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Abstract: This study addresses the critical challenge of predicting liquidity risk in the banking sector,
as emphasized by the Basel Committee on Banking Supervision. Liquidity risk serves as a key metric
for evaluating a bank’s short-term resilience to liquidity shocks. Despite limited prior research,
particularly in anticipating upcoming positions of bank liquidity risk, especially in Iranian banks
with high liquidity risk, this study aimed to develop an AI-based model to predict the liquidity
coverage ratio (LCR) under Basel III reforms, focusing on its direction (up, down, stable) rather than
on exact values, thus distinguishing itself from previous studies. The research objectively explores
the influence of external signals, particularly news sentiment, on liquidity prediction, through
novel data augmentation, supported by empirical research, as qualitative factors to build a model
predicting LCR positions using AI techniques such as deep and convolutional neural networks.
Focused on a semi-private Islamic bank in Iran incorporating 4,288,829 Persian economic news
articles from 2004 to 2020, this study compared various AI algorithms. It revealed that real-time news
content offers valuable insights into impending changes in LCR, particularly in Islamic banks with
elevated liquidity risks, achieving a predictive accuracy of 88.6%. This discovery underscores the
importance of complementing traditional qualitative metrics with contemporary news sentiments as
a signal, particularly when traditional measures require time-consuming data preparation, offering a
promising avenue for risk managers seeking more robust liquidity risk forecasts.

Keywords: banking liquidity risk; risk prediction; liquidity coverage ratio; sentiment analysis; natural
language processing

1. Introduction

In the modern banking sector, the proactive management of risks is vital for financial
institutions, with liquidity risk being particularly significant alongside credit, operational,
and market risks (Zarei 2016; Tavana et al. 2018). Liquidity risk involves balancing long-
term investment strategies with short-term obligations to shareholders and investors, which
is crucial for a bank’s stability. Mismanagement of liquidity can lead to bankruptcy or the
erosion of a bank’s viability. The 2007–2008 financial crisis highlighted the importance
of liquidity in market efficiency. Liquidity risk encompasses various factors, including
operational risk losses, credit quality decline, reliance on short-term loans, and susceptibility
to external market influences. The effective management of liquidity risk is essential for a
bank’s stability and success (Matz 2006).

The discernible linkage between market risk factors and liquidity risk prompts an
investigation into changes, sentiments, and financial behaviors within financial markets
as potential indicators of liquidity risk. While previous studies have extensively exam-
ined bankruptcy prediction in banking or predominantly focused on fundamental factors
(Doumpos et al. 2016; Elsas et al. 2010; Köhler 2015; Tasca et al. 2017; Manthoulis et al. 2020),
financial market dynamics are often influenced by imbalanced information and behavioral
idiosyncrasies, like market sentiment and speculative behavior (Calabrese and Giudici
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2015). This interaction between market risk and behavioral dynamics underscores the
significant impact of news and market events on liquidity risk. For instance, changes in
external factors from market fluctuations affecting various asset types can lead to capital
outflows from banks and liquidity risk (Campbell and Shiller 1986; MacKinlay 1997). This
highlights the crucial role of news analysis in predicting stock prices and asset valuation.
Additionally, economic conditions may result in loan defaults, creating credit risk that
impacts liquidity risk in banks (Boguth et al. 2016).

The current approaches require extensive daily news analysis for manual market event
prediction. Text mining, especially NLP1, offers a promising solution. Text mining efficacy
relies on chosen methods like TFIDF2, bag-of-words, n-grams, and word embedding as
text representation and machine learning algorithms (Hagenau et al. 2013; Schumaker and
Chen 2009; Nam and Seong 2019; Nguyen et al. 2015; Kraus and Feuerriegel 2017). This
study introduces a novel approach, integrating unique news augmentation with TFIDF
and n-grams for machine learning-based prediction algorithms.

There are similar impacts across different languages given similar banking factors.
For instance, news of a “terrorist attack on a military base” may influence liquidity risk
regardless of language, as it affects customer sentiment towards deposit and investment
safety. However, nuances may exist, requiring machine learning and AI algorithms trained
with specific language data. While not exhaustive, this study aims to explore common-
alities among languages and banking factors to facilitate future investigations with a
broader scope.

Amidst the complexity of banking risk management, predicting liquidity risk position
before it manifests in financial institutions becomes imperative. This prediction mandate ex-
tends beyond internal bank parameters, encompassing environmental factors like political
decisions, macro-policy changes, and market events (Roeder et al. 2022). Consequently, the
hypothesis posits that news sentiment influences liquidity risk, given its forward-looking
nature, which necessitates empirical testing and validation.

The banking sector, particularly in emerging markets like Iran, faces significant chal-
lenges related to liquidity risk management, which can jeopardize financial stability and
operational efficiency. Traditional approaches to liquidity risk assessment, such as the
Liquidity Coverage Ratio (LCR), often rely on historical quantitative data and fail to cap-
ture real-time dynamics influenced by external factors, such as market sentiment and
news events. This limitation is particularly pronounced in the context of Iranian banks,
which operate under unique economic conditions exacerbated by sanctions and political
volatility. Therefore, there is a pressing need for a more comprehensive framework that
integrates qualitative signals—specifically news sentiment—into liquidity risk prediction
models. This study aims to fill this gap by exploring how sentiment analysis can enhance
the accuracy of liquidity risk forecasting, ultimately contributing to more robust risk man-
agement strategies in the banking sector. The significance of this research lies in its potential
to provide banks with timely insights that can inform decision-making and regulatory
compliance, thereby fostering greater resilience in the financial system.

This study aimed to predict LCR position (up, down, stable) rather than its exact value,
employing a methodology distinct from traditional approaches, a facet largely overlooked
in previous studies and hindering direct comparisons. External signals suggesting LCR
fluctuations prompt an analysis of their liquidity impact. This study innovatively integrated
external signals, exploring sentiment’s influence on liquidity, supported by empirical
research on market, political, and economic events assessment.

Through a literature review, we discuss previous efforts in applying sentiment analysis
to finance and risk management and statistical methods and machine learning to liquidity
risk assessment and prediction. The key literature inspiring this study includes Tavana’s
integration of machine learning methods for liquidity risk assessment (Tavana et al. 2018),
An’s prediction model for liquidity risk (An 2017), the ELECTRA model for evaluating
banking feedback and news data through sentiment analysis (Mohanty and Cherukuri
2023), the impact of financial markets on risk considering sentiment (Paraboni et al. 2018),
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exposure to liquidity risk in Islamic banks (Khan et al. 2023), and the impact of NPL and
credit risk on liquidity risk in Islamic banks (Hassan et al. 2018).

This study demonstrates an implicit relationship between the sentiment of news as a
qualitative parameter and liquidity risk. Therefore, this qualitative factor is employed in
predicting liquidity risk as a signal. Risk managers can use the proposed method to quickly
assess liquidity positions, complementing conventional methods that require more time for
computation and recommendation.

This paper’s subsequent sections are structured as follows: the Section 2 provides a
comprehensive review of the literature on sentiment analysis, especially in banking risk
and related fields. The Section 3 explains the research data, methods, and framework
utilized, outlining proposed models encompassing data, features, and implementation
strategies. The following sections analyze results from the proposed methodology, evaluate
applications and performance, and conclude with recommendations for future research.

2. Literature Review
2.1. Liquidity Risk Measurement

The contemporary financial landscape has placed a premium on banks’ risk assess-
ment, management, and compliance with evolving regulatory frameworks, including Basel
I, II, and III, emphasizing the comprehensive evaluation of credit, market, and liquidity
risks alongside operational and legal concerns. Liquidity risk, stemming from the pro-
tracted financing of bank assets through short-term debt, engenders an inherent mismatch
between cash inflows and outflows, notably in financial products characterized by un-
certain cash flow schedules (Jarrow and Deventer 1998; Kumar and Yadav 2013). The
computation and assessment of liquidity risk predominantly entail scenario-based analyses,
categorizing risk factors into two distinct groups: bank-specific and market-specific factors
(Basel Committee on Banking Supervision 2010). Bank-specific indicators such as credit
rating, operational losses, and market rumors interplay with market-specific elements like
capital market disruptions and economic recessions to forecast liquidity risk scenarios,
providing foresight into potential liquidity crises before they materialize (Tavana et al. 2018;
Musakwa 2013; Diamond and Dybvig 1983).

