodity and financial markets experienced a decline in
performance during the pandemic, thus requiring the effects of the lockdown and the
pandemic on the connection of markets to be examined (Adekoya and Oliyide 2020).
Some of this research focuses, particularly, on the impact on oil prices, such as (Corbet
et al. 2020), who prove the existence of indirect effects of volatility among energy-focused
corporations during the COVID-19 outbreak, or (Akhtaruzzaman et al. 2020), who, in their
study, show that oil-supplying industries benefit from positive shocks to oil price risk in
general, while oil-using and financial industries react negatively. (Salisu et al. 2020) provide
some preliminary estimates on the behavior of the oil stock nexus during the pandemic,
in their study to analyze the response of oil and stocks to shocks, as reflected in the graph
in Figure 2. In this graph, the evolution of the price of oil throughout the pandemic can
be seen, the recessions in the United States are shaded, coinciding with an immediate
drop in prices. The research carried out by (Sharif et al. 2020) focuses on the analysis of
the connection between the recent spread of the COVID-19 virus, the shock of oil price
volatility, the stock market, geopolitical risk, and the uncertainty of economic policy in the
US.
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For a complete analysis of the economic situation resulting from the health crisis, it is
necessary to determine the impact of COVID-19 on gold and oil prices based on upward
and downward trends. (Mensi et al. 2020), in their study, conclude that gold and oil have
become more inefficient during the pandemic outbreak compared to the pre-COVID-19
period. Following this line, (Akhtaruzzaman et al. 2021b) investigate the role of gold as a
hedging or safe haven asset in different phases of the pandemic.

All these studies show that there has been a significant financial contagion effect be-
tween China and its main trading partners during COVID-19 (Banerjee 2021). Research that
coincides with that carried out by (Akhtaruzzaman et al. 2021a), in which they examine how
this contagion occurs between China and the G7 countries, shows, as a result, that publicly
traded companies in these countries experience a significant increase in the conditional
correlations between their stock returns.

2.5. Multilayer Neural Networks in Commodity Forecasting

Having the ability to forecast the trend or price of stocks is one of the main goals of
investors in the markets. Given the non-linear behavior of this type of economic variable
since the 1990s, and thanks to the increase in the computing capacity of Artificial Neural
Networks (ANN), new methods with great capacities for data processing have been pro-
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posed, achieving the creation of predictive models with greater precision than traditional
statistical techniques (Villada et al. 2012).

The main characteristic of the ANNs—allowing the establishment of linear and non-
linear relationships between the inputs and outputs of an algorithm—has proved useful
in its application in high volatility markets, whose variables obey non-linear behavior in
various areas of engineering, as well as in the electricity markets (García et al. 2008; Villada
et al. 2011). One of the earliest extant reviews that successfully looked at a broad set of the
applications of neural networks in finance is presented in (Trippi and Turban 1996). (Li and
Ma 2010) present an updated review of these applications of predictions in stock markets,
derivatives, foreign exchange, and financial crises.

(Haidar et al. 2008) presented a short-term forecasting model for crude oil prices based
on a three-layer forward neural network. By testing various features as inputs, such as
crude oil futures prices, the dollar index, gold spot price, and heating oil spot price, they
showed that, with a suitable network design and an appropriate selection of training inputs,
ANNs are capable of forecasting noisy time series with high accuracy.

A multilayer feedforward neural network was used by (Kulkarni and Haidar 2009)
for the prediction of short-term oil price values, up to three days in advance, obtaining
accuracy levels between 60% and 78%. In this study, special attention was paid to finding
the optimal structure of the ANN model by testing various data preprocessing methods.

A review of 100 scientific publications dedicated to price forecasting in stock markets
from different parts of the world, using neural networks and neuro-fuzzy networks, is
presented by (Atsalakis and Valavanis 2009). All these works demonstrate the superiority
of these intelligent computing techniques, with respect to conventional models, as far as
better forecast accuracy is concerned.

(El-Henawy et al. 2010) also applied Neural Networks of the Multi Layer Perceptron
(MLP) type to the prediction of stock market indices. From these reviews, the superiority in
the performance of neural networks, with respect to econometric methods and other linear
models, is highlighted.

The study by (Chen and Tanuwijaya 2011) compared the performance of models based
on time series and fuzzy logic, with an algorithm also based on time series, but modifying
the inputs for the variation in price and the sign of the trend. In its application to the Taiwan
stock market index, it was found that the proposed model outperformed the forecast with
AR, ARMA, and fuzzy logic models, in most cases.

