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Abstract: In this research, we consider cyber risk in insurance using a quantum approach, with a
focus on the differences between reported cyber claims and the number of cyber attacks that caused
them. Unlike the traditional probabilistic approach, quantum modeling makes it possible to deal with
non-commutative event paths. We investigate the classification of cyber claims according to different
cyber risk behaviors to enable more precise analysis and management of cyber risks. Additionally,
we examine how historical cyber claims can be utilized through the application of copula functions
for dependent insurance claims. We also discuss classification, likelihood estimation, and risk-loss
calculation within the context of dependent insurance claim data.

Keywords: cyber insurance; quantum methods; non-commutative operators; Clayton copula; data
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1. Introduction

The cyber insurance market is rapidly growing due to the effects of digital transfor-
mation in today’s world. Cyber risk, as both an emerging threat and an opportunity, is
gaining prominence in the insurance landscape. Traditional insurance policies, such as those
for motor vehicles or property, are increasingly incorporating cyber risks. This change is
driven by the advent of connected and autonomous vehicles and the adoption of smart
homes equipped with devices connected to servers and satellites. A major concern with
traditional insurance policies is the undervaluation of cyber risk and ‘silent cyber’, which
refers to previously unknown exposures that have neither been underwritten nor billed.
Nevertheless, identifying and mitigating the exposure to silent cyber is possible (Aon 2018).

Cybercrime can manifest in many forms, including ransomware attacks, hacking,
phishing, malware, spoofing, purchase fraud, theft of customer data, and tax fraud. This
diversity, combined with the short history of available data and a rapidly evolving environ-
ment, makes handling cyber insurance claims and developing models significantly more
complex than in traditional insurance (see, e.g., Dacorogna and Kratz 2022, 2023; Eling
2020; Tsohou et al. 2023). When evaluating common cyber risk scenarios, it is important to
consider potential reputational damage, loss of confidential information, financial losses,
regulatory fines, data privacy violations, data availability and integrity issues, contractual
violations, and implications for third parties. After a cyber incident, the recovery time is
crucial for mitigating business interruption. For example, the average recovery time for
ransomware attacks is approximately 19 days (Tsohou et al. 2023).

Cyber insurance losses are generally categorized as ‘first party’ and ‘third party’. First-
party losses are those that the insured party directly incurs. Third-party liability covers
claims made by individuals or entities who allege they have suffered losses as a result of
the insured’s actions (Romanosky et al. 2019; Tsohou et al. 2023). In the current research,
we are focusing on first-party losses.
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In today’s interconnected world, the perspective on risks is evolving. New emerging
risks, technological advancements, and globalization increase the interdependence among
risk parameters within the industry. For example, as demonstrated by COVID-19, a virus
originating in one location can quickly escalate into a global pandemic, affecting insurance
claims across distant regions. As a result, developing dependent risk models plays a crucial
role in achieving better pricing in the insurance industry. However, employing dependent
risk models is more complex than using independent models in predictive analytics. In actu-
arial science, copula functions are frequently used to model such dependencies (see, e.g.,
Constantinescu et al. 2011; Eling and Jung 2018; Embrechts et al. 2003; Lefèvre 2021).

Our goal here is to treat cyber claim amounts as quantum data rather than classical data
due to the assumed uncertainty in the number of cyber attacks. In this context, the number
of claims does not always correspond to the number of events (cyber attacks), so we analyze
the cyber data by assuming that a single cyber claim can result from more than one cyber
attack. Quantum methods originate from physics and have since been applied in various
fields of application. Much of the theory and applications can be found in the books Baaquie
(2014); Chang (2012); Griffiths (2002); Parthasarathy (2012). We also mention some recent
work related to our subject. Thus, the analysis of quantum data in finance and insurance
is studied in Hao et al. (2019); Lefèvre et al. (2018). Copulas and quantum mechanics are
explored in Al-Adilee and Nanasiova (2009); Zhu et al. (2023). Cyber insurance pricing and
modeling with copulas are discussed, e.g., in Awiszus et al. (2003); Eling and Jung (2018);
Herath and Herath (2011).