2.2. Liquidity Coverage Ratio (LCR)

The Basel Committee on Banking Supervision has promulgated quantitative liquidity
standards, notably the LCR, devised to gauge a bank’s capacity to cover net cash flows
over the ensuing 30 days from high-quality liquid assets, ensuring LCR ≥ 100% as defined
in Equation (1) (Basel Committee on Banking Supervision 2008):

Quality

LCR = (Quality cash assets)/
(

Net out f lowsover the next 30 days

)
≥ 100%

Net out f lowsover the next 30 days= In f lowsover the next 30 days − Out f lowsover the next 30 days

(1)

Three key factors in determining the liquidity coverage ratio (LCR) include the value
of cash assets, the excess rate between liabilities and assets, and the division of requested
deposits into long-term and short-term categories with respective coefficients (Tavana et al.
2018). Calculating and estimating these parameters requires significant effort monthly.
However, with a historical record of the LCR, anticipating its fluctuations over time becomes
possible, a focal point of this research.

This study aimed to predict monthly bank liquidity risk position using the preceding
month’s news data, necessitating a risk measure sensitive to short-term fluctuations. To
fulfill this requirement, the LCR was selected owing to its forward-looking nature and data
accessibility, particularly within Iranian banks. Based on this, other measures like NFSR,
probabilistic models, and balance sheet ratios are not addressed in this study (Drehmann
and Nikolaou 2013; Jobst 2014).
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While not diminishing the efficacy of conventional liquidity risk measurement meth-
ods, this approach seeks to provide an overarching perspective on bank liquidity positions,
particularly when traditional measures require time for data preparation and calculation.

Factors influencing liquidity risk fall into three main categories: bank-specific, microe-
conomic, and macroeconomic or external factors (Rostami 2015; Wójcik-Mazur and Szajt
2015; Alharbi 2017; Singh and Sharma 2016; Ahmad and Rasool 2017). Notably, liquidity
risk assumes a pivotal role as a determining factor for other risks such as credit risk and a
cornerstone of banking performance (Bissoondoyal-Bheenick and Treepongkaruna 2011;
Arif and Anees 2012; Athanasoglou et al. 2008; Molyneux and Thornton 1992).

Factors influencing liquidity risk fall into three primary categories: bank-specific,
microeconomic, and macroeconomic factors (Rostami 2015; Wójcik-Mazur and Szajt 2015;
Alharbi 2017; Singh and Sharma 2016; Ahmad and Rasool 2017). Bank-specific factors
typically include elements like capital adequacy, non-performing loans (NPLs), and return
on assets (ROA). For instance, capital adequacy, measured by the capital adequacy ratio
(CAR), provides a buffer against financial shocks, and banks with higher CAR generally
exhibit greater liquidity stability (Tasnova 2022). NPLs negatively impact liquidity by
reducing asset quality, while high ROA may incentivize banks to engage in more risky
lending, potentially harming liquidity (Radovanov et al. 2023).

On the microeconomic front, bank size and operational efficiency play critical roles.
Larger banks tend to have better access to funding sources, enabling them to maintain liq-
uidity more effectively. However, during financial crises, even large banks may face liquid-
ity constraints if they are highly leveraged (Radovanov et al. 2023; Pham and Pham 2022).

Macroeconomic factors such as GDP growth, inflation, and interest rate policies are
external forces that can significantly impact liquidity risk. For instance, rising inflation
often leads to tighter monetary policies, which restrict liquidity by increasing interest rates
(Tasnova 2022). Conversely, lower economic growth can reduce loan demand, allowing
banks to hold more liquid assets (Radovanov et al. 2023).

New studies also highlight the influence of regulatory frameworks such as Basel III,
which mandates the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio
(NSFR) to enhance banks’ liquidity buffers (Radovanov et al. 2023).

This study focuses on estimating the effect of sentiment on the Liquidity Coverage
Ratio (LCR), due to data accessibility limitations that prevent the inclusion of other liq-
uidity risk indicators. Each study examines a specific case; future research may consider
investigating the effects on other liquidity risk measures.

2.3. Prediction and Assessment of Liquidity Risk Using Machine Learning Methods

The assessment and prediction of liquidity risk have garnered attention through the
application of machine learning (ML) techniques. Tavana et al. proposed a model integrat-
ing artificial neural networks and Bayesian networks to assess liquidity risk, while Guerra
et al. leveraged ML for stress-testing and early warning system (EWS) scenarios (Tavana
et al. 2018; Mohammad et al. 2020). An proposed a predictive model for financial liquidity
risk using linear discriminant, probit, and logit models, emphasizing the significance of
significant variables selection in firms’ liquidity positions (An 2017).

Of particular note is the application of natural language processing (NLP) techniques,
notably sentiment analysis, in the banking sector. Sentiment analysis elucidates sentiments
from textual resources, offering applications ranging from market prediction to risk detec-
tion and forecasting in banking (Jiang and Lu 2020; Khurana et al. 2023; Solangi et al. 2018).
Coleman et al. categorized sentiments into uncertainty, positive, and negative sentiments
during the 2007–2008 crisis, elucidating how sentiments impact risk analysis (Nopp and
Hanbury 2015). In the context of liquidity risk, this investigation categorizes sentiment
into three distinct classifications: influential, non-influential, and counter-influential. These
classifications delineate sentiment’s capacity to respectively engender positive, neutral,
or adverse effects on risk ratios. Keyword influence on liquidity risk was not manually
calculated due to lacking lexicons.
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Halls et al. conducted a review of various sentiment analysis methods, encompassing
DNNs, recurrent neural networks (RNNs), convolutional neural networks (CNNs), and
recursive neural networks (Do et al. 2019).

This study employed ML and AI to automate keyword sentiment analysis, under-
standing their impact using a black box method. Evaluating ML algorithms revealed
results based on specific criteria with unseen data, identifying words attracting attention in
liquidity risk contexts.

2.4. Studies on Sentiment Analysis in Risk Management

Sentiment analysis integration in banking risk management offers insights, highlighted
by various studies presented in Table 1, revealing diverse methodologies and applications.

Table 1. Summary of sentiment analysis research in financial and risk management.

Year Area Article Title Method

2023 Risk
Management

Liquidity Risk Prediction
Using News Sentiment

Analysis

Using DSR and Machine
Learining Approach for

Liquidity Risk Prediction
(Mirashk et al. 2023)

2015 Risk
management

Detecting Risks in the Banking
System by Sentiment Analysis

Using the sentiment analysis
approach to identify risk in the

bank (Solangi et al. 2018)

2019 Risk
management

Discovering bank risk factors
from financial statements

Identifying risk factors from
financial statements using text

mining (Wei et al. 2019)

2014 Risk
management

Risk reporting by German
banks

Review of financial reports by
financial banks: using standard
methods (Schlueter et al. 2014)

2018 Risk
management

Text Mining and Reporting
Quality in German Banks

Checking the quality of
financial reports using

sentiment analysis in German
banks (Fritz and Tőws 2018)

2018 Social banking Application of Social Media
Analytics in the Banking Sector

Social network and trend
analysis are used to investigate

the consumer’s view in the
payment industries

(Manzira and Bankole 2018)

2018 Investment The impact of Media Sentiment
on Firm Risk

Analyzes the positive
relationship between media
sentiment and a company’s

future stock returns
(Huang et al. 2018)

2021 Market risk
The Liquidity Dimensions to
Sentiment Analysis through

Microblogging Data

Finding pessimistic content
(blog) increases trading costs,

illiquidity, and price dispersion
(Guijarro et al. 2021)

2018 Market risk
The relationship between

Sentiment and Risk in
Financial Markets

Investigating the effects of
financial markets on risk with

the sentiment analysis
approach (Paraboni et al. 2018)

2019 Bank health
Using Annual Report

Sentiment as a Proxy for
Financial Distress in U.S. Banks

Using annual analytical reports
as a proxy to detect financial

crises in American banks
(Gandhi et al. 2019)
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Table 1. Cont.

