
Citation: Blanc-Blocquel, Augusto,

Luis Ortiz-Gracia, and Simona

Sanfelici. 2024. Climate-Related

Default Probabilities. Risks 12: 181.

https://doi.org/10.3390/

risks12110181

Academic Editor: Qiji Zhu

Received: 18 September 2024

Revised: 29 October 2024

Accepted: 11 November 2024

Published: 14 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Climate-Related Default Probabilities
Augusto Blanc-Blocquel 1,2, Luis Ortiz-Gracia 3,4 and Simona Sanfelici 5,*,†

1 Departamento de Finanzas, Facultad de Ciencias Empresariales, Universidad Austral, Paraguay 1950,
Rosario 2000, Argentina; ablancblocquel@austral.edu.ar

2 Departament d’Estadística i Investigació Operativa, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain

3 Departament d’Econometria, Estadística i Economia Aplicada, Universitat de Barcelona (UB),
Av. Diagonal, 690, 08034 Barcelona, Spain; luis.ortiz-gracia@ub.edu

4 RISKcenter, Institut de Recerca en Economia Aplicada (IREA), Universitat de Barcelona (UB),
Av. Diagonal, 690, 08034 Barcelona, Spain

5 Department of Economics and Management, University of Parma, 43125 Parma, Italy
* Correspondence: simona.sanfelici@unipr.it
† Member of the INdAM Research Group GNCS, 00185 Rome, Italy.

Abstract: Climate risk refers to the risks associated with climate change and has already started to
impact various sectors of the economy. In this work, we focus on the impact of physical risk on the
probability of default for a firm in the agribusiness sector. The probability of default is estimated
based on the Merton model, where the firm defaults when its asset value falls below the threshold
defined by its liabilities. We study the relationship between the stock value of the firm and global
surface temperature anomalies, observing that an increase in temperature negatively affects the stock
value and, consequently, the asset value of the firm. A decrease in the asset value of the firm translates
into an increase in its probability of default. We also propose a model to assess the exposure of the
firm to transition risk.

Keywords: climate risk; credit risk; probability of default; Merton model; temperature anomalies;
breakpoint; wavelet regression; Haar wavelets
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1. Introduction

Climate risk refers to the risks associated with climate change and has already begun
to impact various sectors of the economy, including agriculture, fisheries, and tourism, to
name just a few. There are two types of risks linked to climate change: physical risk, which
is related to extreme weather events, and transition risk, which arises from the shift from a
carbon-intensive economy to a low-carbon economy.

Given the intricacy of the subject, an extensive body of research has been developed
in the last two decades on the relationship between climate change exposure on the one
side and firm credit risk, pricing of financial assets, and investment portfolio allocation on
the other side (see Gianfrate 2018; Gianfrate and Peri 2019; Oikonomou et al. 2014).

Bauer and Hann (2010) analyzed environmental management and its implications for
bond investors. It has been proven that poor environmental practices influence the credit
merit of borrowing firms through the legal, reputational, and regulatory risks associated
with environmental incidents. In contrast, firms with proactive environmental engagement
benefit from a lower cost of debt financing. Using a panel least squares regression, Capasso
et al. (2020) investigated the relationship between climate-related risks and firm creditwor-
thiness, measured by the distance to default. Companies with larger carbon footprints are
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relatively more exposed to progressively stricter climate-related regulations. Consequently,
their future cash flows and, hence, firm asset values, are likely to be influenced to a larger
extent than those of companies with smaller carbon footprints. Therefore, companies with
high carbon footprints are perceived by the market as more likely to default. These findings
clearly indicate that financial markets are already factoring in the climate change exposure
of listed companies and that exposure to climate risks affects the creditworthiness of loans
and bonds issued by corporations. Ilhan et al. (2020) estimated the effects of carbon emis-
sions on downside risk as reflected in the options market. The authors found that higher
carbon emissions increase downside risk and that the cost of option protection against
downside tail risks is greater for firms with more carbon-intensive business models.

The literature related to the link between climate and financial risk is rather recent and
some of it is controversial. In a recent review, Chakrabarty and Nag (2023) analyzed many
articles on the estimation of carbon risk and hedging strategies based on Markowitz’s mean-
variance formulation or capital asset pricing model (CAPM) approaches. Risk measures
are classified into two broad groups, i.e., Fama–French-extended (FFE) models and linear
risk models (LRMs). The conclusion is that there is a lack of consensus about the effects
of carbon risk on stock prices. Campiglio et al. (2023) developed a critical analysis of the
literature concerning the impact of climate risks on financial asset prices. They discussed
studies showing that both physical and transition risks can trigger a revaluation of financial
assets through multiple channels. Their analysis suggests that climate-related risks can
have important implications on financial stability. Battiston et al. (2017) analyzed the
impact of climate change on the value of assets held by banks and financial companies. By
adopting a network approach, the authors examined how climate policy risk can propagate
through the financial system. Thus, climate change risk may potentially pose systemic
threats to global financial stability.

Recent studies have proposed new approaches to climate financial risk; for example,
see the natural capital analysis and climate VaR by Dietz et al. (2016). Garcia-Jorcano and
Sanchis-Marco (2024) analyzed the connection between global and regional mean sea level
rise, used as proxies for climate risk, and financial market risk using VaR and a coherent
risk measure based on quantile and expectile regression methods. Their findings indicate
that measures of sea level rise have contrasting effects on different financial and economic
sectors. In particular, the insurance sector exhibits the highest risk premium, while the oil
and gas sector bears the highest risk cost.

Among the risk measurement procedures currently used by institutions and super-
visors (policymakers, regulators, and investors) to mitigate future physical risk, some
commonly used practices include risk scores, scenario analysis, stress testing, and sen-
sitivity analysis. Finally, we should mention that the increase in severe weather events
predicted by most climate scientists has a significant impact on the insurance industry as
well. Insurers must adapt pricing strategies, use innovative technologies, and develop new
models to measure, predict, and mitigate risks.