(Sanchez et al. 2015) confirmed the superiority of neural networks over ARIMA models
in predicting copper spot prices on the New York Commodity Exchange (COMEX), with
ANNs showing better performance over the ARIMA model, along the same lines of some
of the previous studies.

3. Data and Methodology
3.1. Dataset

In this paper, we used the Bloomberg Spot Commodity Index and the Bloomberg
Commodity Index Total Return, in monthly frequency, to carry out our analysis from 2
January 1991 to 2 April 2021. The data were obtained from the Thomson Reuters Eikon
Database and are shown in Figure 3. Both indices represent certain commodities related to
energy, livestock, softs, industrial metals, precious metals, and grains.
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Figure 3. Bloomberg Commodity Index.

To take into account the various U.S. recessions, we have used the dates provided by
the Federal Reserve Bank of St. Louis1.

We have also considered other disease outbreaks, such as Severe Acute Respiratory
Syndrome (SARS), which, according to the WHO, began in November 2002 and ended in
May 20042, Middle East Respiratory Syndrome (MERS), which began in September 2012
and is still currently active, and finally, we analyze COVID-19. To consider the coronavirus
crisis (10th recession period), we have taken the start date indicated by (Hui et al. 2020) and
the World Health Organization (WHO) and used figures up to the current available data.

The dates that we have used for our analysis are detailed in the following Table 1:

Table 1. Periods analyzed.

Table 1: U.S. Recessions

1st period 1 March 2001 2 November 2001

2nd period 2 December 2007 2 June 2009

Source: Federal Reserve Bank of St. Louis
(https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/,

(access date on 25 April 2021))

Pandemic, epidemic diseases

3rd period 2 November 2002 2 May 2004

4th period 3 September 2012 2 April 2021

5th period 2 December 2019 2 April 2021

Source: World Health Organization

https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/
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3.2. Unit Roots

Augmented Dickey Fuller (ADF) test, based on (Fuller 1976 and Dickey and Fuller
1979), has been used to know the stationarity of the data analyzed in this paper. Addition-
ally, a non-parametric estimate of the spectral density of ut at the zero-frequency, based
on (Phillips 1987 and Phillips and Perron 1988), and deterministic trend estimates, based
on (Kwiatkowski et al. 1992; Elliott et al. 1996, and Ng and Perron 2001), have been used
because they have a greater power of estimation.

3.3. ARFIMA (p, d, q) Model

To carry out this research and due to the lower power of unit root tests (see Diebold
and Rudebush 1991; Hassler and Wolters 1994; and Lee and Schmidt 1996), we also employ
fractionally integrated methods with the purpose of getting the time series to be stationary.
We achieve this objective (I(0)) by differentiating the time series with a fractional number.

Using a mathematical notation, a time series xt, t = 1, 2, . . . follows an integrated
order process d (and is denoted as xt ≈ I(d)) if:

(1− L)dxt = ut, t = 1, 2, . . . , (1)

where d refers to any real value, L indicates to the lag-operator (Lxt = xt−1), and ut is
a covariance stationary process I(0), where the behavior of the spectral density function
shows, in the weak form, a type of time dependence where the function is positive and
finite at the zero frequency.

It is said that xt is ARFIMA (p, d, q) when ut is ARMA (p, q). Thus, depending on the
value of the parameter d on (1), the reading of the results can be: xt is anti-persistent if d
< 0 (see Dittmann and Granger 2002); when d = 0 in (1), we say that the process is short
memory I(0); with a high degree of association over a long time, we say that the process is
long memory (d > 0); d < 1 means that the shock is transitory, and the series reverts to the
mean; finally, when d ≥ 1, we expect that the shocks will be permanent.

We follow the methodology proposed by (Sowell 1992) instead of others (see Geweke
and Porter-Hudak 1983; Phillips 1999, 2007; Sowell 1992; Robinson 1994, 1995a, 1995b;
etc.), and to select the most appropriate ARFIMA model, we use the Akaike information
criterion (AIC) (Akaike 1973) and the Bayesian information criterion (BIC) (Akaike 1979).

3.4. Forecasting with Artificial Neural Networks

A neural network is characterized by the fact that its neurons are grouped in layers by
levels, and there are three types of layers: input, hidden, and output (Zhang et al. 2020). In
each layer, we have to consider the number of neurons, the training algorithm parameters,
and the performance measure.

