Next Issue
Volume 12, May
Previous Issue
Volume 12, March
 
 

Risks, Volume 12, Issue 4 (April 2024) – 15 articles

Cover Story (view full-size image): We propose a general approximation method for the determination of optimal trading strategies in markets with proportional transaction costs, with a polynomial approximation of the residual value function. The method is exemplified by several problems, from optimally tracking benchmarks and hedging the log contract to maximizing utility from terminal wealth. Strategies are also approximated by practically executable, discrete trades. We identify the necessary trade-off between the trading frequency and trade size to ensure satisfactory agreement with the theoretically optimal, continuous strategies of infinite activity. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
33 pages, 821 KiB  
Article
The Impact of Firm Risk and the COVID-19 Crisis on Working Capital Management Strategies: Evidence from a Market Affected by Economic Uncertainty
by Hossein Tarighi, Grzegorz Zimon, Mohammad Javad Sheikh and Mohammad Sayrani
Risks 2024, 12(4), 72; https://doi.org/10.3390/risks12040072 - 22 Apr 2024
Cited by 1 | Viewed by 3438
Abstract
The present study aims to investigate the impact of the COVID-19 crisis and firm risk on working capital management policies among manufacturing firms listed on the Tehran Stock Exchange (TSE). The study sample consists of 1200 observations and 200 companies listed on the [...] Read more.
The present study aims to investigate the impact of the COVID-19 crisis and firm risk on working capital management policies among manufacturing firms listed on the Tehran Stock Exchange (TSE). The study sample consists of 1200 observations and 200 companies listed on the TSE over a six-year period from 2016 to 2021; furthermore, the statistical method used to test the hypotheses is ordinary least squares (OLS). The results show that the COVID-19 pandemic has led managers to increase current assets to total assets ratio (CATAR), current ratio (CR), quick ratio (QR), net working capital (NWC), cash to current assets (CTCA) ratio, while it has caused a decrease in operational cycle (OC), days account receivables (DAR), and current liabilities to total assets ratio (CLTAR). Furthermore, we find that the higher the company’s risk, the more managers are motivated to embrace the working capital investment policy, net working capital, cash to current assets ratio, and cash conversion efficiency (CCE). In general, our findings indicate that during times of crisis, Iranian companies tend to adopt conservative working capital policies to ensure sufficient liquidity to respond appropriately to unforeseen events. In this study, the theory of liquidity preference aligns with the observed behavior of firms in response to the COVID-19 crisis and firm risk, where the emphasis on liquidity and short-term financial stability becomes paramount. Full article
17 pages, 4809 KiB  
Article
Volatility Spillovers among Sovereign Credit Default Swaps of Emerging Economies and Their Determinants
by Shumok Aljarba, Nader Naifar and Khalid Almeshal
Risks 2024, 12(4), 71; https://doi.org/10.3390/risks12040071 - 22 Apr 2024
Cited by 1 | Viewed by 1379
Abstract
This paper aims to investigate the volatility spillovers among selected emerging economies’ sovereign credit default swaps (SCDSs), including those of Saudi Arabia, Russia, China, Indonesia, South Africa, Brazil, Mexico, and Turkey. Using data from January 2010 to July 2023, we apply the time-domain [...] Read more.
This paper aims to investigate the volatility spillovers among selected emerging economies’ sovereign credit default swaps (SCDSs), including those of Saudi Arabia, Russia, China, Indonesia, South Africa, Brazil, Mexico, and Turkey. Using data from January 2010 to July 2023, we apply the time-domain and the frequency-domain connectedness approaches.Empirical results show that (i) Indonesia, followed by China and Mexico, are the main transmitters of sovereign credit risk volatility. (ii) Among global factors, the volatility index (VIX), economic policy uncertainty (EPU), and global political risk (GPR) positively impacted spillover on lower and higher quantiles. The results offer critical insights for international investors, policymakers, and researchers, emphasizing the importance of risk-aware investment strategies and cautious policy formulation in the context of financial crises and political events. Full article
Show Figures