In our work, we put forward a methodology to calculate the impact of an increase
in the global surface temperature on the probability of default (PD) of a company from
the agriculture sector. As pointed out in Campiglio et al. (2023) and the references therein
(Anttila 2016; Choi et al. 2020; Griffin et al. 2019), extreme temperatures have a negative
impact on asset prices in all sectors. Moreover, Cuculiza et al. (2023) measured a firm
sensitivity to temperature changes by regressing a stock’s excess return on the market factor
and the temperature anomaly variable.

We performed a regression analysis of the firm’s stock value using the S&P 500 (SPX)
and temperature anomalies (TAs) as predictors. The results indicate that an increase in
TA has a negative impact on the stock value of the firm considered in this study. When
modeling the TA time series, it is crucial to identify points in time where significant changes
occur in the data behavior. These points are called breakpoints (BPs). We modeled the TA
time series using segmented linear regression (SLR), with BPs estimated through wavelet
analysis. We further investigated whether quantile regression provides a better model fit
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than wavelet analysis, but concluded that this was not the case for modeling TA data series.
We calibrated the Merton model using real stock data from the company and estimated the
PD based on the likelihood that the firm’s asset value falls below its liabilities. A sensitivity
analysis is given, facilitated by the closed-form PD formula. We used the regression model
to forecast future stock values influenced by predicted TA and estimated a new PD. It is
worth noting that the research method presented in this work is limited to publicly listed
companies, as it relies on the firm’s stock values quoted in the market. For non-listed
companies, a similar methodology could be used based on the firm’s accountability. Finally,
transition risk is studied and actions on climate-related risks are recommended.

This paper is organized as follows. In Section 2, we present the econometric model
as well as the wavelet analysis on TA. Section 3 is devoted to the estimation of a firm’s
PD based on the Merton model. In Section 4, we propose a model to study to what
extent a listed firm is exposed to transition risk. Section 5 gives some recommendations to
policymakers, risk managers, and investors in regard to the analysis carried out. Finally,
Section 6 concludes the article.

2. Econometric Model and Temperature Anomaly Modeling

In order to provide a real-world example, we model the stock of a company with
activities in the agricultural sector. For the sake of anonymity, we refer to the company
by the acronym ‘ABF’, which stems from an agribusiness firm. The agricultural sector
is an important component of the economy and it might be impacted by climate change.
The explanatory variables of our regression model are SPX and TA. We use monthly data
for temperature anomalies, measured in degrees Celsius, gathered from www.ncei.noaa.
gov/(accessed on 2 November 2023) (the National Centers for Environmental Information),
as in Cuculiza et al. (2023). Monthly financial data for the quoted SPX and ABF stocks were
obtained from Yahoo Finance (accessed on 2 November 2023).

In Figure 1, we plot the global land and ocean TA corresponding to the period from
January 1850 to September 2023. The concept of temperature anomaly refers to a departure
from a long-term average taken as a reference value. If the value of the anomaly is positive,
then it indicates that the observed temperature is higher than the value taken as a reference.
If the value of the anomaly is negative, then the observed temperature is below the reference
value. The global time series was produced from the Smith and Reynolds land and ocean
dataset (see Smith et al. 2008). The dataset consists of monthly average temperature
anomalies measured on a 5◦× 5◦ grid across ocean surfaces and land. The grid boxes are
averaged to provide a mean global temperature anomaly. The anomalies are provided with
respect to the base period 1901–2000.
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Figure 1. Monthly time series of TA from January 1850 to September 2023.

It is worth remarking that we consider the global TA data series since ABF is a
firm headquartered in the U.S. and spread all around the world. However, for more
localized companies, it would be more accurate to consider the TA data series of that
particular region.

The econometric model considers data within the period from January 2006 to Septem-
ber 2023,

www.ncei.noaa.gov/ 
www.ncei.noaa.gov/ 
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yi = β0 + β1x1i + β2x2i + ϵi, i = 1, . . . , n, (1)

where yi represents ABF equity data, x1i, x2i represent SPX and TA, respectively, and ϵi
denotes statistical noise. The estimated coefficients are summarized in Table 1.

Table 1. Estimation summary of the econometric model (1).

Coefficients Estimate Std. Error p-Value

Intercept (β0) 83.57971 4.79491 <2.0 × 10−16

SPX (β1) 0.01009 0.00129 2.48 × 10−13

TA (β2) −41.37281 7.24330 3.79 × 10−8

As we can observe, an increase in TA has a negative impact on the stock value of ABF.
We model in the next section the time series of TA through SLR and forecast its future
values to predict the impact of an increase of TA in ABF stock values.

2.1. Temperature Anomaly Modeling with SLR

In this section, we model the time series of TA through SLR, which is also employed
in Mudelsee (2019), where the author estimates a unique breakpoint by moving block
bootstrap resampling. Segmented regression makes sense when there are meaningful
breakpoints for TA, allowing us to analyze changes in trends (and slopes when it comes
to segmented linear regression) as well as handle the presence of structural breaks in
non-stationary data. We will estimate the breakpoints using the Haar wavelets theory.
Nonparametric regression with wavelets is explained in Section 3.1 of Abramovich et al.
(2000). The sample size must be a power of 2, although this restriction can be overcome by
considering some modifications (see Abramovich et al. (2000) and the references therein).
In our case, the largest power of two samples contained has a length of 2048, corresponding
to the period February 1853–September 2023. For the sake of completeness, we provide
some details on the regression via Haar wavelets (for more details, refer to Abramovich
et al. (2000)).

We consider a nonparametric regression,

yi = g(ti) + ϵi, i = 1, . . . , n,

where ϵi are independent random variables with mean zero and variance σ2. We aim at
recovering the unknown function g from the data yi without assuming any particular a
priori parametric structure for g.