Year Area Article Title Method

2018 Bank health Text Mining and Reporting
Quality in German Banks

Investigating the quality of
financial reports using

sentiment analysis
(Fritz and Tőws 2018)

2019 Bank health

Discovering bank risk factors
from financial statements

based on a new text mining
algorithm

Comprehensively reveals a
bank’s risk factors from the

textual risk disclosures
reported in the financial

statements (Wei et al. 2019)

2019
Financial
sentiment
analysis

Financial Sentiment Analysis
with Pre-trained Language

Models

The FinBERT language model,
designed based on BERT,

addresses financial sentiment
analysis challenges

(Araci 2019)

2023
Financial
sentiment
analysis

Sentiment Analysis on Banking
Feedback and News Data

using Synonyms and
Antonyms

Evaluates sentiment scores of
words, rephrases using

synonyms/antonyms, and uses
the ELECTRA model for SA

(Mohanty and Cherukuri 2023)

2022
Financial
sentiment
analysis

Aspect-Level Sentiment
Analysis Algorithm based on
BERT for Multi-Domain Texts

BERT-based algorithm for
aspect-level sentiment analysis

across domains, leveraging
source domain data to enhance

target domain analysis
(Liu and Zhao 2022)

2022
Financial
sentiment
analysis

Deep Learning-based
Sentiment Analysis of
Financial Statements

A sentiment analysis method
for financial statements using

deep learning and domain
adaptation

(Shao and Chen 2022)

2023
Financial
sentiment
analysis

Explainable hybrid word
representations for sentiment

analysis of financial news

Improve SA with explainable
hybrid word representation,

addressing class imbalance and
integrating embeddings

(Adhikari et al. 2023)

2021
Financial
sentiment
analysis

Analyzing DistilBERT for
Sentiment Classification of

Banking Financial News

Compares fine-tuned
DistilBERT and TF-IDF with
supervised machine learning

classifiers for sentiment
classification (Dogra et al. 2021)

Texts offer diverse content, including explanations and opinions, posing challenges
for sentiment analysis. Regulators seek objective risk reporting, yet Webb et al. found
subjectivity in 44% of news sentences (Wiebe et al. 2001).

A study by Feroz Khan et al. indicates that the non-performing loans (NPLs) of
Islamic banks are 4 to 5 times higher than the standards set by international finance experts
(Khan et al. 2023). This finding suggests that Islamic banks are more susceptible to risks,
particularly credit and liquidity risks, which need to be managed with greater care. Another
study by Kabir Hassan et al. shows a positive relationship between liquidity risk and credit
risk in conventional banks, but a negative relationship in Islamic banks. Initially, lower
liquidity risk may improve stability. However, as bank management takes on more risk to
increase profitability, this offsets the initial positive impact, leading to increased instability
and affecting other risks in a chain reaction (Hassan et al. 2018). Based on the stochastic
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behavior of liquidity risk in Islamic banks and higher levels of risk, this study aims to
predict liquidity risk to prevent further consequences.

The amalgamation of sentiment analysis within banking risk management has sig-
nificantly progressed risk detection and prediction, while also unveiling new avenues
for analyzing liquidity risk factors. Leveraging sentiments from diverse textual sources
facilitates a deeper understanding of the interplay between sentiments and liquidity risk
factors, enhancing risk assessments and predictive models in the banking sector. Factors
influencing liquidity risks include forecasting financial crises using sentiment analysis from
news and social networks (Ormerod et al. 2015), integrating sentiments into credit risk
assessment for historical evaluation (Erlwein-Sayer and Yu 2020), predicting bank interest
rates by analyzing online news (Kumar and Yadav 2013), assessing political impacts on
stock and bond fluctuations (Erlwein-Sayer 2018), and indirectly addressing market risk
through sentiment analysis of news and market events (Paraboni et al. 2018). The literature
review underscores the multifaceted nature of liquidity risk, affirming the integration of
machine learning and natural language processing techniques for refined risk assessment
and prediction in banking.

3. Research Method

The outline of this research is shown in Figure 1. Sources of input data included news
and data of a bank LCR. Features were then extracted from the text data. In this step, using
feature extraction methods in text mining, qualitative features were extracted from textual
news data and these features were examined for use in the next step.
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Figure 1. Overview of the research.

The general outline of the research methodology comprises several key steps aimed at
understanding and predicting liquidity risk through sentiment analysis of textual data.

1. Data Collection: Quantitative and qualitative data were sourced from a bank for
liquidity data and a Fars digital news agency for textual news data, primarily focusing
on economic and political spheres.

2. Text Data Preparation: For qualitative data, the HAZM NLP library was employed
for the Persian language. Textual data underwent initial processing, which included
normalizing and refining formats and word forms, clearing texts, classifying texts,
extracting and validating, removing duplicate words, polarity detection, labeling,
sentiment analysis, result validation, and presentation and comparison of findings.
The quantitative data obtained over time for the LCR from a sample bank required
quantification to integrate it into the sentiment prediction model. For instance, if the
LCR of the current month was 90% and the LCR of the previous month was 80%, there
was a 10% increase in LCR, thus determining the label for that month as influential (1).
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3. Qualitative Feature Extraction: Features were extracted from processed news texts to
establish correlations with liquidity risk.

4. Sentiment Analysis Model Construction: Conventional machine learning and deep
learning methods were utilized to construct a sentiment analysis model, with various
algorithms tested and the optimal one selected. Validation criteria including accuracy,
precision, and recall were employed to assess and compare outcomes.

5. Prediction and Model Evaluation: Liquidity risk was predicted and evaluated using
the chosen method, with validation criteria such as accuracy and visualizations
employed for comparison with actual values.

These steps adhered to the research roadmap aiming to identify qualitative variables
impacting liquidity risk prediction, providing insights into the role of sentiment analysis in
this domain.

3.1. Research Variables

Banking standards like Basel and CAMELS, along with previous research, categorize
influential variables into economic indicators, internal bank metrics, and qualitative factors
like sentiment, indirectly impacting liquidity risk. As shown in Figure 2, the internal factors
of a bank, which were referred to in previous sections as microeconomic or controlled
factors (static variables), and external factors, which were either implicit or time-bound
(dynamic variables), have a direct effect on liquidity risk. Therefore, they can be used to
predict liquidity risk.
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This study aimed to investigate the impact of qualitatively dependent variables,
previously overlooked, on liquidity risk, noting their dynamic nature and interrelation with
internal and external factors, ultimately employing machine learning models to predict
liquidity coverage ratio (LCR) position using dynamic variables extracted from news
and events.

3.2. Data Collection

Research data were classified into two categories of dependent and independent
variables. As depicted in Table 2, the dependent variables were the news qualitative
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features and the independent variables were the liquidity risk ratios; in this regard, how to
collect qualitative data and then the dependent or predictor variable were explained.

Table 2. Research data.

Variable Name Variable Type Type of Data Data Time Source of Data

Liquidity
coverage ratio

Quantitative
variable

Bank
liquidity risk

data

April 2004–
November 2020

A semi-private
sector bank in

Iran
News quality

index
Qualitative

variable News April 2004–
November 2020

Fars News
Agency

3.2.1. Collecting Quantitative Data

Regarding quantitative data, as mentioned in the table above, the liquidity coverage
ratio index for a bank was considered, which was calculated and reported on a monthly
basis. As stated in the previous study, the bank risk index is an indicator with a history,
which means that it shows the current or past status of the bank (Nopp and Hanbury 2015).

The data on liquidity risk from April 2004 to November 2020 were obtained from the
Central Bank of Iran for a semi-private bank (excel file containing LCR for each month).
Semi-private banks offer advantages resembling private banks, catering to various cus-
tomers and providing diverse products. They handle high transaction volumes and invest
in non-banking markets. However, they face state bank-like regulations, including those
from central banks, affecting loans, interest rates, and anti-money laundering measures.
Due to data scarcity, the analysis focused on one semi-private bank, representative of
others, to understand liquidity dynamics. To ensure data validation and reliability, the
Central Bank of Iran operates a supervision office. This office employs both onsite and
offsite procedures to monitor, assess, and confirm the reports provided by banks. These
procedures adhere to the supervisory review and evaluation process mandated by BASEL
guidelines, upon which we relied for our analysis.

Figure 3 shows the trends of the liquidity risk index of the bank from 2004 to 2020. In
this chart, the trend of changes in the liquidity risk of the bank in question is clear and can
be extracted.
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Figure 3. Trend chart of the liquidity risk index of the bank evaluated during the study period
(LCR, or liquidity coverage ratio, is a liquidity risk indicator defined by the Basel Committee on
Banking Supervision).