Figure 1

21 pages, 1481 KiB  
Article
Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach
by Diba Daraei and Kristina Sendova
Risks 2024, 12(4), 70; https://doi.org/10.3390/risks12040070 - 19 Apr 2024
Cited by 1 | Viewed by 2044
Abstract
To ensure a comfortable post-retirement life and the ability to cover living expenses, it is of utmost importance for individuals to have a clear understanding of how long their pre-retirement savings will last. In this research, we employ a ruin-theory approach to model [...] Read more.
To ensure a comfortable post-retirement life and the ability to cover living expenses, it is of utmost importance for individuals to have a clear understanding of how long their pre-retirement savings will last. In this research, we employ a ruin-theory approach to model the inflows and the outflows of retirees’ portfolios. We track all transactions within the portfolios of retired clients sourced by a registered investment provider to Canada’s Financial Wellness Lab at Western University. By utilizing an advanced ruin model, we calculate the mean and the median time it takes for savings to be exhausted, the probabilities of exhaustion of funds within the retirees’ expected remaining lifetime while accounting for the observed withdrawal rates, and the deficit at ruin if a retiree has used up all of their savings. We also account for gender as well as for the risk tolerance of retired clients using a K-Means clustering algorithm. This allows us to compare the financial outcomes for female and male retirees and to enhance some findings in the literature. In the final phase of our study, we compare the results obtained by our methodology to the 4% rule which is a widely used approach for post-retirement spending. Our results show that most retirees can withdraw safely more than they currently do (around 2.5%). A withdrawal rate of about 4.5% is proved to be safe, but it might not provide sufficient income for most retirees since it yields approximately CAD 20,000 per year for male retirees in the highest risk tolerance group who withdraw about 4.5% annually. Full article
(This article belongs to the Special Issue Optimal Investment and Risk Management)
Show Figures

Figure 1

15 pages, 721 KiB  
Article
Effect of Capital Structure on the Financial Performance of Ethiopian Commercial Banks
by Seid Muhammed, Goshu Desalegn and Prihoda Emese
Risks 2024, 12(4), 69; https://doi.org/10.3390/risks12040069 - 18 Apr 2024
Cited by 3 | Viewed by 3550
Abstract
This study aimed to examine the effects of capital structure on the financial performance of Ethiopian commercial banks. The dependent variable, financial performance, is measured by Return on Assets (ROA), while factors such as loan-to-deposit ratio (LDR), asset-to-total equity ratio (ATER), total deposit-to-total [...] Read more.
This study aimed to examine the effects of capital structure on the financial performance of Ethiopian commercial banks. The dependent variable, financial performance, is measured by Return on Assets (ROA), while factors such as loan-to-deposit ratio (LDR), asset-to-total equity ratio (ATER), total deposit-to-total asset ratio (TDTAR), capital adequacy ratio (CAD), and asset growth ratio (GA) were used as proxy independent variables to gauge capital structure. Using a quantitative approach and an explanatory research design, this study analyzes 6 years of audited financial reports from 14 commercial banks in Ethiopia. This investigation employs a random effect regression model and Stata 14 software package to explore the relationships among these variables. The result revealed that both the loan-to-deposit ratio and the total deposit-to-total asset ratio have a positive and significant impact on financial performance, while the asset growth ratio showed a negative effect. Based on these findings, this study recommends that bank authorities concentrate on bolstering their deposit base, managing asset growth efficiently, maintaining adequate capital levels, and optimizing leverage levels to improve financial performance and ensure long-term sustainability in the banking sector. Additionally, this research is anticipated to inform policymakers about regulatory frameworks for banks and assist banking managers in formulating effective capital financing strategies within the Ethiopian commercial banking sector, thus enriching the existing literature on the relationship between capital structure and financial performance. Full article
(This article belongs to the Special Issue Corporate Finance and Intellectual Capital Management)
Show Figures