A classical approach in regression analysis involves considering the function g ex-
panded as a Fourier series and estimating the Fourier coefficients from the given data.
The selection of the basis for the expansion is a crucial step. Ideally, the basis should
be parsimonious in the sense that a wide set of potential response functions can be well
approximated with only a few terms of the expansion. Wavelet series have remarkable ap-
proximation properties and allow a parsimonious expansion for a wide variety of functions.
The simplest wavelet basis for L2(R) is the Haar basis given by the following:

ϕ(t) =

{
1, if t ∈ [0, 1],
0, otherwise,

ψ(t) =


1, if t ∈ [0, 1/2),
−1, if t ∈ [1/2, 1],
0, otherwise,

where ϕ is called the father wavelet or scaling function, and ψ is called the mother wavelet.
Other wavelets in the basis are generated by dilations and translations of ψ, that is, ψjk(t) =
2j/2ψ(2jt − k), called wavelet functions. This is the orthonormal wavelet basis for functions
g ∈ L2(R). We plot in Figure 2 the scaling function ϕ and the mother wavelet ψ.
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Figure 2. Scaling function ϕ(t) (left) and mother wavelet ψ(t) (right).

From now on, and without loss of generality, we can assume that the points ti =
i
n

are equally spaced within the unit interval where the sample size n is a power of 2, that is,
n = 2J for some positive integer J.

In this work, we consider the so-called linear wavelet estimators of g (in contrast,
nonlinear estimators can be used, as explained in Section 3.1.2 of Abramovich et al. (2000)).
Suppose that g is expanded as a wavelet series on the interval [0, 1],

g(t) = c0ϕ(t) +
∞

∑
j=0

2j−1

∑
k=0

wjkψjk(t),

with c0 = ⟨g, ϕ⟩ and wjk = ⟨g, ψjk⟩, where ⟨ f , h⟩ :=
∫ 1

0 f (t)h(t)dt represents the L2 inner
product. Then, c0 is called the scaling coefficient, while wjk denotes wavelet coefficients.
Since we cannot estimate an infinite set of coefficients wjk, we assume that g is well
approximated by a finite set of basis functions,

g(t) ≈ c0ϕ(t) +
M

∑
j=0

2j−1

∑
k=0

wjkψjk(t),

for some M < J, called the level of approximation. The corresponding wavelet estimator
ĝM(t) is of the following form:

ĝM(t) = ĉ0ϕ(t) +
M

∑
j=0

2j−1

∑
k=0

ŵjkψjk(t),

where the sample estimates of the scaling coefficient and the wavelet coefficients are
given by the following:

ĉ0 =
1
n

n

∑
i=1

ϕ(ti)yi, ŵjk =
1
n

n

∑
i=1

ψjk(ti)yi. (2)

As pointed out by Abramovich et al. (2000), the performance of the estimator ĝM relies
on the appropriate choice of level M. Intuitively, the optimal choice of M is related to
the regularity of the response function g. A small value of M is associated with an over-
smoothed estimator, while M = J − 1 would simply reproduce the data.

We aim to estimate the breakpoints of the TA series by computing the wavelet coef-
ficients of expression (2). A change in the size of these coefficients measured in absolute
value indicates the presence of a jump in the time series. The intuition behind this fact is
that, since wavelets ψjk(t) are supported on the interval

[
k
2j ,

k+1
2j

]
, each coefficient ŵjk of

expression (2) is a weighted average of values yi. These values are weighted by 2j when
ti ∈

[
k
2j ,

k+1/2
2j

]
, and they are weighted by −2j when ti ∈

[
k+1/2

2j , k+1
2j

]
.
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We illustrate this fact in Figure 3 with the TA series of sample size n = 2048 = 211,
where J = 11 and M = 0, . . . , 10. Observe that at level M = 0, there is only one coefficient,
while at level M = 10, the number of coefficients is 1024. In our case, we can identify
four breakpoints by observing the largest coefficients within the first four approximation
levels, and they correspond to the years 1938, 1981, 2002, and 2013. Some milestones stated
in Weart (2008) confirm the trend changes during the following periods:

• In the 1930s, a global warming trend was reported, which started in the late nineteenth
century.

• In 1938, CO2 greenhouse global warming was underway, which revived interest in
the question.

• Since the mid-1970s, strong global warming was reported, with 1981 being the warmest
year on record.

• In 2001, warming was observed in ocean basins; the match with computer models
gives a clear signal of the effect of greenhouse warming.

We carried out segmented linear regressions by considering different numbers of
breakpoints and the corresponding plots are shown in Figure 4. For comparisons, we
added a plot with linear regression (LR) and quadratic regression (QR).
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Figure 3. Representation of TA series (gray line), truncated wavelet estimator ĝM(t) (red dashed line)
for M = 1 (left) and M = 3 (right) and the absolute value of coefficients ŵjk (vertical black lines) for
all levels M = 0, . . . , 10, starting at level M = 0 (bottom part of each plot) and ending up at level
M = 10 (top part of each plot). The size of the coefficients, in absolute value, is represented by the
length of the vertical line.
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(a) LR and QR.
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(b) SLR, 1 BP.
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(c) SLR, 2 BP.
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(d) SLR, 3 BP.
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(e) SLR, 4 BP.
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(f) SLR 4 BP and QR.