3.2.2. Collection of Qualitative Data

This research focused on digital Persian news from the Fars News online agency,
highlighting economic and political subjects potentially influencing liquidity risk. By



Risks 2024, 12, 171 10 of 32

analyzing these articles, we can extract sentiment—positive, negative, or neutral—reflecting
public perception towards the bank’s liquidity. News data were crawled from the Fars
News Agency from April 2004 to November 2020 and maintained in an SQL server database
containing news summaries, types, bodies, titles, and dates. Data were gathered using web
scraping methods, employing the Get request HTTP command through the Beautiful Soap
(BS4) library in Python to retrieve news and extract relevant content such as news titles,
summaries, and descriptions. The code was developed in the Python language, and cloud
server resources were utilized for website crawling.

Keywords were extracted from news items, particularly in economic, political, and
financial realms, by combining the three fields of summary, title, and body of the news,
while also exploring the impact of censorship on Persian news. While economic and
financial news generally evades censorship, political censorship seeks to mitigate economic
consequences or boost public confidence. Machine learning was employed to assess the
influence of manipulated news on bank liquidity, aiding in predicting future outcomes.
Fars News Agency was chosen due to its diverse news sources, including political parties,
enabling the examination of manipulated news effects on liquidity risk amidst censorship,
alongside its considerable volume and diversity of news.

As depicted in Figure 4, with a total of 4,288,829 news items collected before prepro-
cessing, their forward-looking nature (Fritz and Tőws 2018) underscores their relevance to
liquidity risk, reflecting trends across the years.
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Liquidity risk is influenced by both current and past conditions of a bank, while
news sentiment can predict future liquidity risk; hence, changes in liquidity risk from the
previous month serve as labels to determine the polarity of news samples, for instance, an
increase in liquidity risk results in a positive label for the previous month’s news sample.

3.3. Pre-Processing of Collected Data

The data underwent preprocessing for both qualitative (textual) and quantitative
segments. Qualitative data, comprising news titles, summaries, and bodies, were merged
into cohesive news samples. Quantitative data, initially divided into three or five main
classes, were categorized monthly, labeling liquidity risk based on each month’s changes:
it could be either upward (1), downward (−1), or constant (0). Post-preprocessing, the
dataset comprised approximately 494,650 samples, constituting a near-balanced dataset.
Algorithm 1 shows the preprocessing phase.
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Algorithm 1. Preprocessing

1: Notation: Input: Text File (Persian News Dataset)
2: Output: Sentiment (Positive, Neutral, Negative)
3: Begin

4:
Read text data from Persian news dataset (combine summary, body, and lead for each
news item)

5: Remove URL, numbers, punctuation
6: Standardization and tokenization of sentences into words
7: Words -> remove stop words
8: Add words from each sentence into preprocessed library
9: Stemming and lemmatizing words into their root forms
10: Add stemmed words from each sentence into processed library to be labeled

In the realm of Persian language analysis, textual data preprocessing is a meticulous
process aimed at refining and standardizing text for optimal analysis. This involves
employing a combination of regular expressions and replacement dictionaries for format
standardization, followed by text normalization through techniques like stemming and
lemmatization facilitated by the HAZM library. Punctuation removal and whitespace
management are seamlessly executed using Python libraries and the Normalizer function,
respectively. Tokenization, conducted by HAZM, divides the text into tokens, facilitating
subsequent analysis. Furthermore, specialized algorithms like Krautz (Estahbanati and
Javidan 2011) and Taghva (Taghva et al. 2005), based on established algorithms like Porter
(Porter 1997) and Lancaster (Khyani and Siddhartha 2021), are employed for accurate
stemming, while lemmatization utilizes lexical dictionaries to map words to their base
form, preserving crucial linguistic nuances. This comprehensive preprocessing lays a robust
foundation for nuanced insights into Persian language-specific textual data.

3.4. Feature (Keyword) Engineering

In the quest for efficient information retrieval within Persian language text, this study
employed robust methodologies to extract keywords essential for comprehension. The
procedure consisted of the following steps, as explained in Algorithm 2:

Algorithm 2. Feature engineering

1: Features <- extract features (keywords) using TF-IDF and N-gram algorithms.

2:
Matrix of weighted words <- Create a matrix of features, with each row representing a
weighted keyword of a sentence.

3: For each month in LCR time series data
4: LCRchanges = LCRcurrent month − LCRprevious month
5: For each row (keywords of a news) in Matrix
6: Label each row with LCR changes of corresponding month
7: positive(1) i f LCRchanges > 0
8: neutral(0) i f LCRchanges = 0
9: negative(−1) i f LCRchanges < 0
10: The news matrix is divided into n groups, with each group consisting of m news items.
11: For each m items (news) in Matrix in same month
12: Augmented sample = merge (m items)
13: augmented sample lable = merge (labels) which is label o f that month
14: Hyper tune m as an important hyperparameter for best classification

Feature extraction: Leveraging statistical techniques such as TF-IDF and N-Gram
analysis, the text underwent meticulous scrutiny to unveil meaningful linguistic patterns.
Collocations or NGram analyses discern cohesive word combinations, revealing nuanced
semantic structures beyond individual words, while TF-IDF evaluation highlights the
significance of words within their contextual framework. The procedural framework began
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with feature extraction using the TfidfVectorizer function, meticulously configured with
optimized hyperparameters to strike a balance between relevance and representation. By
segmenting news text into distinct training, validation, and testing sets, this study ensured
comprehensive coverage of the dataset.

The extraction process prioritized salient attributes present in an optimal frequency
range, guided by parameter settings like min_df (0.008) and max_df (0.05), alongside the
ngram_range (set at (1, 2)). Through the consolidation of news titles, leads, and bodies, the
text was prepared for in-depth analysis and model development. This meticulous approach
set the stage for insightful exploration within the Persian language domain, laying a robust
foundation for subsequent analytical endeavors.

Labeling data and sentiment score: In this study, news data labeling was pivotal,
employing a sentiment analysis approach to discern sentiment polarity. Building on prior
works by (Groth and Muntermann 2011; Kogan et al. 2009), and (Hájek and Olej 2013),
that utilized machine learning and quantitative metrics for labeling, this study focused on
banking sentiment analysis. Three sentiment classes—positive, negative, and neutral (as
explained in Equations (2) and (3))—and five sentiment classes (as explained in Equations
(2) and (4)) were employed to gauge sentiment scores, as established in previous studies
(Nopp and Hanbury 2015) utilizing quantitative indicators as changes in liquidity risk
index. This index, with classifications into three and five classes, was analyzed alongside
textual news data from 2004 to 2020.

LCRchanges = LCRcurrent month − LCRprevious month (2)

three classes


positive(1) i f LCRchanges > 0
neutral(0) i f LCRchanges = 0

negative(−1) i f LCRchanges < 0
(3)

f ive classes



Signi f icant increase (2) i f LCRchanges > 25%
positive(1) i f 0 > LCRchanges > 25%

neutral(0) i f LCRchanges = 0
negative(−1) i f 0 > LCRchanges > −25%

Signi f icant negative(−2) i f LCRchanges < −25%

(4)

Notably, news records were labeled with sentiment for each month, and a novel
approach merged news with the same label, enhancing generalizability for robust analysis.
The approach is illustrated in Figure 5.
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Feature augmentation: This study introduces a novel data augmentation approach
to merge keyword features from multiple news pieces within a monthly timeframe. By
consolidating m news articles per month, a more comprehensive representation of data is
achieved, acknowledging the dynamic nature of sentiment across time. Subsequently, by
choosing a value for m as a consolidation number, ranging between 1 and the total number
of news items (n) for that month, m news articles are merged (Equation (5)).

0 < m < n (5)

Leveraging TF-IDF and N-Gram algorithms on aggregated news facilitates the se-
lection of nuanced features, contributing to a richer dataset for machine learning models.
The resulting input feature matrix condenses to n/m per sample, where m serves as a
hyperparameter influencing model performance. Optimal parameters, such as 300 and 500,
were determined through rigorous evaluation to shape subsequent analyses and ensure
robust outcomes.

Feature selection: The abundance of features relative to observations can lead to re-
dundancy, inefficiency, or extraneousness, exacerbating the issue. Various feature selection
methods, categorized as “filter”, “wrapper”, or “embedded” offer distinct approaches to
mitigate these challenges (Feki et al. 2012). In this study, the wrapper method was adopted
for feature evaluation, intertwining feature selection with model prediction. By config-
uring the parameter ‘m’ as described earlier and analyzing the results, the most optimal
feature subset was determined, contributing to more refined and efficient model training
and evaluation.