In this paper, we start with a study on quantum theory for non-commutative paths.
Next, we analyze synthetic data using a data classification method and risk-error functions.
Finally, we use a classical copula function to predict future dependent claims.

2. Quantum Claim Data

Historical claim data from traditional insurance policies can be considered as classical
data as there is generally no uncertainty about the number and amounts of claims, except
in the cases of fraud and misreporting. Cyber claims, however, differ from traditional
insurance claims in several ways, as listed in Table 1. Therefore, they should be handled
from a different perspective.

Table 1. Differences between traditional insurance and cyber insurance.

Insurance Types Identification of Damage Claim Number

Traditional
insurance

Claims, in most cases, are reported shortly
after the occurrence of the insured event

Claim is the result of a
single event in general

Cyber
insurance

Claims may be reported long after the
breach or attack due to delayed detection

Claim can result from
more than one cyber attack

Cyber damage is often detected much later and may result from multiple cyber attacks
originating from diverse sources. According to the Cost of a Data Breach Report IBM (2023),
the average time taken to identify and contain a data breach in 2022 was 277 days. Thus,
we assume that the number of claims was 1 when the damage was noticed after 277 days.
However, this damage could have originated from multiple sources at various times during
those days.

In Figure 1, the data types and analysis approaches are explained and illustrated (IBM
2024). While analyzing classical data using deterministic methods is widespread, the use of
quantum algorithms—including quantum kernels and quantum neural networks—is be-
coming increasingly common. As previously noted, cyber insurance claims are considered
under the assumption that they originate from several stochastic processes. Therefore, we
will treat them as quantum data and examine them by computing likelihood and risk-loss
functions within the context of dynamic classification.
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Figure 1. Data types and analysis methods.

3. Quantum for Non-Commutative Event Paths

Event paths and projectors. In a probabilistic setup, an event path A1, A2, . . . , Ak is
modeled as a product of indicators as

IA1 IA2 . . . IAk = IA1∩A2∩...∩Ak .

Such indicators correspond to the projection operators in quantum theory. Recall
that an operator P is called projector if P is self-adjoint and idempotent (i.e., P∗ = P and
P2 = P). A basic projector is defined via a unit vector e by

P = |e⟩ ⟨e| , (1)

where |x⟩ and ⟨x| are, respectively, column and row vectors that describe the quantum
state of the system. They correspond to the bra-ket notation, also called Dirac notation. A
general projector is then given by

P = ∑
i
|ei⟩ ⟨ei| ,

where {ei} denotes an orthonormal basis.
The probability of the system in the ground state e is measured by the expectation

of (1). This expected value is obtained via a usual trace function tr as

E(P) = E
(
|e⟩ ⟨e|

)
= tr(ρP), (2)

where ρ is a density operator which is a quantum state matrix of the system.
In quantum, a non-commutative version of the event path A1, A2, . . . , Ak is defined as

a product of projectors as
P1P2 . . . Pk.

Hereafter, the modeling is initiated by considering paths having the following prod-
uct form

σ = P · · · P︸ ︷︷ ︸ Q1 P · · · P︸ ︷︷ ︸ Q2 . . . Qk−1 P · · · P︸ ︷︷ ︸ .

j1 j2 jk
(3)

In our context, P = |e⟩ ⟨e| is an event stating that the genuine customer has the right
to exercise a financial claim if any, and the Qi are bounded self-adjoint operators indicating
possible obstacles such as computer malfunctions, cyberattacks, criminal activities of a
fraudster . . .
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A self-adjoint operator Q is known to be bounded if it can be expanded as

Q = ∑
i

λi |ei⟩ ⟨ei| , (4)

where ei and λi are the eigenvectors and eigenvalues of Q (i.e., Qei = λiei). The probability
of the measurement is extended by linearity of the expectation to

E(Q) = E
(

∑
i

λi |ei⟩ ⟨ei|
)
= ∑

i
λi E

(
|ei⟩ ⟨ei|

)
= tr(ρPi), (5)

after using (2).
Note, that the path σ is not a projector in general. However, when Qi ≡ Q and Q is a

projector, then σ = (PQP)k−1 (provided that j1, . . . , jk ≥ 1) and it is a projector if and only
if P and Q are commutative as follows from Halmos’ two projections theorem (see Bottcher
and Spitkovsky 2010).