Figure 4. Linear and quadratic regressions are represented in (a). Segmented linear regressions with
1, 2, 3, and 4 BP are represented in (b), (c), (d), and (e), respectively. Finally, the segmented linear
regression with 4 BP is plotted along with the quadratic regression in (f).
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We measure the difference between the true and predicted values through the root
mean square error (RMSE), that is,√

1
n

n

∑
i=1

(yi − ĝM(ti))
2,

and we report these errors in Table 2. Results given by the Haar wavelet (HW) method
are compared with the cross-entropy (CE) method (see Priyadarshana and Sofronov 2015).
The experiments corresponding to the CE method were performed with the R package
breakpoint. The breakpoint obtained with both methods differs in the case of only two
segments, while regressions with 1, 2, and 3 breakpoints give similar segmentations. In all
cases, the RMSE is close when comparing HW and CE methods. As a reference, We provide
the RMSE values of LR and QR (0.2218 and 0.1453, respectively). We observe that SLR
values with 2, 3, and 4 breakpoints outperform QR in terms of RMSE. As pointed out in
Priyadarshana and Sofronov (2015), the CE method for breakpoint detection is an iterative
stochastic optimization method that starts with a parametrized distribution, from which
a random sample is generated with respect to the number of breakpoints. The authors
state that the overall processing time significantly increases with the increase in sample
size. In contrast, HW is a nonparametric method and it simply relies on the computation of
wavelet coefficients ŵjk given by expression (2); therefore, it is not based on a simulation.
Further, since breakpoints are associated with coefficients at different levels, the estimated
breakpoints remain when increasing the number of segments (when using the CE method,
the breakpoints change depending on the number of segments considered).

Table 2. RMSEs corresponding to segmented linear regressions with 1, 2, 3, and 4 BPs.

Method HW CE

Year RMSE Year RMSE

SLR 1 BP 1938 0.1603 1979 0.1506
SLR 2 BP 1938, 1981 0.1384 1937, 1994 0.1410
SLR 3 BP 1938, 1981, 2002 0.1379 1936, 1979, 2001 0.1334
SLR 4 BP 1938, 1981, 2002, 2013 0.1373 1936, 1979, 1997, 2014 0.1315

We compute the coefficient of determination r2 corresponding to the last segment for
each SLR. We note that the last segment will be used in Section 3 to forecast TA values.
The results obtained are shown in Table 3. We observe that the HW method gives, in
general, better results than the CE method. The r2 of the last segment, when considering
four breakpoints, is much smaller for CE than for the HW method (this last segment only
contains 10 years of monthly data).

Table 3. r2 corresponding to the last segment.

Breakpoints HW CE

1 0.72 0.74
2 0.75 0.63
3 0.52 0.51
4 0.17 0.01

Finally, in Table 4, we present the RMSE corresponding to the HW method for the last
segment of SLR with four breakpoints and the RMSE of the quadratic regression on the
same segment. We also present the minimum and maximum values of TA forecasted for
the next 12 months (that is, from October 2023 until September 2024).
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Table 4. RMSEs for the last segment of the SLR with 4 BPs and the QRs for the same segment, along
with the minimum and maximum values for a 1-year forecast using both models.

Model RMSE Min Max

QR 0.0416 0.93 0.94
SLR 4 BP 0.0358 1.02 1.04

The most recent values of the TA series (from October 2023 to July 2024) are 1.37, 1.42,
1.38, 1.29, 1.41, 1.36, 1.29, 1.18, 1.23, and 1.21, which are more aligned with the forecast
given by the SLR method with four breakpoints.

In this section, we show that segmented linear regression outperforms linear and
quadratic regression when it comes to handling structural changes in the data. The next
section is devoted to investigating whether quantile regression offers a better model fit
than ordinary least squares regression when it comes to modeling TA time series.

2.2. Temperature Anomaly Modeling with Quantile Regression

Quantile regression consists of modeling the relation between two variables in the
tails of the distribution. While classical linear regression minimizes the residuals in the
least squares sense, quantile regression minimizes the loss function given by the following:

min
a(τ),b(τ)

n

∑
i=1

ρτ(yi − a(τ)− b(τ)ti),

where ρτ is defined as follows:

ρτ(x) =

{
−(1 − τ)x, x ≤ 0,
τx, x > 0,

and τ ∈ (0, 1) indicates the level of quantile. We carried out the regressions correspond-
ing to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 quantiles and plot them in Figure 5.
The slopes increase from quantile 0.3 onward. This can be clearly observed in Figure 6,
where we can also see that quantile regression estimates are not within the bounds of the
linear regression estimates, suggesting a statistically significant difference between the
two models.
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Figure 5. Monthly time series of TA (gray) and quantile regression for the 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 0.99 quantiles (black).
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Figure 6. Representation of the change in quantile coefficients along with confidence intervals for the
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99 quantiles. Each black dot is the slope coefficient for the
quantile indicated on the horizontal axis. The red continuous line is the least squares estimate and
the corresponding confidence interval is represented by the red dotted lines.

For this reason, we perform a model comparison. Table 5 shows the AIC values
corresponding to all quantiles represented in Figure 6. The AIC value for the ordinary least
squares regression is −350.0208.

Table 5. AIC values corresponding to regressions for the 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
0.99 quantiles.

Quantile AIC

0.1 255.58550
0.2 −14.25708
0.3 −129.24424
0.4 −139.04305
0.5 −76.57060
0.6 19.03958
0.7 161.60019
0.8 375.65011
0.9 744.52075

0.99 2014.62376

Based on AIC values, quantile regression at level 0.4 provides a better fit compared
to the rest of the quantiles. However, the AIC value for linear regression is even lower,
suggesting a better fit than quantile regression. Further, if we compute the mean absolute
error for these two models, we have 0.1858 in the case of quantile regression while the error
is 0.1815 for linear regression.

Finally, we conclude that the SLR put forward in this work provides a better model fit
than linear and quantile regressions for TA data.