Figure 1

21 pages, 6920 KiB  
Article
Optimising Portfolio Risk by Involving Crypto Assets in a Volatile Macroeconomic Environment
by Attila Bányai, Tibor Tatay, Gergő Thalmeiner and László Pataki
Risks 2024, 12(4), 68; https://doi.org/10.3390/risks12040068 - 17 Apr 2024
Cited by 1 | Viewed by 1999
Abstract
Portfolio diversification is an accepted principle of risk management. When constructing an efficient portfolio, there are a number of asset classes to choose from. Financial innovation is expanding the range of instruments. In addition to traditional commodities and securities, other instruments have been [...] Read more.
Portfolio diversification is an accepted principle of risk management. When constructing an efficient portfolio, there are a number of asset classes to choose from. Financial innovation is expanding the range of instruments. In addition to traditional commodities and securities, other instruments have been added. These include cryptocurrencies. In our study, we seek to answer the question of what proportion of cryptocurrencies should be included alongside traditional instruments to optimise portfolio risk. We use VaR risk measures to optimise the process. Diversification opportunities are evaluated under normal return distributions, thick-tailed distributions, and asymmetric distributions. To answer our research questions, we have created a quantitative model in which we analysed the VaR of different portfolios, including crypto-diversified assets, using Monte Carlo simulations. The study database includes exchange rate data for two consecutive years. When selecting the periods under examination, it was important to compare favourable and less favourable periods from a macroeconomic point of view so that the study results can be interpreted as a stress test in addition to observing the diversification effect. The first period under examination is from 1 September 2020 to 31 August 2021, and the second from 1 September 2021 to 31 August 2022. Our research results ultimately confirm that including cryptoassets can reduce the risk of an investment portfolio. The two time periods examined in the simulation produced very different results. An analysis of the second period suggests that Bitcoin’s diversification ability has become significant in the unfolding market situation due to the Russian-Ukrainian war. Full article
(This article belongs to the Special Issue Risk Analysis in Financial Crisis and Stock Market)
Show Figures

Figure 1

21 pages, 2243 KiB  
Article
Risk Management in the Area of Bitcoin Market Development: Example from the USA
by Laeeq Razzak Janjua, Iza Gigauri, Agnieszka Wójcik-Czerniawska and Elżbieta Pohulak-Żołędowska
Risks 2024, 12(4), 67; https://doi.org/10.3390/risks12040067 - 15 Apr 2024
Viewed by 2165
Abstract
This paper explores the relationship between Bitcoin returns, the consumer price index, and economic policy uncertainty. Employing the QARDL method, this study examines both short- and long-term dynamics between macroeconomic factors and Bitcoin returns. Our analysis of monthly time series data from January [...] Read more.
This paper explores the relationship between Bitcoin returns, the consumer price index, and economic policy uncertainty. Employing the QARDL method, this study examines both short- and long-term dynamics between macroeconomic factors and Bitcoin returns. Our analysis of monthly time series data from January 2011 to November 2023 reveals that volatile US economic policy indicators, such as high economic policy uncertainty, volatile inflation, and rising interest rates, have recently exerted a negative impact on Bitcoin returns. This study shows that these results are true not only for traditional money but also for cryptocurrencies such as Bitcoin, despite their cardinal features. Its decentralized nature, indicating that it has no physical representation, is not tied to any authority or national economy and relies on a complex algorithm to track transactions. Further, it yields volatile returns that depend on macroeconomic indicators. Full article
Show Figures

Figure 1

20 pages, 1352 KiB  
Article
Quantum Computing Approach to Realistic ESG-Friendly Stock Portfolios
by Francesco Catalano, Laura Nasello and Daniel Guterding
Risks 2024, 12(4), 66; https://doi.org/10.3390/risks12040066 - 12 Apr 2024
Cited by 2 | Viewed by 2136
Abstract
Finding an optimal balance between risk and returns in investment portfolios is a central challenge in quantitative finance, often addressed through Markowitz portfolio theory (MPT). While traditional portfolio optimization is carried out in a continuous fashion, as if stocks could be bought in [...] Read more.
Finding an optimal balance between risk and returns in investment portfolios is a central challenge in quantitative finance, often addressed through Markowitz portfolio theory (MPT). While traditional portfolio optimization is carried out in a continuous fashion, as if stocks could be bought in fractional increments, practical implementations often resort to approximations, as fractional stocks are typically not tradeable. While these approximations are effective for large investment budgets, they deteriorate as budgets decrease. To alleviate this issue, a discrete Markowitz portfolio theory (DMPT) with finite budgets and integer stock weights can be formulated, but results in a non-polynomial (NP)-hard problem. Recent progress in quantum processing units (QPUs), including quantum annealers, makes solving DMPT problems feasible. Our study explores portfolio optimization on quantum annealers, establishing a mapping between continuous and discrete Markowitz portfolio theories. We find that correctly normalized discrete portfolios converge to continuous solutions as budgets increase. Our DMPT implementation provides efficient frontier solutions, outperforming traditional rounding methods, even for moderate budgets. Responding to the demand for environmentally and socially responsible investments, we enhance our discrete portfolio optimization with ESG (environmental, social, governance) ratings for EURO STOXX 50 index stocks. We introduce a utility function incorporating ESG ratings to balance risk, return and ESG friendliness, and discuss implications for ESG-aware investors. Full article
(This article belongs to the Special Issue Portfolio Theory, Financial Risk Analysis and Applications)
Show Figures