(Rumelhart et al. 1986), described that, in the input layer, there are neurons that are
only responsible for receiving signals from outside, and they propagate this data to all
neurons in the next layer, while the last layer acts as output, providing an output response
for each input. Neurons in hidden layers perform non-linear processing of received inputs.

According to (Güler and Übeyli 2005), there is no general rule for finding the optimal
number of hidden layers, and the most popular approach is trial and error.

The architecture of the neural network can be generalized as follows:

I − (H1, H2, H3, . . . , HN)−O

where I represents the number of input nodes, Hn the number of neurons in the hidden
layer n, and O the number of neurons in the output layer.
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(Fu 1994) wrote about how the neurons of one layer are connected with the neurons
of the next layer. These connections are assigned a weight, which is calculated from the
comparison between the result obtained in the output layer and the expected real result.
This error propagates backwards and allows the weights to be adjusted during the training
process. To control this process, a second group of data will be used, from which the
model will be evaluated. The most widely used criterion is to reduce the mean square error
between the result obtained and the expected real value.

According to Figure 4, Yj represents the input vector denoted by Yj = {y1, y2, y3, . . . , yn};
the connection weight vector of the j nodes of the input layer to the k nodes of the hid-
den layer is represented by Wjk(j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , m); the vector of the
k neurons in the hidden layer is the Xk(k = 1, 2, 3, . . . , m), determined by the formula
Xk = f (∑n

j=1 WjkYj + Θk); the connection weights of the k nodes of the hidden layer
to the output layer is represented by Wk(k = 1, 2, 3, . . . , m); the unit output vector for
the neural network with one output neuron is Y which is determined by the formula
Y = f (∑n

k=1 WkXk + Θ). Finally, Θk(k = 1, 2, 3, . . . , k) is the bias value of the hidden
layer nodes, and Θ is the bias value of the output layer.
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The application of artificial neural networks covers the prediction of problems in
different areas of knowledge, such as biology, medicine, economics, etc. (Arbib 1995;
Simpson and Brotherton 1995; Arbib et al. 1997), thereby obtaining excellent results, with
respect to classical statistical models (de Lillo and Meraviglia 1998; Arana et al. 2003).
The parallel processing capability allows neural networks to learn relationships between
variables without the imposition of assumptions or constraints.

(Hinton and Salakhutdinov 2006) began to develop deep learning by showing that
it was possible to train neural networks by properly initializing the weights in networks
with a large number of deep layers, rather than with random values. This process began
by training each of the layers in an unsupervised manner, and then, it continued with
supervised training, using the resulting weights of the pre-trained layers as initial values.

(Glorot and Bengio 2010) proposed an efficient weight initialization scheme, commonly
known as Xabier Initialization, with the ability to initialize weights without the need for
unsupervised training. This has become the deep learning standard, and it has also
demonstrated a great impact on training and improving accuracy with the choice of a
nonlinear activation function. This led to a new line of research focused on finding adequate
activation functions and, as a result, identified the Rectified Linear Unit (ReLU) (Jarrett
et al. 2009; Nair and Hinton 2010; Glorot et al. 2011).
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The data described in Section 3.1 are divided into a training set, consisting of 80% of
the recorded data, and a test set (20%). This latter group will be used for model validation:
checking that the result obtained is the expected one. This division is made following the
study carried out by (Gholamy et al. 2018), in which they show that the best results are
obtained using an 80–20 division, thus avoiding an overfitting of the network due to a lack
of training data.

The forecasts obtained with the neural network are compared using the multiple
regression technique. The predictive capacity for both methods is evaluated using the
Mean Squared Error (MSE) and Root Mean Square Error (RSME) error measurement
techniques.

4. Empirical Results

We have calculated the three standard unit roots tests to analyze the statistical proper-
ties of the commodity market.

Table 2 displays the results, which suggest that the original data are stationary I(1).

Table 2. Unit root tests.