3. Calibrating the Default Probability of a Firm Based on Its Asset Values

The estimation of a firm’s default probability is a major concern for banks, investors,
and the financial system as a whole, as it serves as a measure of credit quality. Supervisory
authorities require banks to estimate probabilities of default to compute regulatory and
economic capital for credit risk, among other risks. A complete list of publications by the
Basel Committee on Banking Supervision (BCBS) is available at www.bis.org (accessed
on 21 November 2023). The BCBS consists of senior representatives of bank supervisory
authorities and central banks from Argentina, Australia, Belgium, Brazil, Canada, China,
France, Germany, Hong Kong SAR, India, Indonesia, Italy, Japan, Korea, Luxembourg,

www.bis.org
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Mexico, the Netherlands, Russia, Saudi Arabia, Singapore, South Africa, Spain, Sweden,
Switzerland, Turkey, the United Kingdom, and the United States. The committee usually
meets at the Bank for International Settlements (BIS) in Basel, Switzerland, where its
permanent Secretariat is located. The PD is a key parameter for capital requirements and
may be affected by climate risks, making its accurate estimation of the utmost importance
(see BCBS 2021). Likewise, PD is crucial information for investors who may want to buy
debt issued by firms.

In this section, we estimate the parameters of the Merton model with real stock data
from ABF as well as its PD. Then, we use the econometric model put forward in Section 2,
along with a forecast of the TA series, to obtain the climate PD.

The literature on estimating the probability of default (PD) of a firm distinguishes
between two families of models: structural models and reduced-form models. While struc-
tural models explicitly relate to the firm’s equity, assets, and credit quality, reduced-form
models rely on an exogenous intensity process to specify the default event. The dynamics
of this process are calibrated to market data (e.g., credit spreads), but the economic con-
ditions behind the process are unknown (see Spangler (2018) and the references therein
for a discussion on the two types of models). In this work, we measure the impact on the
PD of a firm via its equity values and, for this reason, it seems more natural to consider a
structural model of default.

Merton’s model belongs to the class of structural default models and laid the founda-
tion for factor models that have become the standard in credit risk measurement. In the
Merton model, the event of default occurs when a firm’s asset value falls below a threshold
representing its liabilities. This concept, known as the distance to default, was used by
Nguyen et al. (2023) in the context of carbon emissions and transition risk. The Merton
model provides a closed-form formula for the PD, making its computation straightforward
A limitation of the basic Merton model is that it does not account for jumps in asset value;
this issue can be addressed by using the Merton model with jumps. For the sake of com-
pleteness, we provide an overview of the seminal work on the Merton model Merton (1974)
that can also be found in Section 3 of Lutkebohmert (2009) and Section 10.3 of McNeil et al.
(2015).

The Merton model assumes that the asset value of a company is given by a stochastic
process, which we denote by (Vt). In the market, it is assumed that the firm has only
equity (used interchangeably with the term stock) and debt. Further, it is assumed that the
equity pays no dividends and the firm cannot issue new debt. The debt of the company is
modeled by a zero-coupon bond with the value of B at a future maturity time T. The firm
defaults when the value of its assets is less than the promised debt repayment at expiry
T. We denote by St and Bt the values at time t of equity and debt, respectively. If we
assume that there are no taxes or transaction costs, the value of the firm’s assets is given by
Vt = St + Bt, 0 ≤ t ≤ T. At maturity time, there are only two possibilities:

(i) VT > B: The value of the firm is above the value of the debt. In this case, the owners
of the zero-coupon bonds receive BT = B; the shareholders receive the residual value
ST = VT − B; and there is no default.

(ii) VT ≤ B: The value of the firm’s assets is below the debt value. Hence, the firm cannot
meet its financial obligations and defaults. In this second case, the shareholders are
left with nothing because the owners of the debt take control of the company, so we
have BT = VT , ST = 0.

Combining the results, the payoff at maturity T from the point of view of the shareholders
is given by the following:

ST = max(VT − B, 0) = [VT − B]+, (3)

and the owners of the zero-coupon bonds receive the following:

BT = min(VT , B) = B − [B − VT ]
+. (4)
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This shows that the value of the firm’s equity at expiry t = T can be represented as the
payoff of a European call option on the firm’s assets, with a strike price equal to the
promised debt B at maturity. By using the put-call parity argument, the firm’s debt is
equivalent to a risk-free bond that guarantees the payment of B, plus a short European
put option on the firm’s assets with a strike price of B. The Merton model considers the
asset value, Vt, as the underlying asset and assumes that under the real-world (or physical)
probability measure P, the dynamics of the asset value (Vt) are given by a geometric
Brownian motion of the following form:

dVt = µVVtdt + σVVtdWt, 0 ≤ t ≤ T, (5)

for constants µV ∈ R, σV > 0, and a standard Brownian motion (Wt). The solution at
time t = T of the stochastic differential Equation (5) with initial value V0 can be obtained
explicitly and is given by the following:

VT = V0e(µV− 1
2 σ2

V)T+σVWT .

Since WT ∼ N(0, T), we have the following:

ln VT ∼ N
(

ln V0 +

(
µV − 1

2
σ2

V

)
T, σ2

V T
)

,

and then ln VT follows a normal distribution with a mean of ln V0 +
(

µV − 1
2 σ2

V

)
T and

standard deviation of σV
√

T. The probability of default of the company by time t = T is the
probability that shareholders decide not to exercise the call option to buy the company’s
assets at the price B at time T, that is, it is the probability that the call option expires out of
the money. It can be computed as follows:

P(VT ≤ B) = P(ln VT ≤ ln B) = Φ

(
ln B

V0
− (µV − 1

2 σ2
V)T

σV
√

T

)
, (6)

where Φ denotes the cumulative standard normal distribution. In the context of the Merton
model, we can price the firm’s debt and the firm’s equity provided that we make the
following assumptions:

(i) The risk-free interest rate r is deterministic and positive.
(ii) The firm’s asset value process (Vt) is independent of the way the company is financed

and it is also independent of the level of the debt B (this assumption makes sense
thanks to the Modigliani–Miller theorem in Modigliani and Miller (1958)).

(iii) The asset value (Vt) can be traded on the market without friction, and the dynamics
of the asset is given by the geometric Brownian motion (5).