3.5. Model Implementation of Sentiment Analysis

Sentiment analysis is a technique used to determine the emotional tone behind a series
of words. In our study, we applied natural language processing (NLP) techniques to classify
the sentiment of news articles. For example, positive news about economic growth would
likely correlate with improved liquidity, while negative news about market instability could
indicate potential liquidity challenges.

After data preprocessing, a keyword-based sentiment analysis approach employing
machine learning methods was utilized to predict polarity based on inclusive labels of
positive, negative, and neutral sentiments, with a focus on analyzing the impact of news
sentiment labels on liquidity risk. As depicted in Algorithm 3, various risk prediction
methods, including logistic regression (Lanine and Vennet 2006), support vector machines
(Vapnik 1995), deep neural networks, and convolutional neural networks (Gouvêa and
Bacconi 2021), were explored to analyze the relationship between liquidity position and
news sentiment.

A. Logistic regression classifier: A widely used algorithm in sentiment analysis for
banking risks like credit and default risks employs a binary dependent variable and
classified or continuous independent variables, constituting a special case of the generalized
linear model (Equations (6)–(8)). This study utilized logistic classification for sentiment
analysis, where the hyperparameter C, representing the inverse of regularization power,
was crucial in mitigating overfitting by imposing costs to optimize parameter values
(Equation (9)). Through parameter tuning, particularly setting parameter C to minimize
prediction errors, the logistic regression model effectively learned to predict sentiment
based on input data.

Z = β′X = ln
{

p (X)

1 − p (X)

}
(6)

β′ = (β0, β1, . . . βn
}

(7)

p(X) = E (Y = 1|X) =
1

a + e−(a+bX)
(8)

C = b = (X′X)
−1X′y (9)
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Algorithm 3. Sentiment model and prediction algorithm.

1: samples <- Using Matrix of features with labels
2: train data = 70% o f samples
3: validation data = 15% o f samples
4: test data = 15% o f samples
5: A. logistic regression classifier
6: Train with train data
7: Hyperparameter tuning with validation data
8: Evaluate the result with test data
9: B. SVM classifier
10: Train with train data
11: Hyperparameter tuning with validation data
12: Evaluate the result with test data
13: C. DNN classifier
14: Train with train data
15: Hyperparameter tuning (neural network architecture) with validation data
16: Evaluate the result with test data
17: B. CNN classifier
18: Train with train data
19: Hyperparameter tuning (neural network architecture) with validation data
20: Evaluate the result with test data
21: Compare the results of different algorithms and select the best method.
22: Assess the best result in a real-case scenario to evaluate the applicability of the method.

B. Multi-class support vector machine classifier:
The SVM classifier operates on the principle of linear determination within the search

space, aiming to best separate different classes by specifying the separator margin. Text
data fit ideally within the support vector machine classifier due to the nature of text, where
multiple features are often insignificant (Equation (10)). It separates data by a hyperplane
in the input space using optimization techniques, which maximizes the margin between
classes and minimizes the classification error (Equation (11)). The optimization problem is
expressed as follows:

max
w

(w∗, b∗) = d =
2

||w|| + c.∑n
i=1εi (10)

s.t :{
(w.x + b) ≥ 1, ∀x o f class A
(w.x + b) ≤ −1, ∀x o f class B

(11)

This classifier has seen diverse applications, including in the classification of user com-
ments based on their quality (Vapnik 1995). This study leveraged the multi-class support
vector machine classification method for sentiment analysis, yielding satisfactory results.
Notably, the C parameter, a critical parameter in this algorithm, guided SVM optimization
by determining how much misclassification of each training example needed to be avoided.
Tuning this parameter led to improved analysis outcomes (Chen and Tseng 2011).

C. Artificial deep neural network:
Deep learning, an evolving field within machine learning, encompasses a comprehen-

sive approach to learning representation levels, addressing intricate nonlinear challenges in
various domains like natural language processing and image analysis (LeCun et al. 2015).
Recent advancements have fueled the prominence of deep neural networks, which differ
from traditional machine learning in their inherent capacity to extract features across multi-
ple levels (Yuan et al. 2018). Illustrating a multilayer deep learning classifier model, this
study employed a feed-forward neural network structure with dense layers interconnected
to facilitate data dimensionality reduction. Nonlinear activation functions, such as ReLU,
enabled the network to capture complex patterns within the data.



Risks 2024, 12, 171 15 of 32

Parameters like “Unit” for neuron count and “Loss” for quantifying disparity between
predicted and actual outputs, alongside “Optimizer” for weight adjustment, play pivotal
roles. Considering (labeling) three-class and five-class polarity, this research developed
deep learning models tailored to both m = 300 and m = 500 for data augmentation, catering
to diverse sentiment analysis needs spanning from positive and negative sentiments to
more nuanced categories. Figure 6 delineates the deep neural network layer architecture
for both three-class and five-class polarity modes, encompassing 2563 attribute matrix
keywords in the input layer. Each network had five layers, with the last layer acting as the
final classifier for the designated classes.
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D. Convolutional neural network:
In the realm of deep learning for text classification, the convolutional neural network

(CNN) emerges as a standout approach, leveraging convolutional filters to autonomously
extract relevant features crucial for various tasks, including sentiment classification. No-
tably, studies have demonstrated CNN’s ability to achieve impressive performance without
intricate hyperparameter tuning, making it adaptable across diverse text analysis endeavors
(Read 2005; Zhang et al. 2015; Kim and Jeong 2019). The general architecture of CNNs,
depicted in Figure 7, comprises layers such as convolutional, pooling, and dense layers,
each playing distinct roles in feature extraction, downsampling, and classification (Thakkar
and Chaudhari 2021; LeCun et al. 2015).
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This study utilized one-dimensional convolutional and max pooling layers along-
side dense layers, underscoring the CNN’s effectiveness in automating feature detection
and classification tasks. The hyperparameters “Filters” and “Kernel_size” controlled the
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number of detected features and the convolutional window’s length in the Conv1D layer,
respectively, while “Pool_size” defined the dimensions of the max pooling window in the
MaxPooling1D layer for downsampling the feature matrix without trainable parameters.

These models (C, D) automatically learn and extract features from the input data,
which helps improve the prediction accuracy compared to traditional methods.

3.6. Evaluation Criteria for Prediction

This study utilized randomization techniques to select training, testing, and validation
data and evaluated algorithmic predictions using various classifier validation criteria,
including the confusion matrix (Table 3), precision, recall, accuracy, F-score, Kappa, area
under ROC curve (AUC), and ROC curve. Equations (12)–(17) with news data merged
into a feature matrix associated with liquidity risk trend labels. The data were divided
into training (70%), validation (15%), and testing (15%) sets, and classifier performance
was assessed through confusion matrices and associated criteria, alongside calculations
for sensitivity, specificity, accuracy, F1-score, and AUC values, with the kappa criterion
comparing algorithm performance against random classification. The AUC was used to
evaluate and compare different classifiers, indicating model accuracy. The kappa criterion
compared the classification algorithm against a random classifier to assess multi-class
algorithm performance (Sokolova et al. 2006; Juba and Le 2019; Pham and Ho 2021; Lasko
et al. 2005; Zweig and Campbell 1993; Hanley and Mcneil 1982).

Recall = SN =
TP

TP + FN
(12)

Precision = SP =
TN

TN + FP
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(15)

{(SN{c}, 1 − SP(c)) : −∞ < C < +∞} (16)

AUC =
∫ 1

0
ROC(t)dt dt (17)

Table 3. Confusion matrix (Zhang and Liu 2021).

Actual/True Class 0–Positive 1–Negative

Predicted class
0–True True Positive (TP) False Positive (FP)

1–False False Negative (FN) True Negative (TN)

4. Experimental Results

In this section, this study’s outcomes based on liquidity risk data from a bank and
news collected from Fars News Agency are discussed. News data were consolidated into
300 and 500 pieces, forming the final feature matrix and labels representing the bank’s
liquidity risk positions in both three-class and five-class forms. Four data input cases
were established for classification algorithms (Table 4), elucidating the outcomes in this
segment. The table presents various data options fed into the learning model, varying
sample numbers, consolidation types, and number of classes.
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Table 4. Input data modes present the input data options to the learning model.