ADF PP KPSS

(i) (ii) (iii) (ii) (iii) (ii) (iii)

Original Time Series

Bloomberg Spot Commodity Index 0.6465 −0.9047 −2.1624 −1.008 −2.4171 5.1135 0.6113
Bloomberg Commodity Index Total Return −0.3105 −1.7857 −1.5164 −1.8792 −1.6839 2.3298 1.152

U.S. Recession

1st period: Mar
2001–Nov 2001

Bloomberg Spot Commodity Index 0.1622 −1.5137 −1.5828 −1.6433 −1.7796 1.173 0.174
Bloomberg Commodity Index Total

Return 0.6386 −1.1752 −1.5234 −1.2505 −1.693 1.8694 0.1527

2nd period: Dec
2007–Jun 2009

Bloomberg Spot Commodity Index 0.4289 −1.4341 −2.3161 −1.4816 −2.2696 2.0018 0.1071
Bloomberg Commodity Index Total

Return 0.0431 −1.8668 −1.5957 −1.8815 −1.5408 1.6018 0.2196

Pandemic, Epidemic diseases

3rd period: Nov
2002–May 2004

Bloomberg Spot Commodity Index 2.2295 1.7157 0.1609 1.8232 −0.0636 2.0347 0.3185
Bloomberg Commodity Index Total

Return 2.5927 1.3852 −0.3832 1.4408 −0.5891 2.5761 0.1875

4th period: Sept
2012–Apr 2021

Bloomberg Spot Commodity Index −0.4646 −1.9743 −1.0244 −1.9642 −1.1442 0.6592 0.3453
Bloomberg Commodity Index Total

Return −2.1408 −2.5472 −1.3201 −2.2194 −1.3748 1.6664 0.3902

5th period: Dec
2019–Apr 2021

Bloomberg Spot Commodity Index 0.6697 −0.2363 −2.9693 −0.2337 −1.6612 0.4816 0.152
Bloomberg Commodity Index Total

Return −0.0165 −1.3443 −2.8273 −1.0219 −1.4235 0.2797 0.1546

(i) Refers to the model with no deterministic components; (ii) with an intercept; (iii) with a linear time trend. I
reflect t-statistic with test critical value at 5%.

Using unit root methods in the time series, we conclude that we have to use the first
differences, as we have verified that the data is non-stationary I(1). However, we use
fractional alternatives, such as ARFIMA (p, d, q) models, due to the low power of the unit
root methods, to study the persistence of the time series related to commodity spot prices.

To get the appropriate AR and MA orders in the model, we consider the Akaike
information criterion (AIC; Akaike 1973) and the Bayesian information criterion (BIC;
Akaike 1979)3.

For each time series, we show, in Table 3, the fractional parameter d and the AR and
MA orders obtained using (Sowell 1992) maximum likelihood estimator and taking into
consideration p, q ≤ 2.
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Table 3. Results of long memory tests.

Original Time Series

Data Analyzed ARFIMA Model d Std. Error Interval I(d)

Bloomberg Spot
Commodity Index ARFIMA (2, d, 2) 0.618112 0.208399 [0.28, 0.96] I(d)

Bloomberg
Commodity Index

Total Return
ARFIMA (2, d, 2) 0.7368393 0.1563650 [0.48, 0.99] I(d)

U.S. Recession periods

Period Data Analyzed ARFIMA model d Std. Error Interval I(d)

1st period: Jan
1991–Nov 2001

Bloomberg Spot
Commodity Index ARFIMA (2, d, 2) 1.2852611 0.1965197 [0.96, 1.61] I(1)

Bloomberg Commodity
Index Total Return ARFIMA (1, d, 1) 1.335611 0.161152 [1.07, 1.60] I(1)

2nd period: Dec
2007–Jun 2009

Bloomberg Spot
Commodity Index ARFIMA (2, d, 2) 0.08692761 0.31085366 [−0.42, 0.60] I(0)

Bloomberg Commodity
Index Total Return ARFIMA (2, d, 2) 0.2668279 0.3982462 [−0.39, 0.92] I(0)

Pandemic, Epidemic diseases

3rd period: Nov
2002–May 2004

Bloomberg Spot
Commodity Index ARFIMA (1, d, 1) 1.283334 0.162049 [1.02, 1.55] I(1)

Bloomberg Commodity
Index Total Return ARFIMA (1, d, 1) 1.323594 0.151526 [1.07, 1.57] I(1)

4th period: Sept
2012–Apr 2021

Bloomberg Spot
Commodity Index ARFIMA (0, d, 1) 1.1489924 0.1374773 [0.92, 1.38] I(1)

Bloomberg Commodity
Index Total Return ARFIMA (0, d, 1) 1.126025 0.137913 [0.90, 1.35] I(1)

5th period: Dec
2019–Apr 2021

Bloomberg Spot
Commodity Index ARFIMA (2, d, 1) 0.5139049 0.4956813 [−0.30, 1.33] I(0), I(1)

Bloomberg Commodity
Index Total Return ARFIMA (2, d, 1) 0.5100576 0.5038849 [−0.32, 1.34] I(0), I(1)

We observe, from Table 2, that the Bloomberg Spot Commodity Index and Bloomberg
Commodity Index Total Return have the same behavior. We also observe that the I(0)
hypothesis cannot be rejected in the cases of the first recession in the United States and
the SARS and MERS epidemic episodes, while for the second recession, this hypothesis is
rejected in favor of a lower degree of integration.