Quantum Risk Model. Let us first look at a genuine customer model similar to the
one introduced in Lefèvre et al. (2018). A customer has the right to exercise financial claims.
Any claim amount, if requested, is given by a fixed real number m which corresponds to a
small claim for a short period of time. If not requested, the amount is 0.

Recall that an operator Z is observable if it is self-adjoint (i.e., Z = Z∗). For this model,
the overall observable H is given by the following sum

H = ∑
j

Aj, where Aj is the overall capital of j potential claims.

This includes the actual amount modeled, with the help of the tensor product, as

ln B⊗j
m , where Bm is a 2 × 2 self-adjoint matrix with eigenvalues em and 1,

in agreement with Hao et al. (2019); Lefèvre et al. (2018). The exercise right is then described
by the state projection Pj, thus

Aj = Pj ⊗ ln B⊗j
m , (6)

so that H becomes
H = ∑

j
Pj ⊗ ln B⊗j

m . (7)

Quantum Risk Model with Obstacles (called (O) model). This time, we hypothesize
that the projector may be vulnerable to potential cyberattacks. We model the corresponding
event as a path σj of the form (1) , using different parameters. Instead of (5), the j-th overall
capital in this (O) model is then defined by

A f
j = σj ⊗ ln B⊗j

m . (8)

We now need to determine the overall observable H f . This will be conducted using
the following result.

Lemma 1. A general path σ admits the representation

σ = aP, where a = tr(σ). (9)

Proof. By definition, P = |e⟩ ⟨e| in (1). Note, that σ = aP in (9) necessarily implies a = tr(σ)
since

tr(σ) = tr(aP) = a tr(|e⟩ ⟨e|) = a.

From the decomposition (4) of Q, we obtain
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PQP = |e⟩ ⟨e|
(

∑
i

λi |ei⟩ ⟨ei|
)
|e⟩ ⟨e| =

(
∑

i
λi ⟨e|ei⟩ ⟨ei|e⟩

)
|e⟩ ⟨e| ≡ cP,

where c is the term (. . .). Thus, a direct computation gives, in obvious notation,

σ = (PQ1P) . . . (PQk−1P) = (c1P . . . ck−1P) ≡ aP,

as announced in (9).

Returning to the (O) model, we have σj = ajP for all j by virtue of (9). Since aj ln B⊗j
m =

ln B⊗j
ajm, the formula (8) of A f

j becomes

A f
j = Pj ⊗ ln B⊗j

ajm. (10)

From (10), the observable H f is thus given by

H f = ∑
j

A f
j = ∑

j
Pj ⊗ ln B⊗j

ajm. (11)

For clarity, let us assume that all aj are equal to the same a. In other words, the obstacle
activities are considered here to be homogeneous ((OH) case). From (7) and (11), we have
proven the following result.

Proposition 1. Define
H(t) = ΣjPj ⊗ ln B⊗j

t , t real. (12)

In the (OH) case,
H = H(m), and H f = H(am) = aH(m). (13)

More generally, we suppose there is one line of claims for the genuine customer model, yielding
the observable H = H(m), and n separate risk models with homogeneous obstacles, yielding the
observables Hi

f = H(bim), i = 1, . . . , n. This combined claim process is called (CC) model.

Corollary 1. For the (CC) model, the overall observable is modeled by

H ⊗ H1
f ⊗ . . . ⊗ Hn

f

= H(m)⊗ H(b1m)⊗ . . . ⊗ H(bnm). (14)

In Section 4, we will consider such a (CC) process with three possible obstacles, i.e., three (O)
risk models, which leads to model the data using a sum of three stochastic processes. Before that, we
present a few simple examples for illustration.