Number of
Classes

Type of
Augmentation

Number of
Samples

Train
Samples Test Samples Validation

l = 3 m = 300 14,169 9918 2125 2126
l = 5 m = 300 14,169 9918 2125 2126
l = 3 m = 500 8540 5978 1281 1281
l = 5 m = 500 8540 5978 1281 1281

4.1. Data Visualization

The t-SNE algorithm, employed as an unsupervised method for visualizing high-
dimensional data, facilitated the understanding of data organization. By applying TF-IDF
followed by t-SNE, with perplexity as a crucial parameter, the resulting visualization in
Figure 8 illustrates the varying degrees of separation for both three-class and five-class
modes, offering insights into their classification capacity and separability. Considering that
using m as a batch size meant merging and combining every m news item to generate a
sample, we had labels a and b with a batch size of 300 and labels c and d with a batch size
of 500. Therefore, Figure 8 shows that the classification and separability of m = 300 (labels a
and b) as the news batch size were more pronounced.
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4.2. Adjustment of Hyperparameters

This section focuses on optimizing hyperparameters for classification algorithms using
different data augmentation parameters. The comprehensive tables in Appendix A detail
the fine-tuning of hyperparameters for each algorithm, with logistic regression achieving
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the best validation accuracy of 71.58% for both three-class and five-class modes. SVM
attained an accuracy of 86.42% for the three-class mode, while the deep neural network
performed well, with approximately 89.7% accuracy in both modes. However, the CNN’s
validation accuracy slightly decreased to 84.07% in the three-class mode. Overall, these
findings show that the DNN, followed by the SVM, outperformed other algorithms based
on their validation accuracy in predicting liquidity risk trends. Appendix A thoroughly
describes the hyperparameters used for training, validation, and fine-tuning the model. It
also includes the structure and architecture of the designed model, specifically for the CNN
and DNN.

4.3. Evaluation of the Results

We compared the results of different algorithms to identify which provided the most
reliable predictions. This comparison is crucial because it helps in understanding how well
each model can adapt to changing market conditions.

The analysis of confusion matrix results from the logistic regression, support vector
machine (SVM), deep neural network (DNN), and convolutional neural network (CNN)
algorithms, detailed in Appendix B, revealed varying accuracies across different combi-
nations. Notably, combination type m = 300 consistently outperformed m = 500 across
logistic regression and SVM methods. Similarly, for deep feed-forward and CNN methods,
architectural differences led to varying accuracies, with m = 300 consistently showing
superior performance. These findings underscore the significance of neural configurations
and classifiers in accuracy, emphasizing the need for architectural tuning for optimal per-
formance. Overall, SVM followed by DNN emerged as the top-performing algorithms
based on the confusion matrix results.

The Tables 5–8 detail the performance metrics of various machine learning models,
including Logistic Regression (Table 5), Support Vector Machine (SVM) (Table 6), Deep Feed-
Forward Neural Network (Table 7), and Convolutional Neural Network (CNN) (Table 8),
for predicting liquidity risk. Here’s a detailed explanation of each:

Table 5. Results of different validation criteria extracted from logistic regression method.

Logistic Regression

Triple

Bin
Size C Solver Max_Iter Val_acc Test_acc Precision Recall F1

Score
Cohens
Kappa

ROC
AUC

300 10 lbfgs 1000 71.58 68.81 68.61 68.61 68.65 52.55 86.02
500 10 lbfgs 1000 71.58 70.73 70.68 70.73 70.56 55.51 87.89

Quintuple

300 17 lbfgs 1000 62.45 64.02 64.03 64.02 63.98 54.79 89.38
500 20 lbfgs 1000 68.31 67.06 67.06 67.06 67.02 58.69 91.06

Table 6. Results of various validation criteria extracted from the support vector machine.

SVM

Triple

Bin
Size C Solver Max_Iter Val_acc Test_acc Precision Recall F1

Score
Cohens
Kappa

ROC
AUC

300 5 rbf 2000 86.42 86.74 86.75 86.74 86.73 79.91 95.17
500 5 rbf 2000 86.42 87.04 87.01 87.04 87.01 80.38 95.37

Quintuple

300 15 rbf 2000 82.78 85.23 85.4 85.23 85.28 81.48 96.02
500 5 rbf 2000 86.1 86.1 86.1 86.1 86.09 82.57 96.41
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Table 7. Results of validation criteria obtained from the deep feed-forward learning network method.

Feed-Forward Neural Network

Triple

Bin
Size

D
ense

U
nits

A
ctivation

O
ptim

izer

B
atch

Size

Epochs

V
al_acc

Test_acc

Precision

R
ecall

F1
Score

B
alance

A
ccuracy

C
ohens

K
appa

R
O

C
A

U
C

300

512-
256-
128-
64

relu adam 8 29 83.11 84.1 83.56 84.07 84.1 84.07 75.88 95.44

500
512-
256-
256

relu rms 64 43 88.91 88.6 88.5 88.63 88.6 88.56 82.75 97.56

Quintuple

300

1024-
512-
256-
128

relu rms 64 19 84.85 88.29 88.23 88.5 88.29 88.31 85.31 98.53

500
512-
256-
128

relu rms 64 42 87.35 82.51 82.19 83.42 82.51 82.3 78.04 97.22

Table 8. Results of validation criteria obtained from the convolutional deep learning network method.

CNN

Triple

Bin
Size Filter s

K
ernelSize

PoolSize

D
ense

U
nits

A
ctivation

O
ptim

izer

B
atch

Size

Epochs

B
alance

A
ccuracy

Test_acc

Precision

R
ecall

F1
Score

C
ohens

K
appa

R
O

C
A

U
C

300 64-128-
256 3 2 256 relu adam 8 25 82.0 81.7 81.7 82.0 81.7 81.7 72.3

500 64-128 3 2 128 relu adam 32 21 84.0 83.2 82.7 83.3 83.2 83.2 74.6

Quintuple

300 128-
256-512 3 2 512 relu rms 16 16 80.2 81.1 80.9 81.4 81.1 81.2 76.3

500 64-128-
256 3 2 256 relu adam 64 30 80.9 82.2 82.1 82.3 82.2 82.2 77.7

Table 5 showcases the performance of the Logistic Regression model across different
parameter configurations, focusing on two bin sizes (300 and 500) and two classification
modes: “Triple” and “Quintuple.” The metrics used for evaluation include validation accu-
racy, test accuracy, precision, recall, F1 score, Cohen’s Kappa, and ROC AUC. The highest
validation accuracy of 71.58% is achieved with the “Triple” mode and a bin size of 500. In
the Quintuple mode, although validation accuracy slightly decreases, the model achieves
a higher ROC AUC of 91.06, indicating good predictive capacity. Overall, the Logistic
Regression model provides moderate performance, particularly in handling imbalanced
datasets, as reflected by Cohen’s Kappa scores.

Table 6 presents the results of the Support Vector Machine (SVM) model, which
outperforms Logistic Regression in both classification accuracy and stability. The SVM
achieves a validation accuracy of up to 86.42% in the Triple mode with a bin size of 500, and
a test accuracy of 87.04%, suggesting that SVM is highly effective for predicting liquidity
risk. The ROC AUC reaches an impressive 96.41%, showcasing the model’s ability to
distinguish between classes accurately. Other key metrics, such as precision and recall, are
consistently high across different configurations, demonstrating the robustness of SVM in
handling complex financial data.

The results in Table 7 reveal that the Deep Feed-Forward Neural Network (DNN) is
the best-performing model for liquidity risk prediction. The DNN achieves a validation
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accuracy of 88.91% in the Triple mode with a bin size of 500, and its ROC AUC score reaches
up to 98.53% in the Quintuple mode, highlighting its superior classification capability. The
F1 scores and Cohen’s Kappa metrics further affirm the model’s accuracy and reliability,
making it ideal for dealing with imbalanced data. The DNN’s multi-layered architecture
and optimization lead to highly accurate predictions, surpassing both Logistic Regression
and SVM models.

Table 8 summarizes the performance of the Convolutional Neural Network (CNN),
which, while slightly trailing behind DNN and SVM, still delivers solid results. The best
validation accuracy of 84% is achieved in the Triple mode with a bin size of 500, and the ROC
AUC peaks at 77.7%. Although the CNN model does not outperform the DNN, it still shows
strong potential for sentiment-based liquidity risk prediction, particularly in complex,
large-scale data environments. The precision and recall metrics remain consistently high,
supporting its use in tasks requiring automated feature extraction from textual data.

The examination of various performance criteria revealed significant insights: the
feed-forward neural network demonstrated exceptional accuracy, precision, recall, and
F1-score, particularly achieving 88.6% accuracy in the three-class model and outperforming
other methods like SVM. Additionally, it excelled in kappa and balance accuracy metrics,
indicating robustness in handling unbalanced data. The ROC-AUC metric further under-
scored the superiority of the feed-forward neural network, with an outstanding 98.53%
score in the five-class model. Collectively, these findings position the feed-forward neural
network as the optimal method for predicting bank liquidity risk using qualitative news
data, followed by SVM, convolutional neural network, and logistic regression.

An in-depth analysis of ROC curves was essential for evaluating the methodologies
employed in thid study. Figures 9 and 10 showcase ROC curves for various combinations,
with Figure 9a highlighting the superior performance of the deep feed-forward neural
network in the five-class mode with a combination of m = 300. Conversely, Figure 9b
demonstrates comparable outcomes between the support vector machine and deep feed-
forward network in the three-class mode with the m = 300 combination. In Figure 10, both
the support vector machine and deep feed-forward network exhibit similar, yet notably
better, results compared to other methods in both three-class and five-class modes.
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According to BASEL, there are two areas for LCR: one is above the 100% threshold,
considered a safe zone, and the other is below the threshold, indicating critical risk. This
study’s practical application was validated by the risk management office of the bank,
confirming the model’s efficacy in predicting fluctuations between safe and critical risk
zones as per BASEL guidelines, thus affirming its successful practical utility.
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5. Discussion

This study aimed to assess the impact of qualitative parameters on predicting bank
liquidity risk, employing news data alongside a bank’s liquidity index to build and evaluate
models using test data. The top-performing model, a deep neural network, achieved an
impressive 88.6% accuracy, supported by metrics like precision, recall, F1-score, and ROC-
AUC. Predicting liquidity risk remains challenging, with limited prior research compared
to credit or market risk, making the method proposed in this study a practical and cost-
effective approach to assess a bank’s risk position. Despite the uniqueness of this study’s
qualitative approach limiting comparisons with other studies, employing ANOVA and
logit/probit models (An 2017) revealed prediction accuracies of 88.8% for DNN and 87%
for SVM, surpassing a neural network model by Tavana et al. (2018) that achieved around
70%. A comparison with classic algorithms showcased the superior accuracy of the DNN
and SVM models, underlining their potential for liquidity risk prediction.

In a similar vein, other studies have explored stock price prediction using sentiment
analysis, exhibiting varied accuracies. A comparative analysis in Table 9 illustrates the
accuracies of various methods in predicting financial risk on stock prices, while Table 10
details the accuracies achieved in this study, with DNN demonstrating the highest accuracy
at 88.6%. These comparisons provide valuable insights into the effectiveness of different
approaches and affirm the robust performance of the DNN and SVM models in predicting
liquidity risk.

Table 9. Comparison of the results obtained from the analysis of news data to predict financial risk
index and stock price (Adhikari et al. 2023).

No. Author Dataset Effect Feature
Type Methods Accuracy

1
Schumaker
and Chen

2009

US financial
news

Stock prices
(intraday)

Noun
phrases SVM 58.2%

2
Schumaker
and Chen

2009

US financial
news

Stock prices
(intraday)

Noun
phrases SVR 59.0%

3
Groth and

Munter-
mann 2011

German
adhoc

announce-
ments

Stock prices
(daily)

Bag-of-
words SVM 56.5%
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Table 9. Cont.

No. Author Dataset Effect Feature
Type Methods Accuracy

4 Mittermayer
2004

US financial
news

Stock prices
(daily)

Bag-of-
words SVM -

5 Wüthrich
et al. 1998

Worldwide
general news

Stock prices
(daily)

Bag-of-
words

K-NN,
ANNs,

naïve Bayes

Not com-
parable

6 Li 2008 US corporate
filings

Stock prices
(daily)

Bag-of-
words Naïve Bayes Not

available

7
Antweiler
and Frank

2004

US message
postings

Stock prices
(intraday)

and
volatility

Bag-of-
words Bayes, SVM Not

available

8 Das and
Chen 2007

US message
postings

Stock and
index prices

(daily)

Bag-of-
words Combinations Not com-

parable

9 Tetlock
2007

US financial
news

Stock prices
(daily)

Bag-of-
words

Ratio of
negative
words

Not
available

10
Groth and

Munter-
mann 2011

German
adhoc

announce-
ments

Intraday
market risk

Bag-of-
words SVM Not com-

parable

11 Butler and
Kešelj 2009

US annual
reports

1-year
market drift N-Gram

Proprietary
distance
measure

Not com-
parable

Table 10. Comparison of the results obtained from the analysis of news data to predict financial risk
in this study.

No. Author Dataset Effect Feature
Type Methods Accuracy

1 Mirashk
et al.

Iran Fars
News
(daily)

LCR
monthly

N-Gram
-TFIDF

Feed-forward
neural

network
88.6%

2 Mirashk
et al.

Iran Fars
News
(daily)

LCR
monthly

N-Gram
-TFIDF SVM 87.04%

3 Mirashk
et al.

Iran Fars
News
(daily)

LCR
monthly

N-Gram
-TFIDF

Convolutional
neural

network
83.29%

4 Mirashk
et al.

Iran Fars
News
(daily)

LCR
monthly

N-Gram
-TFIDF

Logistic
regression 70.73%

Table 9 compares the results of various studies that applied different machine learning
techniques to predict financial risk and stock prices. The accuracies vary significantly, with
methods like SVM and SVR performing moderately well, achieving accuracy levels ranging
from 56.5% to 59%. The studies focus on different financial data, including US financial
news and corporate filings, with techniques like Bag-of-Words and Noun Phrase extraction.
The comparison demonstrates the challenges and limitations in predicting financial risks
using traditional methods.
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Table 10 presents the results of the current study, showcasing the performance of
different models—DNN, SVM, CNN, and Logistic Regression—in predicting liquidity
coverage ratio (LCR) from Iranian news data. The DNN model stands out, achieving the
highest accuracy of 88.6%, followed by the SVM model at 87.04%. The CNN and Logistic
Regression models perform relatively lower but still offer valuable predictive capabilities.
These results highlight the effectiveness of advanced deep learning techniques, particularly
in handling complex and dynamic financial data for liquidity risk prediction.

The superior performance of deep learning models, particularly convolutional neural
networks (CNNs), can be attributed to their capacity to capture complex patterns in high-
dimensional data. Unlike traditional models, CNNs automatically extract relevant features
from textual data, which allows them to better understand nuanced sentiment signals. This
capability is crucial in the context of liquidity risk, where sentiment can rapidly shift in
response to market events. Traditional models, such as logistic regression, demonstrated
lower predictive accuracy. This can be attributed to their reliance on manual their inability
to process unstructured text data effectively. The limited capacity of these models to capture
the dynamic nature of market sentiment highlights the necessity for more sophisticated
methodologies in risk prediction.

6. Conclusions and Future Works

The contribution of this study to the field of banking and finance is primarily its novel
integration of sentiment analysis into liquidity risk prediction models. This approach
introduces a qualitative parameter—news sentiment—into the traditionally quantitative
realm of liquidity risk management. By focusing on the Liquidity Coverage Ratio (LCR)
and employing advanced machine learning techniques, the study enhances the accuracy
of predicting liquidity positions in banks. This methodology, which accounts for external
signals like political and economic events, offers a more dynamic and real-time tool for risk
managers. Moreover, the research has significant policy implications for the banking sector,
especially in high-risk environments like Iran. It provides a complementary tool that can
aid regulatory bodies in monitoring liquidity risk, enabling more timely interventions. This
approach is particularly valuable for Islamic banks, where stricter regulations and unique
risk profiles exist. By complementing traditional risk measures, the study suggests a shift in
how liquidity risk could be managed, offering both academic and practical advancements
in financial risk prediction.

Our study underscores the promising potential of integrating sentiment analysis
for forecasting bank liquidity risk position, showcasing commendable results. The core
strength of our approach lies in the thoughtful selection of feature extraction and selection
methods, elevating classification accuracy and bolstering the efficacy of sentiment analysis.
Our innovative concept of incorporating news data for constructing features has proven
instrumental, significantly complementing conventional sentiment analysis methodologies.
This novel feature selection method has substantially enhanced classification accuracy,
mitigated noise, and minimized adverse effects inherent in machine learning-driven textual
news classification, leading to more precise predictions.

Incorporating the m = 500 and m = 300 news augmentation models for feature selection
enabled our models to achieve over 64% accuracy, reaching a pinnacle of 88.6% accuracy in
predicting three-class tags. For optimal implementation, datasets with substantial news
content and a clear index for prediction are pivotal. The validity of our findings was
reaffirmed through a separate validation dataset, affirming the robustness and replicability
of our approach.