Focusing on the COVID-19 pandemic episode, we observe that both time series have a
mean reversion behavior, indicating that it will not be necessary to take additional measures
since the series will return, by themselves, to their long term projections, but according
to the confidence interval, we cannot reject Hypothesis I(1) where the effect of a shock
persists indefinitely, due to the confidence intervals being very wide (clearly due to the
small sample sizes in some of the periods examined).

Based on the results obtained up to this point, and in order to lend more accuracy
and rigor to this study, we have also used advanced computational intelligence tech-
niques, based on machine learning, to forecast the Bloomberg Commodity Indices listed
previously.
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We have used a Multi Layer Perceptron (MLP) neural network for time series pre-
diction. This methodology presents interesting features, such as its nonlinearity or the
lack of an underlying model (non-parametric model), to obtain the results. The MLP
neural network is one of the most widely implemented neural networks based on the
back-propagation rule where the errors are propagated through the network and allow the
adaption of the hidden processing elements. In addition, the MLP has massive intercon-
nectivity, which means that any element of a given layer feeds all the elements of the next
layer, and it is trained with error correction learning.

To find out what the most accurate prediction model is and following (Mapuwei et al.
2020), we have used the Mean Squared Error (MSE) and Root Mean Square Error (RSME), as
these are the evaluation methods used most in prediction methods with Machine Learning
(see Barrow and Crone 2016; Coulombe et al. 2020). The mean square error (MSE) is, by far,
the most used cost function in regression problems. For a given observation ii, the squared
error is calculated as the squared difference between the predicted value yˆyˆ and the actual
value yy.

l(i)(w,b) = (yˆ(i) − y(i))2

The mean absolute error (MAE) consists of averaging the absolute error of the predic-
tions.

L(w, b) =
1
n ∑n

i=1|ŷ(i)− y(i) | (2)

The mean absolute error is more robust against outliers than the mean square error.
This means that model training is less influenced by outliers in the training set (Taud and
Mas 2018).

In Table 4, we present the results and the accuracy of the BSCI time series using an
Artificial Neural Network (ANN) model until February 2022, due to the war between
Russia and Ukraine. The results obtained are in line with the literature, which states that
the most prominent machine learning technique used in time series forecasting is the
Artificial Neural Networks, which obtains values very close to zero, indicating that this is
the best model with which to predict the time series under examination.

Table 4. Forecast results and accuracies of the time series of commodity prices, after a structural
break, using the ANN model.

Bloomberg Spot Commodity Index

Spot price of BSCI (3 February 2022) 559.03$
Result obtained in our forecast 530.11$

MSE of the ANN model 0.0005
Deviation from spot price 0.0517

We observe, from the results in Table 4, that the neural network model has an error
rate (MSE) of 0.0005. On the other hand, the deviation from the spot price of the BSCI is
0.0517 (5.17%).

Finally, to corroborate the behavior of commodity prices (based on the fractional d
parameter), following COVID-19, we have plotted the prices in Figure 5. In the charts,
the black line represents the original time series, and the prediction in the next 10 periods
(months) are represented in blue.
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In our estimation, we assess the impact of SARS-CoV-2 on the Bloomberg Spot Com-
modity Index and its behavior in the next 10 months. These results are in line with the
literature and other forecasts (see Štifanić et al. 2020; Kamdem et al. 2020; among others).
According to our estimates, the Bloomberg Spot Commodity Index will recover its upward
trend, rising from $338.37 in December 2019 to a price of $530.11 in February 2022, with the
price increasing by 56.67% from before the start of the COVID-19 pandemic episode.

5. Concluding Comments

This research paper is relevant due to the paralysis, for several months, of the demand
for raw materials, caused by SARS-CoV-2 and the ensuing lockdowns that were imposed
throughout the world, which resulted in a collapse in prices. After the worst of the
pandemic, the demand for industrial metals and other raw materials is recovering, spurred
on by a new economic cycle and the new projects put in place already, or that are in the
pipeline, for reforming infrastructures (Biden Administration in the United States, Recovery
Funds in Europe, among others).