Under these assumptions, the risk-neutral pricing theory then yields that the market value
of equity at time t < T can be computed as the discounted expectation of the payoff
function (3), that is, we have the following:

St = EQ
[
e−r(T−t)[VT − B]+

]
,

given by the following:

St = Vt · Φ(dt,1)− B · e−r(T−t) · Φ(dt,2),

where

dt,1 =
ln(Vt/B) + (r + 1

2 σ2
V)(T − t)

σV
√

T − t
, dt,2 = dt,1 − σV

√
T − t.

Also, according to Equation (4), we can value the firm’s debt at time t ≤ T as follows:
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Bt = EQ
[
e−r(T−t)(B − [B − VT ]

+)
]

= Be−r(T−t) −
(

Be−r(T−t)Φ(−dt,2)− VtΦ(−dt,1)
)

.
(7)

Note that expression (7) can be written in an equivalent form as follows:

Bt = Vt(1 − Φ(dt,1)) + Be−r(T−t)Φ(dt,2). (8)

Next, we compare real and risk-neutral probabilities of the default in Merton’s model.
A basic result from financial theory states that—under the risk-neutral measure Q—the
process (Vt) satisfies the stochastic differential equation, as follows:

dVt = rVtdt + σVVtdW̃t, (9)

for a standard Q-Brownian motion (W̃). Observe how the value of the drift µV in (5) was
replaced by the risk-free interest rate r. Then, the risk-neutral default probability is given
by Formula (6), evaluated with µV = r, as follows:

q = Q(VT ≤ B) = Φ

(
ln B

V0
− (r − 1

2 σ2
V)T

σV
√

T

)
. (10)

If we compare this with the real default probability p = P(VT ≤ B) as given in (6), we end
up with the following relation:

p = Φ
(

Φ−1(q)− µV − r
σV

√
T
)

. (11)

We will use Formula (11) to go from risk-neutral default probabilities to physical probabilities.

3.1. Sensitivity Analysis

In this section, we perform a mathematical analysis to show how the probability of
default is affected when either the initial asset value of the firm V0 or the asset volatility
σV changes. Parameters affecting the asset value are of paramount importance since the
asset value depends on the equity of the firm which, in turn, is impacted by changes in
temperature anomalies. The expression (6) for the physical PD of the firm by time t = T is
given by the following:

p(V0, σV) = Φ

(
ln B

V0
− (µV − 1

2 σ2
V)T

σV
√

T

)
,

where we want to emphasize the dependence of the PD on parameters V0 and σV . Thanks
to the above closed-form formula, we can easily calculate the PD derivative with respect to
the asset value V0, as follows:

∂p
∂V0

= − 1
σV

√
TV0

Φ′

 ln B
V0

− (µV − σ2
V
2 )T

σV
√

T


= − 1

σV
√

2πTV0
exp

−1
2

 ln B
V0

− (µV − σ2
V
2 )T

σV
√

T

2,
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where Φ′ denotes the derivative of Φ with respect to V0. As we can observe, ∂p
∂V0

is strictly
negative, that is, p is a decreasing function of V0. Therefore, an increase in the equity value
implies an increase in the firm’s initial asset value V0, which, in turn, implies a decrease in
the firm’s PD. Conversely, an increase in temperature anomalies has a detrimental effect
on equity (shown by the econometric model (1)) and asset values and a potential increase
in PD.

If we consider the derivative with respect to the asset value volatility σV , we end
up with the following:

∂p
∂σV

= Φ′

 ln B
V0

− (µV − σ2
V
2 )T

σV
√

T

[ ln V0 − ln B
σ2

V

√
T

+

(
µV +

σ2
V
2

)√
T

σ2
V

]
.

This function is strictly positive when V0 > B exp(−(µV +
σ2

V
2 )T), that is, p is an increasing

function of σV , and it is decreasing otherwise. A well-known result derived from the Itô
formula states that the equity volatility σE is proportional to the asset value volatility,

σE =
∂St

∂Vt

Vt

St
σV .

Hence, an increase in the equity volatility σE implies an increase in the firm’s asset value
volatility σV , which, in turn, implies an increase in the firm’s PD when V0 > B exp(−(µV +
σ2

V
2 )T). Again, structural breaks in the TA data series increase the equity volatility and,

therefore, the PD.

3.2. Estimation of PD with Real Market Data

Let s = (s1, s2, . . . , sm) be the stock time series of ABF and b(0) =
(

b(0)1 , b(0)2 , . . . , b(0)m

)
the corresponding liabilities one year ahead, where bold letters denote vectors. The li-
abilities were obtained as the product of the debt-to-equity ratio obtained from www.
macrotrends.net (accessed on 21 November 2023) and the ABF stock value on the same
date. Since the debt-to-equity ratios were only publicly available for the period from March
2009 to September 2023, we consider the stock s within the dates March 2008 to September
2022 (m = 175 values of monthly data). Then, we can estimate the probabilities of default
from March 2009 to September 2023 on a monthly basis. It is worth remarking that, in a
practical situation, a more reliable and accurate estimation of one-year-ahead liabilities can
be done by using the internal information of the firm.

We need to first calibrate the asset value process of expression (5) using the real data,
s and b(0), mentioned before. The calibration of the stochastic process in (5) is carried out
by estimating parameters µV and σV . We initialize the asset value of ABF by considering
the following:

v(0) = s + b(0)e−rT , (12)

where r > 0 is the risk-free interest rate that we set equal to 0.04 and the T = 1 year. Then,
v(0) has components v(0) =

(
v(0)1 , v(0)2 , . . . , v(0)m

)
.