Figure 1

31 pages, 1109 KiB  
Article
Relationship between Occupational Pension, Corporate Social Responsibility (CSR), and Organizational Resilience: A Study on Listed Chinese Companies
by Hao Wang, Tao Zhang, Xi Wang and Jiansong Zheng
Risks 2024, 12(4), 65; https://doi.org/10.3390/risks12040065 - 9 Apr 2024
Viewed by 1705
Abstract
Numerous researchers acknowledge that the occupational pension protects employees. However, in China, the total cost of occupational pensions is shared between employees and employers, representing a significant financial commitment. This study aimed to explore the effect of the occupational pension on corporate social [...] Read more.
Numerous researchers acknowledge that the occupational pension protects employees. However, in China, the total cost of occupational pensions is shared between employees and employers, representing a significant financial commitment. This study aimed to explore the effect of the occupational pension on corporate social responsibility (CSR) and organizational resilience. Drawing on insights from cost-stickiness and resource-based theories, we developed a model that elucidated the influence of occupational pensions on firms’ approaches to CSR within the context of COVID-19 and how this, in turn, impacted organizational resilience. This study categorized CSR into strategic and responsive activities, employing the concept of cost stickiness as a framework. We analyzed a sample of 34,145 observations from Chinese A-share listed companies spanning the period 2010–2023 to examine the influence of occupational pension adjustments on CSR strategies. The findings of this study revealed that the cost pressure associated with contributions to occupational pensions prompted firms to decrease their engagement in responsive CSR activities while enhancing their strategic CSR initiatives. Furthermore, it was observed that strategic CSR contributed to improved organizational resilience, whereas responsive CSR did not exhibit the same effect. The relationship between occupational pension contributions and CSR was found to be significantly and negatively moderated by factors such as the minimum wage and population aging. Conversely, the relationship between CSR and organizational resilience was significantly and positively moderated by digital transformation and marketing capabilities. Full article
(This article belongs to the Special Issue Life Insurance and Pensions: Latest Advances and Prospects)
Show Figures

Figure 1

32 pages, 755 KiB  
Article
Asymptotic Methods for Transaction Costs
by Eberhard Mayerhofer
Risks 2024, 12(4), 64; https://doi.org/10.3390/risks12040064 - 4 Apr 2024
Viewed by 1198
Abstract
We propose a general approximation method for the determination of optimal trading strategies in markets with proportional transaction costs, with a polynomial approximation of the residual value function. The method is exemplified by several problems, from optimally tracking benchmarks and hedging the log [...] Read more.
We propose a general approximation method for the determination of optimal trading strategies in markets with proportional transaction costs, with a polynomial approximation of the residual value function. The method is exemplified by several problems, from optimally tracking benchmarks and hedging the log contract to maximizing utility from terminal wealth. Strategies are also approximated by practically executable, discrete trades. We identify the necessary trade-off between the trading frequency and trade size to ensure satisfactory agreement with the theoretically optimal, continuous strategies of infinite activity. Full article
(This article belongs to the Special Issue Optimal Investment and Risk Management)
Show Figures