The findings of this study have significant policy implications for risk management in
Iran’s banking sector. Given the high liquidity risk faced by Iranian banks, exacerbated by
economic sanctions and volatile political environments, the incorporation of real-time news
sentiment into liquidity risk forecasting can offer regulators and banks an early warning sys-
tem. This would allow banks to anticipate liquidity shortages and take preemptive actions,
such as adjusting reserves or managing loan portfolios, to mitigate risks. Furthermore, the
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study demonstrates the need for the Central Bank of Iran and other regulatory bodies to
consider qualitative signals, like news sentiment, in their supervisory frameworks, which
can enhance the robustness of liquidity stress tests and improve the overall stability of the
banking system. Implementing such models could also facilitate compliance with Basel
III regulations, particularly regarding liquidity coverage ratio requirements, by offering a
more dynamic and responsive risk monitoring tool.

In conclusion, this study operated under the assumption that its experimental frame-
work relied on Iranian banking data due to limitations in accessing international liquidity
risk and related news data in Iran. While recognizing the necessity for validation with
international data, such as from US or European banks, there exists a foundational rationale
justifying the proposed approach, which can be substantiated through further international
research efforts. Additionally, drawing from the insights of Mohammad et al. (2020),
Islamic banks are identified as more susceptible to liquidity risk due to stricter capital
regulations and credit risk, alongside significant impacts of long-term debts. Focusing
on Iranian banks, which face heightened liquidity challenges, this study introduced and
validated a novel approach utilizing news sentiment as a critical qualitative factor for
assessing liquidity risk in high-risk banking environments. Although there is potential for
similar risk selectivity among other high-risk banks internationally, additional studies are
imperative to confirm this generalization.

Considering that some news in Iran is censored, there may be a bias in news orienta-
tions based on government tendencies. Although this study acknowledges the presence
of such orientations, the impact of censorship on liquidity risks is evident. Further stud-
ies could investigate the effects of unbiased news sentiment on liquidity risks. Another
limitation of this study is the analysis of news sentiment in isolated periods. There might
be a cumulative effect of news sentiment across sequential periods. Future research could
explore whether a series of news items can produce butterfly effects or unprecedented
conditions using time series analysis methods.
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Appendix A. The Hyperparameter Tuning of Algorithms

Table A1. Comparison table and adjustment of hyperparameters related to logistic regression
algorithm.

Classifier Logistic Regression

Hyperparameters Bin Length
L = Triple L = Quintuple

C Solver Max_Iter Val_acc C Solver Max_Iter Val_acc

Values

M = 300

1 lbfgs 1000 66.82 1 lbfgs 1000 57.98
5 lbfgs 1000 71.51 10 lbfgs 1000 61.79
10 lbfgs 1000 71.58 15 lbfgs 1000 62.35
15 lbfgs 1000 71.04 17 lbfgs 1000 62.4
20 lbfgs 1000 70.41 19 lbfgs 1000 62.45

M = 500

1 lbfgs 1000 66.82 1 lbfgs 1000 57.77
5 lbfgs 1000 71.51 5 lbfgs 1000 65.11
10 lbfgs 1000 71.58 10 lbfgs 1000 66.82
15 lbfgs 1000 71.04 15 lbfgs 1000 67.29
20 lbfgs 1000 70.41 20 lbfgs 1000 68.31
40 lbfgs 1000 70.88 40 lbfgs 1000 68.07
70 lbfgs 1000 70.02 70 lbfgs 1000 68.31

Table A2. Comparison and adjustment of parameters related to the support vector machine algorithm.

Classifier SVM

Hyperparameters Bin Length
L = Triple L = Quintuple

C Solver Max_Iter Val_acc C Kernel Max_Iter Val_acc

Values

M = 300
10 rbf 2000 86.18 10 rbf 2000 82.64
15 rbf 2000 83.29 15 rbf 2000 82.78
12 rbf 2000 82.92 20 rbf 2000 82.73

M = 500

1 rbf 2000 77.52 1 rbf 2000 79.39
5 rbf 2000 86.42 5 rbf 2000 86.1
10 rbf 2000 86.18 10 rbf 2000 85.64
15 rbf 2000 85.79 15 rbf 2000 85.25
20 rbf 2000 86.03 20 rbf 2000 85.25
30 rbf 2000 86.1 30 rbf 2000 85.25

Table A3. Comparison and adjustment of parameters related to deep neural network algorithm.

Feed-Forward Neural Network

H
yperparam

eters

B
in

Length
L = Triple L = Quintuple

D
ense

U
nits

A
ctivation

O
ptim

izer

B
atch

Size

Epochs

V
al_acc

D
ense

U
nits

A
ctivation

O
ptim

izer

B
atch

Size

Epochs

V
al_acc

Values

300

1024-512-256-128 relu rms 8 32 81.69 1024-512-256-128 relu rms 16 17 82.73
512-256-128-64 relu adam 8 29 83.11 1024-512-512-256 relu adam 16 42 80.14
512-256-128-64 relu adam 16 45 82.92 512-256-64 relu rms 16 19 81.08

1024-512-256-128 relu rms 64 19 84.85
1024-512-256-128 relu rms 128 21 84.8
1024-512-256-128 relu rms 32 15 84.33

500

512-256-128-64 relu adam 8 14 82.12 512-256-128-64 relu rms 64 42 87.2
512-256-64 relu rms 8 24 84 256-128-64 relu rms 32 18 81.03

1024-512-128 relu rms 8 17 83.22 1024-512-256-128 relu rms 64 25 86.42
512-256-128 relu rms 16 24 85.25 512-256-128-64 relu adam 32 61 82.9
512-256-256 relu rms 32 20 86.18 512-256-128 relu rms 64 42 87.35
512-256-256 relu rms 64 23 86.96
512-256-256 relu rms 128 57 89. 31
512-256-256 relu rms 256 69 89.7
512-256-256 relu rms 512 68 88.29
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Table A4. Comparison and adjustment of parameters related to CNN algorithm.

CNN

B
in

Length

Triple Quintuple

Filters

K
ernelSize

PoolSize

D
ense

U
nits

A
ctivation

O
ptim

izer

B
atch

Size

Epochs

V
al_acc

Filters

K
ernelSize

PoolSize

D
ense

U
nits

A
ctivation

O
ptim

izer

B
atch

Size

Epochs

V
al_acc

300

32-
64-128 3 2 128 Relu adam 8 29 79 128-

256-512 3 2 512 relu rms 16 16 80

64-128-256 3 2 256 Relu adam 8 25 82 64-128-256 3 2 256 relu rms 8 26 77
16-
32-

64-128
3 2 128 Relu adam 8 27 77 64-

64-128 3 2 128 relu rms 16 20 77

32-
64-128 3 2 128 relu rms 64 15 77

500

32-
64-128 3 2 128 Relu ad

am 64 29 81 64-
128 3 2 128 relu adam 32 20 77

32-
32-64 3 2 64 Relu ad

am
12
8 33 79 32-

64-128 3 2 128 relu adam 64 19 75

32-
64 3 2 64 Relu ad

am 32 43 82 16-
32-64 3 2 64 relu adam 32 28 73

64-
128 3 2 128 Relu ad

am 32 21 84 64-128-256 3 2 256 relu adam 64 30 80

128-
256 3 2 256 Relu ad

am 32 35 83 64-128-128 3 2 128 relu adam 64 23 77

Appendix B. Confusion Matrices of the Tuned Algorithms
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Figure A1. Confusion matrix result of logistic regression method. (a) Confusion matrix obtained
from 3-class l = 3, combination type m = 500, and c = 10; (b) confusion matrix obtained from l = 5,
m = 500, and c = 20; (c) confusion matrix resulting from l = 3, m = 300, and c = 10; (d) confusion
matrix resulting from l = 5, m = 300, and c = 17.
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Figure A4. Confusion matrix results of convolutional neural network method. (a) Confusion matrix
resulting from 3-class l = 3, type of combination m = 500; (b) confusion matrix resulting from l = 5,
m = 500; (c) confusion matrix resulting from l = 3, m = 300; (d) confusion matrix resulting from l = 5,
m = 300. Results of the test data using the CNN algorithm.

Notes
1 Natural language processing.
2 Term frequency inverse document frequency.
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