It is well-known that when (Vt) follows a geometric Brownian motion, the log asset

returns r∆t := ln
(

Vt+∆t
Vt

)
are normally distributed with expectation (µV − σ2

V
2 )∆t and vari-

ance σ2
V∆t for a certain time step ∆t. If we define Ê[r∆t] and V̂[r∆t] as the sample mean and

sample variance, respectively, of empirical log returns, then we can provide estimations µ̂V
and σ̂V for µV and σV , respectively, as follows:

www.macrotrends.net
www.macrotrends.net
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µ̂V =
Ê[r∆t]

∆t
+

V̂[r∆t]

2∆t
, σ̂2

V =
V̂[r∆t]

∆t
, (13)

where ∆t = 1/12 is considered for monthly data.
We can now give an initial estimation σ̂

(0)
V of σV through expression (13) with real

data given in expression (12). The initial estimation of volatility will be refined by the
following procedure:

• Compute a new data vector b(k+1), starting from k = 0, using expression (8) with the
T − t = 1 year, as follows:

b(k+1)
i = v(k)i

(
1 − Φ

(
D(k)

i,1

))
+ b(0)i e−r(T−t)Φ

(
D(k)

i,2

)
,

where

D(k)
i,1 =

ln(v(k)i /b(0)i ) +

(
r + 1

2

(
σ̂
(k)
V

)2
)
(T − t)

σ̂
(k)
V

√
T − t

,

D(k)
i,2 = D(k)

i,1 − σ̂
(k)
V

√
T − t, i = 1, . . . , m.

• Compute a new data vector v(k+1) = s + b(k+1).

• Compute a new estimate of volatility σ̂
(k+1)
V using expression (13) and the new

vector v(k+1).
• Given a tolerance ϵ, we iterate the process until

∥v(k+1) − v(k)∥2 < ϵ, (14)

where ∥ · ∥2 denotes the L2 norm.

Let v(l) and σ̂
(l)
V be the outcomes of the procedure given above, where l is the number

of iterations until condition (14) is satisfied. Then, the risk-neutral probabilities can be
estimated with the formula of expression (10) by computing the following:

q̂i = Φ

 ln b(0)i

v(l)i

−
(

r − 1
2

(
σ̂
(l)
V

)2
)

T

σ̂
(l)
V

√
T

, i = 1, . . . , m. (15)

Finally, the physical default probabilities are calculated with formula of expression (11),
the risk-neutral probabilities of expression (15), and the estimation µ̂V of µV through
expression (13), that is, we have the following:

p̂i = Φ

(
Φ−1(q̂i)−

µ̂V − r

σ̂
(l)
V

√
T

)
, i = 1, . . . , m. (16)

Note that physical default probabilities can be obtained straightforwardly from expres-
sion (6), and there is no need to calculate risk-neutral probabilities of expression (15). We
compute both to illustrate the so-called Sharpe ratio in expression (16), given by µ̂V−r

σ̂
(l)
V

. The

Sharpe ratio represents the risk premium of an investment versus a safe asset, such as a
bond. The overall process is summarized in Algorithm 1.
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Algorithm 1: PD estimation

Data: s = (s1, s2, ..., sm), b(0) =
(

b(0)1 , b(0)2 , . . . , b(0)m

)
Input: r, ∆t, T, ϵ
Initialization v(k) = s + b(k)e−rT and k = 0

Estimate initial volatility σ̂
(0)
V

while (∥v(k+1) − v(k)∥2 > ϵ) do
Update b(k+1)

Update v(k+1) = s + b(k+1)

Update asset volatility σ̂V
Update k.

return σ
(l)
V

Compute risk-neutral default probabilities q̂i
Estimate µ̂V
Compute physical default probabilities p̂i

We perform several experiments by varying ϵ, where the initial volatility is σ̂
(0)
V =

0.291775. We observed rapid convergence, as σ
(l)
V = 0.287022 for all values of ϵ considered

in Table 6.

Table 6. Number of iterations l for estimating the volatility following Algorithm 1 when different
tolerance values ϵ are considered.

ϵ l

1 × 10−2 7
1 × 10−4 11
1 × 10−6 15
1 × 10−8 19
1 × 10−10 23

We plot the physical probabilities of the default in Figure 7 and observe a peak around
May 2020. The drift is µ̂V = 0.060925 and the average PD corresponding to the last
12 months is 0.04.

2010 2015 2020

0
.0

0
.1

0
.2

0
.3

0
.4

Year

P
D

Figure 7. Physical default probabilities of ABF from March 2009 to September 2023.

Now, we estimate the climate PD until September 2025. To do this, we consider two
years more of ABF stock values, that is, from October 2022 to September 2024. While the
first year (October 2022–September 2023) comprises real stock, the stock of the second year
(October 2023–September 2024) is estimated through the econometric model of expression
(1). The forecast of ABF stock values for the second year is conducted using the same SPX
values from the first year and the forecasted TA values obtained with the SLR 4 BP model
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(we chose not to forecast SPX to isolate the impact of the TA forecast). Similarly, we use the
most recent one-year liabilities (October 2022–September 2023) for this two-year period.

If we apply Algorithm 1 to the entire data series of ABF stock (March 2008-September
2024), we obtain initial volatility σ̂

(0)
V = 0.286864 and σ̂

(l)
V = 0.282564 (where l = 22

for ϵ = 1 × 10−10). The drift is µ̂V = 0.057624 and the forecasted average climate PD
corresponding to the last 12 months is 0.06. The increase in PD might be associated with
a downgrade in the company’s rating. Referring to the S&P rating-grade nomenclature
and the PD ranges reported in Table 2 of Gordy and Lütkebohmert (2013), a 4% PD would
correspond to a BB grade, while a 6% PD would be linked to a B grade.

4. Transition Risk

Transition risk has become increasingly important in the context of climate change. It is
associated with the transition to a low-carbon economy. Such a transition requires changes
in policy, legislation, technology, and market dynamics. We believe it is necessary to provide
a quantitative approach to defining transition risk in the context of standard financial theory.
In line with this approach, we propose a model in this section for evaluating whether ABF
qualifies as a green company. This assessment is based on statistical metrics and asset
pricing rationale.