Figure 1

16 pages, 379 KiB  
Article
Intangible Assets and Analysts’ Overreaction and Underreaction to Earnings Information: Empirical Evidence from Saudi Arabia
by Taoufik Elkemali
Risks 2024, 12(4), 63; https://doi.org/10.3390/risks12040063 - 2 Apr 2024
Cited by 2 | Viewed by 1606
Abstract
Several prior studies indicate that financial analysts exhibit systematic underreaction to information; others illustrate systematic overreaction. We assume that cognitive biases influence analysts’ behavior and that these misreactions are not systematic, but they depend on the nature of news. As cognitive biases intensify [...] Read more.
Several prior studies indicate that financial analysts exhibit systematic underreaction to information; others illustrate systematic overreaction. We assume that cognitive biases influence analysts’ behavior and that these misreactions are not systematic, but they depend on the nature of news. As cognitive biases intensify in situations of high ambiguity, we distinguish between bad and good news and investigate the impact of intangible assets—synonymous with high uncertainty and risk—on financial analysts’ reactions. We explore the effect of information conveyed by prior-year earnings announcements on the current-year forecast error. Our findings in the Saudi financial market reveal a tendency for overreaction to positive prior-year earnings change (good performance) and positive prior-year forecast errors (good surprise). Conversely, there is an underreaction to the negative prior-year earnings change (bad performance) and negative prior-year forecast error (bad surprise). Notably, analysts exhibit systematic optimism rather than systematic underreaction or overreaction. The results also highlight that the simultaneous phenomena of overreaction and underreaction is more pronounced in high intangible asset firms compared to low intangible asset firms. Full article
(This article belongs to the Special Issue Optimal Investment and Risk Management)
29 pages, 1575 KiB  
Article
A Comparison of Generalised Linear Modelling with Machine Learning Approaches for Predicting Loss Cost in Motor Insurance
by Alinta Ann Wilson, Antonio Nehme, Alisha Dhyani and Khaled Mahbub
Risks 2024, 12(4), 62; https://doi.org/10.3390/risks12040062 - 31 Mar 2024
Viewed by 2533
Abstract
This study explores the insurance pricing domain in the motor insurance industry, focusing on the creation of “technical models” which are essentially obtained after combining the frequency model (the expected number of claims per unit of exposure) and the severity model (the expected [...] Read more.
This study explores the insurance pricing domain in the motor insurance industry, focusing on the creation of “technical models” which are essentially obtained after combining the frequency model (the expected number of claims per unit of exposure) and the severity model (the expected amount per claim). Technical models are designed to predict the loss costs (the product of frequency and severity, i.e., the expected claim amount per unit of exposure) and this is a main factor that is taken into account for pricing insurance policies. Other factors for pricing include the company expenses, investments, reinsurance, underwriting, and other regulatory restrictions. Different machine learning methodologies, including the Generalised Linear Model (GLM), Gradient Boosting Machine (GBM), Artificial Neural Networks (ANN), and a unique hybrid model that combines GLM and ANN, were explored for creating the technical models. This study was conducted on the French Motor Third Party Liability datasets, “freMTPL2freq” and “freMTPL2sev” included in the R package CASdatasets. After building the aforementioned models, they were evaluated and it was observed that the hybrid model which combines GLM and ANN outperformed all other models. ANN also demonstrated better predictions closely aligning with the performance of the hybrid model. The better performance of neural network models points to the need for actuarial science and the insurance industry to look beyond traditional modelling methodologies like GLM. Full article
Show Figures

Figure 1

27 pages, 685 KiB  
Article
COVID-19 and Excess Mortality: An Actuarial Study
by Camille Delbrouck and Jennifer Alonso-García
Risks 2024, 12(4), 61; https://doi.org/10.3390/risks12040061 - 30 Mar 2024
Viewed by 1748
Abstract
The study of mortality is an ever-active field of research, and new methods or combinations of methods are constantly being developed. In the actuarial domain, the study of phenomena disrupting mortality and leading to excess mortality, as in the case of COVID-19, is [...] Read more.
The study of mortality is an ever-active field of research, and new methods or combinations of methods are constantly being developed. In the actuarial domain, the study of phenomena disrupting mortality and leading to excess mortality, as in the case of COVID-19, is of great interest. Therefore, it is relevant to investigate the extent to which an epidemiological model can be integrated into an actuarial approach in the context of mortality. The aim of this project is to establish a method for the study of excess mortality due to an epidemic and to quantify these effects in the context of the insurance world to anticipate certain possible financial instabilities. We consider a case study caused by SARS-CoV-2 in Belgium during the year 2020. We propose an approach that develops an epidemiological model simulating excess mortality, and we incorporate this model into a classical approach to pricing life insurance products. Full article
(This article belongs to the Special Issue Extreme Events: Mortality Modelling and Insurance)
Show Figures

Figure 1

17 pages, 494 KiB  
Article
Two-Population Mortality Forecasting: An Approach Based on Model Averaging
by Luca De Mori, Pietro Millossovich, Rui Zhu and Steven Haberman
Risks 2024, 12(4), 60; https://doi.org/10.3390/risks12040060 - 27 Mar 2024
Viewed by 1496
Abstract
The analysis of residual life expectancy evolution at retirement age holds great importance for life insurers and pension schemes. Over the last 30 years, numerous models for forecasting mortality have been introduced, and those that allow us to predict the mortality of two [...] Read more.
The analysis of residual life expectancy evolution at retirement age holds great importance for life insurers and pension schemes. Over the last 30 years, numerous models for forecasting mortality have been introduced, and those that allow us to predict the mortality of two or more related populations simultaneously are particularly important. Indeed, these models, in addition to improving the forecasting accuracy overall, enable evaluation of the basis risk in index-based longevity risk transfer deals. This paper implements and compares several model-averaging approaches in a two-population context. These approaches generate predictions for life expectancy and the Gini index by averaging the forecasts obtained using a set of two-population models. In order to evaluate the eventual gain of model-averaging approaches for mortality forecasting, we quantitatively compare their performance to that of the individual two-population models using a large sample of different countries and periods. The results show that, overall, model-averaging approaches are superior both in terms of mean absolute forecasting error and interval forecast accuracy. Full article
Show Figures