The main objective of this research work is to find out what impact COVID-19 has
had on the prices of raw materials recorded in the Bloomberg Commodity Index from
Thomson Reuters Eikon, observing how these alterations can influence the behavior of
the economy in the coming quarters, and identifying the possible appearance of a new
commodities supercycle in the wake of the 2020 health crisis. To this end, we analyze the
statistical properties of these time series, measuring the degree of persistence, by using
fractional integration techniques, to examine whether the impact of COVID-19 on the
commodity prices is temporary or permanent. Moreover, the results have been supported
by an Artificial Neural Network through the use of a Multilayer Perceptron (MLP) neural
network for time series prediction. We examine the Bloomberg Spot Commodity Index and
the Bloomberg Commodity Index Total Return, from 2 January 1991 to 2 April 2021, using
monthly data.

Our first focus has been to analyze the statistical properties of these time series using
several unit root methods, including ADF (Dickey and Fuller 1979), PP (Phillips and Perron
1988), and KPSS (Kwiatkowski et al. 1992). We get the results that the series are non-
stationary I(1). Therefore, we have to calculate the first differences to make this time series
stationary I(0).

We also used techniques based on fractional integration to know the degree of de-
pendence of the series and to determine if the impact of COVID-19 on the commodity
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prices is temporary or permanent. We observe that both of the analyzed time series (the
Bloomberg Spot Commodity Index and the Bloomberg Commodity Index Total Return)
have the same behavior, observing that the I(0) Hypothesis cannot be rejected in the cases
of the first recession in the United States or the SARS or MERS epidemic episodes, while
for the second recession, this hypothesis is rejected in favor of a lower degree of integration.
On the other hand, focusing on the COVID-19 episode, we observe that both time series
have a mean reversion behavior, allowing us to speculate about the impact of SARS-CoV-2
on the Bloomberg Spot Commodity Index and its behavior in the next 12 months. These
results are in line with the literature and other forecasts (see Štifanić et al. 2020; Kamdem
et al. 2020; among others), and they are results by which it can be concluded that it is a
temporary shock and, as such, it will not be necessary to implement additional measures,
since the forecast is that the series will stabilize, returning to their long-term projections.

Finally, to corroborate the behavior of commodity prices (based on the fractional d
parameter) after COVID-19, we use an Artificial Neural Networks (ANN) algorithm. In our
forecast, we observe that the Bloomberg Spot Commodity Index will recover its upward
trend; a price of $338.37 in December 2019, rose to a price of $530.11 in February 2022, with
the price increasing by 56.67% since before the start of the COVID-19 pandemic episode.
These results are, more or less, in line with the forecast presented in the research papers of
the (Štifanić et al. 2020; Kamdem et al. 2020; among others).

A future line of research will be the verification of the results obtained by applying
a Long Short Term Memory (LSTM) neural network (Hochreiter and Schmidhuber 1997),
which is a type of RNN. The main characteristic of this type of network is that the infor-
mation can persist by introducing loops in the network diagram, so it will have the ability
to remember previous states, use this information to decide which one will be next, and
contrast these results with those obtained by the Support Vector Machine (SVM) algorithm,
which allows the upper limit of the generalization error of the model to be minimized and
the estimation of its parameters to be equivalent to the solution of a quadratic programming
model with linear restrictions.

The recent war with Ukraine threatens further disruption of supply chains, as Russia
and Ukraine are essential suppliers of raw materials and energy. Thus, the impact of this
conflict is spreading to the world economy (Schiffling and Kanellos 2022). The study carried
out by (Mbah and Wasum 2022) analyzes the economic impact of the 2022 Russia–Ukraine
war on the global economy (World Bank Group 2022). Both studies reflect the increase in
the price of raw materials, observed in the second quarter of 2022, after the start of the war,
which opens an interesting new line of research that reflects the differences between the
predictions prior to the conflict and the results of the conflict.
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Notes
1 https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/ (access date 25 April 2021).
2 https://www.who.int/csr/don/2004_05_18a/en/ (access date on 25 April 2021).
3 A point of caution should be adopted here since the AIC and BIC may not necessarily be the best criteria for applications involving

fractional models (Hosking 1981).
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