We consider the following model for the log returns of the ABF stock:

ln
(

yi
yi−1

)
= a + b ln

(
x1,i

x1,i−1

)
+ d
(

ln
(

Ge,i

Ge,i−1

)
− ln

(
Ga,i

Ga,i−1

))
+ ϵi, (17)

where y represents the ABF stock, x1 represents the SPX, Ge represents an index of low-
polluting companies (green stocks), and Ga represents an index of highly polluting com-
panies (gray companies). Our measure of transition risk is given by coefficient d. This
coefficient can be interpreted as the sensitivity of the stock return series to the premium
of a green stock index compared to an index of highly polluting companies. When d > 0,
this implies that the returns of ABF stock increase when ln

(
Ge,i

Ge,i−1

)
− ln

(
Ga,i

Ga,i−1

)
increases,

suggesting that the company is already green and the transition risk is low. If d < 0, then
the returns of ABF stock decrease when ln

(
Ge,i

Ge,i−1

)
− ln

(
Ga,i

Ga,i−1

)
increases, implying that the

company is not green and that the transition risk is high.
For the Ge index, we use the Vanguard ESG U.S. Stock ETF (ESGV), which specifically

excludes stocks of certain companies related to adult entertainment, alcohol, tobacco,
cannabis, gambling, chemical and biological weapons, cluster munitions, anti-personnel
landmines, nuclear weapons, conventional military weapons, civilian firearms, nuclear
power, and coal, oil, or gas. It also excludes stocks of companies that fail to meet certain
labor, human rights, environmental, and anti-corruption standards as defined by the United
Nations Global Compact Principles. Additionally, it excludes companies that do not meet
specific diversity criteria. To the best of our knowledge, there are no suitable index proxies
for Ga, but as a proxy for our empirical analysis, we use the Exxon Mobile stock (XOM).
Exxon Mobile is one of the highest polluting companies worldwide and it is a public
company listed in the U.S. The Texas-based firm’s three largest refineries (two in Texas and
one in Louisiana) are the nation’s top three emitters of small particulate matter, according
to the analysis of the latest tests submitted to regulators by the ten largest refineries in the
U.S. The three Exxon refineries together averaged emissions of 80 pounds per hour, eight
times the average rate of the seven other refineries on the top-ten list, some of which are
larger than Exxon’s plants, as per the analysis available at www.reuters.com (accessed on
21 November 2023).

For this analysis, we consider daily data corresponding to the period 2 January 2019–15
November 2023. The estimated coefficients of model (17) are a = 0.0002144, b = 0.8584642,
and d = −0.3338892; therefore, we conclude that ABF is not a green company and there
exist potential transition risks. The transition risk parameter d is suitable for making
comparisons between different companies or sectors of the economy and aims to measure

www.reuters.com
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the exposure to transition risk. We provide quantitative tools to support and complement
qualitative approaches for assessing transition risk.

5. Actionable Insights for Policymakers, Risk Managers, and Investors

The research carried out in Sections 3 and 4 reveals that ABF is impacted by physical
risks and is exposed to transition risks. As pointed out in the introduction, companies with
high carbon footprints are perceived by the market as more likely to default.

A higher PD for a firm makes it more difficult and expensive to issue debt, as investors
demand a higher return for taking on additional risk. The more polluting the firm, the
higher its cost of capital due to the increased cost of debt. As the cost of capital rises,
it becomes more difficult for the firm to finance its operations. This would force the
polluting companies to be more efficient in their operations and to pollute less. The higher
cost of capital would also impact company valuations. Most fundamental investors use
the weighted average cost of capital (WACC) to discount free cash flows and determine
company valuations. If the cost of capital increases (due to higher debt costs), the price of
equity will decline. This has a desirable effect on investors, as it rewards those who invest
in green companies and penalizes those who invest in gray stocks. Another desirable effect
of higher PDs related to climate factors is that the increased cost of debt would incentivize
companies to issue shares instead of taking on more debt. This, in turn, would reduce the
leverage effect of debt in polluting companies, leading them to pay more taxes than their
non-polluting counterparts.

In regard to the findings featured in Section 4, policymakers and governments could
establish tax and subsidy schemes for each public company with respect to their d value.
For a positive d, companies could receive a green bond, while for a negative d, companies
should pay more taxes. These green bonds could also be traded in open markets. Risk
managers should adjust credit rating evaluations to account for potential increases in
PD due to physical risk and rebalance their portfolios more frequently to respond to
market changes.

6. Conclusions

We investigated the impact of TA on the PD of a firm in the agriculture sector, as well
as its exposure to transition risk. We use an econometric model to estimate the firm’s stock
value, with SPX and TA as predictors. The TA time series is modeled using wavelets and
SLR. The firm’s future stock value is then predicted using the econometric model. Then, the
Merton model is applied to calculate the PD of the firm, using both actual and forecasted
stock values. Our experiments show that the initial estimated PD of 4% PD increases to 6%
PD due to physical climate risk.

Future research will be devoted to extending the present work in two directions. From
the methodological standpoint, we might consider using the Merton model with jumps for
the asset value of the firm. A new trend change in the TA series could lead to sudden jumps
in the firm’s asset value. While jumps allow for abrupt changes in asset value, incorporating
them results in non-closed form formulas for PD, posing a mathematical challenge. From a
risk management point of view, it would be worth collecting data from other companies in
the agribusiness sector to verify whether the increase in PD is a systematic feature with an
impact on the entire sector. Likewise, it would be interesting to consider other factors in
the econometric model like, for instance, research and development expenses, which might
help to reduce the impact of physical climate risk on the stock value of the firm.

Disclaimer: The probabilities of default for the agribusiness firm are calculated based
solely on publicly available data and are intended for academic purposes only. We use
a default model that can be fitted with that information, but a more accurate assessment
would require additional relevant data as well as the expert judgment of risk managers.
Therefore, the results presented in this work should be viewed as a methodological starting
point rather than as financial advice.
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