Figure 1

18 pages, 438 KiB  
Article
The Effect of Corporate Governance on the Degree of Agency Cost in the Korean Market
by Younghwan Lee and Ana Belén Tulcanaza-Prieto
Risks 2024, 12(4), 59; https://doi.org/10.3390/risks12040059 - 27 Mar 2024
Cited by 2 | Viewed by 2046
Abstract
This study examines the relationship between corporate governance (CG) and agency costs using Korean market data, particularly for chaebol firms. The final sample includes 660 firm-year observations between 2016 and 2020 for Korean non-financial firms listed on the Korean Composite Stock Price Index [...] Read more.
This study examines the relationship between corporate governance (CG) and agency costs using Korean market data, particularly for chaebol firms. The final sample includes 660 firm-year observations between 2016 and 2020 for Korean non-financial firms listed on the Korean Composite Stock Price Index (KOSPI). This study employs an ordinary least-squares panel data regression model using two proxies for agency costs, namely, asset utilization ratio and operating expense ratio, and six CG individual metrics as independent variables (CG score, protection of shareholder rights, board structure, disclosure, audit organization, and managerial discretion and error management). We find that firms with high CG experience lower agency costs than those with low CG. Moreover, our evidence suggests that firms can decrease agency costs by improving the quality of CG. The results of our regression model also support the idea that CG is effective in reducing agency costs for chaebol firms but not for non-chaebol firms. Finally, our findings suggest that the implementation of effective CG mechanisms in firms might improve managerial behavior through better decision-making to maximize the value of firms. Full article
21 pages, 894 KiB  
Article
The Impact of Village Savings and Loan Associations as a Financial and Climate Resilience Strategy for Mitigating Food Insecurity in Northern Ghana
by Cornelius K. A. Pienaah and Isaac Luginaah
Risks 2024, 12(4), 58; https://doi.org/10.3390/risks12040058 - 25 Mar 2024
Cited by 8 | Viewed by 3307
Abstract
In semi-arid Northern Ghana, smallholder farmers face food insecurity and financial risk due to climate change. In response, the Village Savings and Loan Association (VSLA) model, a community-led microfinance model, has emerged as a promising finance and climate resilience strategy. VSLAs offer savings, [...] Read more.
In semi-arid Northern Ghana, smallholder farmers face food insecurity and financial risk due to climate change. In response, the Village Savings and Loan Association (VSLA) model, a community-led microfinance model, has emerged as a promising finance and climate resilience strategy. VSLAs offer savings, loans, and other financial services to help smallholder farmers cope with climate risks. In northern Ghana, where formal financial banking is limited, VSLAs serve as vital financial resources for smallholder farmers. Nevertheless, it remains to be seen how VSLAs can bridge financial inclusion and climate resilience strategies to address food insecurity. From a sustainable livelihoods framework (SLF) perspective, we utilized data from a cross-sectional survey of 517 smallholder farmers in northern Ghana’s Upper West Region to investigate how VSLAs relate to food insecurity. Results from an ordered logistic regression show that households with membership in a VSLA were less likely to experience severe food insecurity (OR = 0.437, p < 0.01). In addition, households that reported good resilience, owned land, had higher wealth, were female-headed, and made financial decisions jointly were less likely to experience severe food insecurity. Also, spending time accessing the market increases the risk of severe food insecurity. Despite the challenges of the VSLA model, these findings highlight VSLAs’ potential to mitigate food insecurity and serve as a financially resilient and climate-resilient strategy in resource-poor contexts like the UWR and similar areas in Sub-Saharan Africa. VSLAs could contribute to achieving SDG2, zero hunger, and SDG13, climate action. However, policy interventions are necessary to support and scale VSLAs as a sustainable development and food security strategy in vulnerable regions. Full article
(This article belongs to the Special Issue Climate Risks: Business Scenarios and Financial Implications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop