
Citation: Pirvu, Traian A., and

Shuming Zhang. 2024. Spread Option

Pricing Under Finite Liquidity

Framework. Risks 12: 173. https://

doi.org/10.3390/risks12110173

Academic Editor: Hailiang Yang

Received: 2 September 2024

Revised: 23 October 2024

Accepted: 28 October 2024

Published: 31 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Spread Option Pricing Under Finite Liquidity Framework
Traian A. Pirvu 1,* and Shuming Zhang 2

1 Department of Mathematics and Statistics, McMaster University, 1280 Main Street West,
Hamilton, ON L8S 4K1, Canada

2 Independent Researcher, Toronto, ON M5V 0P5, Canada; shumingzhang9957@gmail.com
* Correspondence: tpirvu@math.mcmaster.ca

Abstract: This work explores a finite liquidity model to price spread options and assess the liquidity
impact. We employ Kirk approximation for computing the spread option price and its delta. The
latter is needed since the liquidity impact is caused by the delta hedging of a large investor. Our main
contribution is a novel methodology to price spread options in this paradigm. Kirk approximation in
conjunction with Monte Carlo simulations yields the spread option prices. Moreover, the antithetic
and control variates variance reduction techniques improve the performance of our method. Numeri-
cal experiments reveal that the finite liquidity causes a liquidity value adjustment in option prices
ranging from 0.53% to 2.81%. The effect of correlation on prices is also explored, and as expected the
option price increases due to the diversification effect, but the liquidity impact decreases slightly.

Keywords: pricing spread options; finite liquidity market model; Kirk approximation formula

1. Introduction

This paper explores liquidity value adjustment (LVA) of pricing spread options in a
finite liquidity market model. A Black Scholes setting is considered with liquidity costs on
the trading of a risky asset, and the latter is driven by the delta hedging of a large trader.

A spread option is a financial instrument that gives the holder rights to exchange
the price difference between two risky assets with a specific strike price at maturity. This
financial is very popular in the commodity market, such as the oil market. The profit
margin, called crack spread, is measured by the difference between the output revenue
(petroleum product) and input cost (crude oil). Since it can be influenced by many factors
like seasonality and economic situation, the crack spread option becomes an essential tool
for refinery producers to secure their profit margins.

Let us go over the literature on pricing spread options. In the special case of zero
strike, the spread option becomes an exchange option, which can be priced using a Black
Scholes-type formula derived by Margrabe (1978). This is no longer the case for a spread
option (with nonzero strike), and several approaches have been undertaken. One of these
is the Kirk approximation, which offers an approximate expression for the price, see Kirk
(1995), Li et al. (2008), Lo (2013), and Bjerksund and Stensland (2006). One advantage of this
approach is that it extends to the multi-asset spread option (with three or more underlyings)
and other types of options, see Li et al. (2010), Lau and Lo (2014), and Chen and Deng (2024).
Other methods for pricing spread options rely on Monte Carlo simulations, see Korn and
Zeytun (2013); numerical methods, see Heidarpour-Dehkordi and Christara (2018); Fourier
inversion, see Hurd and Zhou (2010); and Copula methods, see Berton and Mercuri (2024).
An overview of these methods is presented in the work of Carmona and Durrleman (2003).

The Black Scholes model assumes perfect liquidity, constant interest rate, constant
volatility, and correlations. These assumptions can be relaxed to make the model more
realistic, see Levendis and Maré (2022), Feng et al. (2014), Pasricha and He (2023), and
Wang (2022). Our work relaxes the perfect liquidity assumption. The pioneer work in this
direction is that of Almgren and Chriss (2000), and the follow-up works are those of Liu
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and Yong (2005) and Wilmott and Schönbucher (2000). The aforementioned papers deal
with single asset options; for spread options, we mention Yazdanian et al. (2014), Yazdanian
and Pirvu (2016), Zhang and Pirvu (2020), and Zhang and Pirvu (2021).

Let us point out a recent research stream on pricing options with liquidity risk: Pasricha
and He (2023), Pasricha et al. (2022), He et al. (2024), He and Lin (2023), and He and Lin
(2024). These works undertake a different approach to liquidity, assuming an exogenous,
trade-independent liquidity impact.

Our paper continues the research on pricing spread options with liquidity impact
started by Yazdanian et al. (2014), Yazdanian and Pirvu (2016), Zhang and Pirvu (2020),
and Zhang and Pirvu (2021). The novelty is the use of Kirk approximation in conjunction
with Monte Carlo simulations. We revisit the Kirk approximation and employ it to obtain
the spread option delta necessary to assess the liquidity impact. Indeed, we consider the
finite liquidity framework in which the price impact is caused by a large trader who is a
delta hedger; thus, its delta enters the price dynamic of the illiquid underlying asset. The
risk-neutral pricing formula available in this paradigm makes it possible to compute the
spread option price by Monte Carlo simulations. One needs to simulate the illiquid asset
price throughout time since its distribution is unknown due to the liquidity impact, and
this is performed through the Euler–Maruyama scheme. The simulation results point to an
option price liquidity value adjustment (LVA) ranging from 0.53% to 2.81%. The correlation
effect on the LVA is explored, and it turns out that the LVA is decreased by a decrease in
correlation. Our methodology extends naturally to the multi-asset spread option (with
three or more underlyings), as it relies on the Kirk approximation, which is available in this
setting.

Let us go over the contribution of this paper. We present a novel methodology to price
the spread options in a finite liquidity framework. The illiquid asset price is nonlinear and
is affected by the trading strategy of a large trader. This is the delta hedging in the full
liquidity model, and due to the lack of a closed-form formula for it, we approximate it by
means of Kirk approximation. Our approach is a combination of Monte Carlo simulations
and Kirk approximation. Enhancements of Monte Carlo simulations, the antithetic and
control variates variance reduction techniques, are employed in our numerical experiments.
The LVA due to the liquidity impact is explored and analyzed.

The remainder of this paper is organized as follows: Section 2 presents the spread
options, and Section 3 the full liquidity model. Section 4 presents the finite liquidity
framework, and Section 5 presents the numerical results. Section 6 concludes the paper
and points to future research.

2. Spread Options

Spread options are financial contracts that give the right to exchange assets for a
strike price (the spread). In the following, we will focus on the use of spread options in
commodity markets. Quality spread options are based on the differences between the
prices of the grades of the same commodity; for instance, crack spread options and the
heating of oil/crude oil or gasoline/crude oil. The rationale for buying a crack spread is
to hedge the difference between their input costs and output prices. In the case of an oil
crack spread, a typical buyer of this product will possess or buy crude oil and sell refined
products, such as in the case of a petroleum refinery. Another possible use of an oil crack
spread is to hedge against the equity value of a petroleum refinery. There are several factors
which affect a crack spread, and they are related to their effects on the demand/supply. In
the case of an oil crack spread, winter will make this product more valuable as the demand
for heating oil increases; on the other hand, recession times will have the opposite effect as
the demand for gasoline decreases.

3. The Full Liquidity Model

In this section, we revisit the full liquidity model and some methods for pricing
exchange options and spread options.
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3.1. Correlated Geometric Brownian Motion

Our financial market mode consists of a money market account and two risky under-
lying assets. The money market account accrues interest at the riskless rate r > 0. The price
dynamics of the risky assets are modeled by two correlated Geometric Brownian Motions
(GBMs). Let us start with two independent Brownian motions W1(t), W2(t) and define a
pair of correlated Brownian motions as follows:

Ŵ1(t) = W1(t), Ŵ2(t) = ρW1(t) +
√

1 − ρ2W2(t), dŴ1(t)dŴ2(t) = ρdt, where ρ is a
correlation coefficient and ρ ∈ [−1, 1].

The prices of the two risky underlying assets under the real-world probability P mea-
sure are:

S1(t) = S1(0)e(µ1−q1− 1
2 σ2

1 )t+σ1Ŵ1(t)

S2(t) = S2(0)e(µ2−q2− 1
2 σ2

2 )t+σ2Ŵ2(t)

where:

qi = the convenient yield (like dividends in the equity market)

µi = the deterministic drift for the corresponding asset

σi = the deterministic volatility for the corresponding asset

They satisfy the following stochastic differential equations (SDEs):

dS1(t) = µ1S1(t)dt + σ1S1(t)dŴ1(t)

dS2(t) = µ2S2(t)dt + σ2S2(t)dŴ2(t)

Let Q be the risk-neutral probability measure and θ the market price of risk, which is
given by

θ =

[
µ1−r

σ1
µ2−r

σ2

]
Then, the two-dimensional Brownian motion under Q, denoted ŴQ(t), is given by

dŴQ(t) = dŴ(t) + θdt,

and

dS1(t) = rS1(t)dt + σ1S1(t)dŴQ
1 (t)

dS2(t) = rS2(t)dt + σ2S2(t)dŴQ
2 (t)

(1)

3.2. Exchange Option and Margrabe Formula

The payoff of a European-style exchange option is (S1(T)− S2(T))+; it basically gives
the right but not the obligation to exchange an asset with price S1 for an asset with price S2
at a predetermined maturity T. By using the risk-neutral pricing formula, one can derive
the price as a conditional expectation under the risk-neutral measure:

C(t, S1(t), S2(t)) = EQ
t [(S1(T)− S2(T))+] (2)

William Margrabe (see Yazdanian et al. (2014)) derived this expectation in closed
form as

C(t, S1(t), S2(t)) = S1(t)e−q1τ N(d1(t))− S2(t)e−q2τ N(d2(t)),

where:
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τ = T − t

d1(t) =
log S1(t)

S2(t)
+ (q2 − q1 +

σ2

2 )

σ
√

τ

d2(t) = d1 − σ
√

τ

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2

ρ = correlation between S1 and S2,

In Table 1 below, we present the prices of an exchange option for a set of parameters,
which we use later on to test the convergence of the Monte Carlo simulation price of a
spread option by setting K = 0.

Table 1. Exchange option price.

Parameters Values

Convenient yield (q) [0.03, 0.02]

Initial price [110, 100]

Vol [0.1, 0.15]

Correlation 1

Strike 0

τ 1

r 0.05

Price 8.821

3.3. Kirk Approximation of Spread Option

The payoff of a European-style spread option is (S1(T)− S2(T)− K)+, where K > 0
is the strike price. It turns out that finding an analytical solution for the spread option is no
longer possible, since the linear combination of log-normal processes (sum of GBMs) is not
log-normally distributed.

Fortunately, there are several ways to approximate the price of a spread option; in this
paper, we adopt Kirk approximation (see Kirk (1995)). Given two risky assets following
correlated GBMs, the price at time t, given S1(t), S2(t), denoted V(t, S1(t), S2(t)), has the
following Kirk approximation:

V(t, S1(t), S2(t)) ≈ .C(t, S1(t), S2(t)) = e−rτ(F1N(d1)− (F2 + K)N(d2)) (3)

where:

τ = T − t

Fi = e(r−qi)τSi(t) is the value of future contract of Si

d1 =
log F1

F2+K + σ2

2

σ
√

τ

d2 = d1 + σ
√

τ

σ =
√

σ2
1 + σ2

e f f − 2ρσ1σe f f

σe f f = σ2

(
F1

F2 + K

)
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The idea behind this approximation is to pretend that S2(T) + K is log-normally
distributed. It has been shown that the Kirk approximation is a good approximation when
the strike price K is far less than S2; indeed, in such a case, S2(T) + K is close to log-normal
(see Lo (2013) for more on this). In our case illustration, S2(t) = 100 >> K = 5.

The reason why this approximation is appealing to us is that it yields an analytical
formula of the value of the spread option, which enables us to calculate the corresponding
Greeks, and this will be an essential part of the finite liquidity model considered later on.

In the following Table 2, we test the accuracy of the Kirk approximation by comparing
it with the Monte Carlo simulation results.

Table 2. Kirk approximation value.

Parameters Values

Convenient yield (q) [0.03, 0.02]

Initial price [110, 100]

Vol [0.1, 0.15]

Correlation 1

Strike 5

τ 1

r 0.05

Price 4.442

3.4. Delta of Kirk Approximation

The Kirk approximation (3) leads to the following deltas:

∆1 =
∂C
∂F1

= e−rτ N(d1) (4)

∆2 =
∂C
∂F2

=

(
−e−rτ N(d2) + e−rτϕ(d2)(F2 + K)

√
τ

∂σ

∂F2

)
where:

∂σ

∂F2
=

(
σ2K

σ

)(
σ2

F2
F2+K − ρσ1

(F2 + K)2

) (5)

In our Monte Carlo simulations (Table 3), we set the number of scenarios m to 100,000
and the time step dt to 1 trading day so that n equals 252. We conclude that the Kirk
approximation works well for the two-asset case since it is very close to the Monte Carlo
result (the latter is accurate as it agrees with the result of Bjerksund and Stensland (2006)).

Table 3. Monte Carlo simulation.

Parameters Values

Convenient yield (q) [0.03, 0.02]

Initial price [110, 100]

Vol [0.1, 0.15]

Correlation 1

Strike 5

τ 1

r 0.05
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Table 3. Cont.

Parameters Values

m 100,000

dt 1
252

n 252

Price 4.456

3.5. Test of Accuracy of Delta from Kirk Approximation

Recall that in Section 3.4, we talked about the delta of the spread option derived from
the Kirk approximation. Next, we test the accuracy of this theoretical approximation of the
delta by comparing it with the Monte Carlo simulation result. It turns out that

∆1 = e−rτ N(d1) = 0.7767

∆2 =

(
−e−rτ N(d2) + e−rτϕ(d2)(F2 + K)

√
τ

∂σ

∂F2

)
= −0.7638

The finite difference method and the Monte Carlo simulation yield:

∂C
∂S1

=
C(S1 + h, S2, K)− C(S1 − h, S2, K)

2h
, ∆1 =

∂C
∂S1

∂S1

∂F1

∂C
∂S2

=
C(S1, S2 + h, K)− C(S1, S2 − h, K)

2h
, ∆2 =

∂C
∂S2

∂S2

∂F2

From the below Table 4, one can see that the results are almost the same; thus, the
deltas based on Kirk approximation are an accurate approximation.

Table 4. Delta comparison.

h 0.001 0.011 0.021 0.031 0.041 0.051

∆1 0.7757 0.7752 0.7772 0.7737 0.7725 0.7758

∆2 −0.7686 −0.7662 −0.7632 −0.7668 −0.7669 −0.7649

4. Finite Liquidity Model

We know that one of the limitations of the Black Scholes model is the assumption of
perfect liquidity. This is not the case in the real world, especially in the commodity market,
as there are several factors that can affect the market supply and demand of an asset, thus
causing movements in its equilibrium price, dictated by supply and demand. This in turn
makes the asset price more volatile and nonlinear as it depends on the order size. In our
model, we define the term “liquidity” as the ability to trade any amount of assets at the
current market price without additional cost. On the other hand, we refer to a “finitely
liquid asset” when the order size (buy or sell) of this asset impacts its price. We are going
to explore in the following sections the effect of this price impact.

4.1. SDE under Finite Liquidity Framework

In our model, we define asset one as the illiquid (finitely liquid) asset, while asset two
is perfectly liquid. This is the case for an oil crack spread, as the gasoline is a liquid asset
while the crude oil is less liquid. Next, let us introduce our finite liquidity paradigm. We
take the large trader approach, meaning that only the trades of a large trader affect the
price, and we assume that the large trader is a delta hedger. The liquidity impact on the
second asset is introduced through the SDEs governing the price dynamics. Given two
independent Brownian motions W1(t), W2(t), the differentials of the two asset prices are
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dS1(t) = µ1S1(t)dt + σ1S1(t)dW1(t) + λ(t, S1(t))d∆1(t, S1(t), S2(t))

dS2(t) = µ2S2(t)dt + σ2S2(t)(ρdW1(t) +
√

1 − ρ2dW2(t))

where:

f (t, s1, s2) = ∆F1 = e−rτ N(d1)

λ(t, s1) =

γ(1 − e−βτ
3
2 ), if S̄1 < s1 < S̄2

0, otherwise

(6)

As one can see, the second asset is perfectly liquid, as it does not have a price im-
pact entering its dynamics, while the first asset is finitely liquid through the impact of
λ(t, S1(t))d∆1(t, S1(t), S2(t)), which appears in the differential. Let WQ

1 (t), WQ
2 (t) be the

independent Brownian motions under the risk-neutral Q measure. For the SDE of asset
one, we add a liquidity value adjustment term, and this is the product of a deterministic
function lambda and the change in the trade of the large trader, d∆1 (since the large trader
is a delta hedger). The price increases when the large trader sells because of increased
demand, and the opposite happens when they buy. The λ function amplifies or eases the
liquidity impact when the underlying asset price S1 is in some range (S̄1, S̄2).

Let us point out that the above SDE governing the price of asset one is not in canonical
form, as d∆1(t, S1(t), S2(t)) contains dS1(t). The way out of this predicament is presented
in the next subsection.

4.2. Transformations of SDEs

The main objective is to transform the SDEs from Equation (6) to a canonical form
(with only dWQ(t) and the dt term on the left-hand side). This is accomplished as follows:

1. Derive d∆1(t, S1(t), S2(t)) by using the Ito formula, which results in 2 quadratic
variations and 1 cross variation term.

2. Plug the d∆1 term back into dS1.
3. Compute the quadratic variation and cross variation by using the temporary dS1(t).
4. Compute the quadratic variations and cross variations.

Following the above approach (for more details on it, see Yazdanian et al. (2014) and
Yazdanian and Pirvu (2016)), one obtains the SDEs:

dS1(t) = rS1(t)dt + σ̄11dŴ1
Q
(t) + σ̄12dŴ2

Q
(t)

dS2(t) = rS2(t)dt + σ2dŴ2
Q
(t)

(7)

where
ŴQ

1 (t) = WQ
1 (t), ŴQ

2 (t) = ρWQ
1 (t) +

√
1 − ρ2WQ

2 (t)

σ̄11 =
σ1S1(t)

1 − ∂∆1
∂S1

, σ̄12 =

∂∆1
∂S2

σ2S2(t)

1 − ∂∆1
∂S1

∂∆1

∂S1
=

∂ f
∂d1

∂d1

∂F1

∂F1

∂S1
= N′(d1)

1
F1σ

√
τ

e−q1τ

∂∆1

∂S2
=

∂ f
∂d1

∂d1

∂F2

∂F2

∂S2
= N′(d1)

(
−d2

σ

∂σ

∂F2
− 1

σ
√

τ(F2 + K)

)
e−q2τ

We call the above asset pricing model a partial feedback model because only a large
trader affects the price of asset one.
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5. Monte Carlo Simulations

The risk-neutral pricing formula makes it possible to compute the spread option price
by Monte Carlo simulations. Some work is required to simulate S1(T), as its distribution
is not known, unlike the perfect liquidity case. We use the Euler–Maruyama method
(Algorithm 1) to discretize the two SDEs in Equation (7) so that the value of the dSi(t) term
is approximated by the ∆Si term, which represents the change in asset price within a small
period of time ∆t. In this way, we can simulate the future asset price by constructing a
Markov chain, where the future price equals the sum of the simulated current price and the
∆Si term.

Sn+1 = Sn + rSn∆t + σ̄(Sn, tn)∆WQ
n

∆t = tn+1 − tn

∆WQ
n = WQ

n+1 − WQ
n ∼ N(0,

√
∆t)

Algorithm 1 Euler–Maruyama Method

procedure SET UP INITIAL PARAMETERS(S(0), τ, vol, ρ, r, K, q, m, n, γ, β)
1. Initialization of Brownian Motion increments for two assets
∆W = np.random.multivariate_normal ∗ np.sqrt(dt)
2. Define all functions for partial derivatives fS1 , fS2 ...
3. Define lambda function

end procedure

procedure GENERATE MARKOV CHAIN(Sn+1 = Sn + ∆S)
for i in range(1, n+1) do

update lambda function based on the previous result Si−1
update stochastic part based on the previous result Si−1

Si = Si−1 + rSi−1∆t + σ̄(Si−1, ti−1)∆WQ
i

end for
Payoff = S1(T)− S2(T)− K
filter Payoff[Payoff<0]=0

end procedure

procedure PRICING

V = e−rτ

N ∑N
i=1(S1(T)− S2(T)− K)+

end procedure

5.1. Test of Accuracy

The accuracy of this approximation method can be tested by comparing the analytical
solution for an exchange option (calculated from the Margrabe formula) and Monte Carlo
simulations by setting γ and K equal to 0. From the result (Table 5), we can conclude that
our approach works well.

Table 5. Test of accuracy.

Parameters Values

Convenient yield (q) [0.03, 0.02]

Initial price [110, 100]

Vol [0.1, 0.15]

Correlation 1

Strike 0

τ 1
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Table 5. Cont.

Parameters Values

r 0.05

m 100,000

dt 1
252

n 252

Monte Carlo price 8.8125

Analytical price 8.821

5.2. Model Performance by Naive Monte Carlo

We obtain the following results (Table 6) by running Monte Carlo simulations and by
choosing parameter values for β, γ, and the range of liquidity impact.

Table 6. Performance comparison.

Parameters Values

γ 0 and 0.2

β 100

s̄1 50

S̄1 200

m 10,000

dt 1
252

Perfect liquidity γ = 0 4.42363

Finite liquidity γ = 0.2 4.4937

From the above result, we can see a 1.58% increase in option price with the given
parameters, due to the liquidity adjustment term, which makes the price of asset one
more volatile, and this increases the need for protection against price variations given by
the spread option. Moreover, naive Monte Carlo can be improved by variance reduction
techniques such as antithetic and control variates, and this is our next topic.

5.3. Antithetic Variates

This variance reduction procedure works as follows:

1. Generate
S+

i = Si−1 + rSi−1∆t + σ̄(Si−1, ti−1)∆WQ
i

S−
i = Si−1 + rSi−1∆t − σ̄(Si−1, ti−1)∆WQ

i

2. Based on the results from the above step, we generate a pair S+
i (T), S−

i (T).

3. Obtain the antithetic payoff S+
i (T)+S−

i (T)
2 .

5.4. Control Variates

Let X = (S1(T)− S2(T)− K)+. This variance reduction procedure works as follows:
find another random variable Y such that:

E[Y] = E[(S1(T)− S2(T)− K)+],

and
Y = X + b[C − E[C]],
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where C is the control variable whose expectation is known in closed form and b is a scalar.
The optimal value of b is

b =
−Cov(X, C)

Var(C)
,

and it can be found by naive Monte Carlo with a large number of scenarios. The choice
of C is ( S1(t)

S2(t)
− K∗)+, where K∗ = K

S2(0)
, in a perfectly liquid model, being the payoff of a

European call option whose expectation is known in closed form (being given by the Black
Scholes formula).

Based on Table 7, one can see that both variance reduction methods give closed results,
while the antithetic method gives the most narrow confidence interval, so we shall use the
antithetic method for all the following Monte Carlo results.

Table 7. Variance reduction.

Method Values 95% Confidence Interval

Naive MC 4.4937 (4.4720, 4.5154)

Antithetic MC 4.4810 (4.4786, 4.4833)

Control variate MC 4.4841 (4.4785, 4.4897)

5.5. Liquidity Impact on Price with Respect to Beta and Gamma

The liquidity impact, or LVA, is calculated as follows:

CEuler(τ = 0.5, β, γ)− CKirk(τ = 0.5)
CKirk(τ = 0.5)

,

where CEuler denotes the price obtained through Monte Carlo simulations in the finite
liquidity setting and CKirk is the price obtained via Kirk approximation in a perfectly liquid
framework. Next, choose the τ to be 0.5 and the rest of the parameters to be the same as in
the previous section. The results (see Figures 1–3) are calculated by antithetic Monte Carlo
with n = 10,000. The correlation is set to 1.

One finding is that the LVA is increasing in γ and β. This fact is expected since
the amplifying factor of the liquidity impact increases in γ and β. The increase is more
pronounced if we increase both of them simultaneously; the increase ranges from 0.53%
to 2.81%.

Next, we present the results (see Figures 4–6) when correlation is set to 0.75. As
expected, the option price increases due to the diversification effect, but it is interesting to
point out that liquidity impact on price decreases slightly.

Figure 1. Kirk price, correlation 1.
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Figure 2. Finite liquidity price, correlation 1.

Figure 3. LVA, correlation 1.

Figure 4. Kirk price, correlation 0.75.
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Figure 5. Finite liquidity price, correlation 0.75.

Figure 6. LVA, correlation 0.75.

5.6. Liquidity Impact on Price with Respect to Time to Maturity

The plot in Figure 7 shows the finite liquidity model performance of the spread option
price with respect to τ with a fixed value of γ and β. One can see that the price calculated in
the partial liquidity model is always higher than the price under the perfectly liquid setting.
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Figure 7. Liquidity impact on price with respect to tau.

6. Conclusions and Future Research

The finite liquidity framework is considered following the large trader perspective.
The latter is a delta hedger and its hedge impacts the price of an underlying asset, and we
refer to this as the liquidity impact. Our work designs a novel approach to price spread
options in this finite liquidity setting. This is achieved by combining Kirk approximation
with Monte Carlo simulations. This methodology is further improved by means of the
antithetic and control variates variance reduction techniques. Numerical experiments
reveal the LVA on option prices due to the liquidity impact on underlying asset price. The
LVA increases when the liquidity impact amplifying factor, or the correlation of the two
underlying assets, increases. Our approach extends naturally to multi-asset options given
closed-form formulas or approximations available in the full liquidity model; there are
some works available on this, such as those of Li et al. (2010), Lau and Lo (2014), and Chen
and Deng (2024). We leave the implementation of this methodology to multi-asset options
as a topic for future research.
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