Example 1. Consider two events A and B such that A ∩ B ̸= ∅. Let IA and IB be the indicators of
these events. Suppose that a sequence of events gives the first eight outcomes [0, 0, 1, 1, 0, 1, 0, 0]. In
probability, the associated product of indicators is

IA IA IB IB IA IB IA IA = I5
A I3

B = I3
B I5

A,

because of the commutative property of indicators (see Lefèvre et al. 2017 for classical exchangeable
sequences).

In quantum, IA and IB are replaced by projectors P and Q, respectively. Since projectors do
not commute, in general, the associated product of projectors is as follows:

PPQQPQPP = PQPQP.

So, the order in which they are applied can provide different results.
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Example 2. For three events, we introduce the qubits q1, q2, q3. The outcomes then are as follows:

|q3⟩ ⊗
(
|q2⟩ ⊗ |q1⟩

)
= |q3q2q1⟩ .

A basis for a qubit system is given by the eight states

|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩ ,

so that for a ψ system,

|ψ⟩ = α1 |000⟩+ α2 |001⟩+ α3 |010⟩+ . . . + α8 |111⟩ ,

where the αj represent amplitudes of the states and satisfy α2
1 + . . . + α2

8 = 1.
The probability of [0, 1, 0] can be determined as in (5), via

⟨ψ| P010 |ψ⟩ = tr(ρP010),

where the density matrix ρ is given by
(
|ψ⟩ ⟨ψ|

)
, i.e.,

ρ = (ρi,j) = (αiαj). (15)

Sum of the matrices P000, . . . , P111 is an identity matrix I8×8. Among them, P010 is a matrix
consisting entirely of zeros, except for the third element of the diagonal, which is 1. Using (15),
we obtain

tr(ρP010) = α2
3.

Example 3. In the continuation of Example 1, consider for P and Q the following Jordan block
matrices

P =

(
1 p
0 1

)
, Q =

(
1 q
0 1

)
,

where p and q take non-null values. We observe that P2 ̸= P and Q2 ̸= Q, so they are not projectors.
Defining the density ρ by (

p11 p12
p21 p22

)
,

we then obtain
tr(ρQn) = 1 + p21nq, n ≥ 1.

Basically, matrices with eigenvalues 1 cannot be treated as events, as this can lead to nonsensical
results. How to deal with non-self-adjoint matrices is an important question; several methods are
proposed in quantum modeling.

4. Quantum Approach to Cyber Insurance Claims

The overall compound claim is viewed here as the path resulting from a series of cyber
attacks. Specifically, let Xi ≡ Si(∆t) denote the total cyber insurance claims occurred during
successsive small time intervals (ti, ti + ∆t], over a horizon of length n∆t. Each claim Xi is
assumed to come from a combination of several stochastic processes, and the corresponding
data are treated as quantum data. Let m be the mean of Xi and λ its frequency rate, so that
mλ measures the expected loss amount.

Our approach consists of two main steps: (i) learning patterns from existing data by
dividing it into several stochastic processes, and (ii) using copula functions to generate
data for estimating future claims. This section addresses point (i), while point (ii) will be
discussed in the next section.

For illustration, we examine how to split historical claim data into (at most) three
different stochastic processes. Naturally, if security vulnerabilities evolve over time, our
current data may become less reliable. However, we can make it usable again by treating
data as the result of combined processes and understanding their patterns.
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Each claim Xi (> 0) is here the sum of the claims generated by three processes and
can be expressed as

Xi = ∑
i1

Y1,i1 + ∑
i2

Y2,i2 + ∑
i3

Y3,i3 , (16)

where given any j = 1, 2, 3, the claims Yj,ij , ij ≥ 1, are i.i.d. random variables with means
E(Yj) = mj, and they occur independently at rates λj. This implies that

mλ ≈ m1λ1 + m2λ2 + m3λ3.

The total expected claim amount per unit of time is shown in Table 2 when there are at
most three generating processes.

Table 2. Generating processes with claim means and rates for (16).

Number of
Processes Claim Means and Rates No Claim One Claim Two Claims Three Claims

One
stochastic
process

Claim mean m and
Claim frequency λ

0 m 2m 3m

Two
stochastic
processes

Claim means m1, m2
Claim frequencies λ1 and
λ2, respectively

0 m1,
m2

m1 + m2,
2m1,
2m2

3m1,
3m2,

2m1 + m2,
2m2 + m1,

Three
stochastic
processes

Claim means m1, m2
and m3
Claim frequencies λ1 , λ2
and λ3, respectively

0
m1,
m2,
m3

2m1,
2m2,
2m3,

m1 + m2,
m1 + m3,
m2 + m3,

3m1,
3m2,
3m3,

2m1 + m2,
2m1 + m3,
2m2 + m1,
2m2 + m3,
2m3 + m1,
2m3 + m2,

m1 + m2 + m3

Additionally, let us assume that Xi is, for example, a combination of at most two claims
per unit of time. In this case, (16) simplifies to

Xi =
2

∑
i1=1

Y1,i1 +
2−i1

∑
i2=1

Y2,i2 +
2−i1−i2

∑
i3=1

Y3,i3 , (17)

where Xi is positive but the Yj,ij ’s can be zero. All possible scenarios for the mean claims
are listed in Table 3 in the case m1 < m2 < m3. For example, if m1 = 2, m2 = 5, m3 = 50,
it is the 6-th scenario which is appropriate because the values in the classes are then in
ascending order; if m1 = 8, m2 = 10, m3 = 40, this is the 11-th scenario for the same reason.

Table 3. Mean claims scenarios ranked in ascending order when m1 < m2 < m3, for (17).

Schemes Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

1 m1 m2 m3 2m1 m1 + m2 m1 + m3 2m2 m2 + m3 2m3
2 m1 m2 m3 2m1 m1 + m2 2m2 m1 + m3 m2 + m3 2m3
3 m1 2m1 m2 m3 m1 + m2 m1 + m3 2m2 m2 + m3 2m3
4 m1 2m1 m2 m1 + m2 m3 m1 + m3 2m2 m2 + m3 2m3
5 m1 2m1 m2 m1 + m2 m3 2m2 m1 + m3 m2 + m3 2m3
6 m1 2m1 m2 m1 + m2 2m2 m3 m1 + m3 m2 + m3 2m3
7 m1 m2 2m1 m3 m1 + m2 m1 + m3 2m2 m2 + m3 2m3
8 m1 m2 2m1 m3 m1 + m2 2m2 m1 + m3 m2 + m3 2m3
9 m1 m2 2m1 m1 + m2 m3 m1 + m3 2m2 m2 + m3 2m3

10 m1 m2 2m1 m1 + m2 m3 2m2 m1 + m3 m2 + m3 2m3
11 m1 m2 2m1 m1 + m2 2m2 m3 m1 + m3 m2 + m3 2m3



Risks 2024, 12, 83 8 of 16

Moreover, Table 4 gives the corresponding total claims Bj, j = 1, . . . , 9, and their
frequencies f j, the probabilities of occurrence being δj = f j/( f1 + . . . + f9).

Table 4. Total claims and their frequencies for (17).

Xi ≡ Bj Where Frequencies fj

B1 = {Y1,1} f1 = e−λ1 λ1
B2 = {Y2,1} f2 = e−λ2 λ2
B3 = {Y3,1} f3 = e−λ3 λ3
B4 = {Y1,1 + Y1,2} f4 = e−λ1 λ2

1/2
B5 = {Y1,1 + Y2,1} f5 = e−λ1 e−λ2 λ1λ2
B6 = {Y1,1 + Y3,1} f6 = e−λ1 e−λ3 λ1λ3
B7 = {Y2,1 + Y2,2} f7 = e−λ2 λ2

2/2
B8 = {Y2,1 + Y3,1} f8 = e−λ2 e−λ3 λ2λ3
B9 = {Y3,1 + Y3,2} f9 = e−λ3 λ2

3/2

4.1. Hamiltonian Operator

Observable quantities are represented by self-adjoint operators. In the paper Lefèvre et
al. (2018), we showed how to analyze such data using the quantum spectrum. In quantum
mechanics, the spectrum of an operator is precisely the set of eigenvalues which correspond
to observables for certain Hermitian operators/self-adjoint matrices.

Consider the model (17) with three processes and at most two claims per unit of
time. We define the corresponding Hamiltonian observable operator by the following
tensorial product

H = P1 ⊗ ln(B ⊗ I3) + P2 ⊗ ln(B⊗2), (18)

where P1 and P2 are the operators for one and two claims occurrences which are defined by
the 2 × 2 matrices

P1 =

(
1 0
0 0

)
, and P2 =

(
0 0
0 1

)
,

B is the operator for the claim amount on a jump which is defined by the 3 × 3 matrix

B =

em1 0 0
0 em2 0
0 0 em3

,

and I3 is the identity operator of dimension 3 (ln is just applied to diagonal elements of
the matrices).

The two terms of claim amounts in (18) are the diagonal 9 × 9 matrices

B ⊗ I3 = diag
(
em1 , em1 , em1 , em2 , em2 , em2 , em3 , em3 , em3

)
,

B⊗2 = diag
(
e2m1 , em1+m2 , em1+m3 , em2+m1 , e2m2 , em2+m3 , em3+m1 , em3+m2 , e2m3

)
.

Therefore, H is a self-adjoint 18 × 18 matrix with eigenvalues

m1, m1, m1, m2, m2, m2, m3, m3, m3, 2m1, m1 + m2, m1 + m3, m2 + m1,

2m2, m2 + m3, m3 + m1, m3 + m2, 2m3,

so its spectrum has nine distinct eigenvalues

m1, m2, m3, 2m1, m1 + m2, 2m2, m1 + m3, m2 + m3, 2m3. (19)

The Hamiltonian operator is given by (18) when the claim amount Xi is strictly positive.
If Xi = 0, it is defined as

H = P0 ⊗ ln(B ⊗ O3) + P1 ⊗ ln(B ⊗ I3) + P2 ⊗ ln(B⊗2),
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where

P0 =

1 0 0
0 0 0
0 0 0

, P1 =

0 0 0
0 1 0
0 0 0

, P2 =

0 0 0
0 0 0
0 0 1

, and O3 =

0 0 0
0 0 0
0 0 0

.

In the following, we assume Xi > 0 and will thus use the Hamiltonian operator (18).

4.2. Likelihood and Risk Functions

First, we classify the data with respect to the eigenvalues (19) of the operator (18) and
label them. The order of two successive claims in a unit of time is ignored. The different
classes are listed below:

CB1 = {m1}, CB2 = {m2}, CB3 = {m3}, CB4 = {2m1}, CB5 = {m1 + m2},

CB6 = {m1 + m3}, CB7 = {2m2}, CB8 = {m2 + m3}, CB9 = {2m3}.

Using the Maxwell–Boltzmann statistics, the associated likelihood function L(m1, m2, m3)
is given by

L(m1, m2, m3) = (δ1)
#CB1 (δ2)

#CB2 (δ3)
#CB3 (δ4)

#CB4 (δ5)
#CB5 (δ6)

#CB6 (δ7)
#CB7 (δ8)

#CB8 (δ9)
#CB9 ,

where #CBj are the numbers of claims in class CBj , and δj are the normalized frequencies of
Table 4 for the three Poisson processes.

Finally, the risk function F(m1, m2, m3) is calculated via the square distance ( ∑
i≥1

|xi −

x′i |2), or the Gaussian (squared exponential) distance ( ∑
i≥1

exp(−γ|xi − x′i |2), γ ∈ R+). For

the square distance kernel, the risk function is here

F(m1, m2, m3) = δ1 ∑
xi∈CB1

|xi − m1|2 + δ2 ∑
xi∈CB2

|xi − m2|2 + δ3 ∑
xi∈CB3

|xi − m3|2

+ δ4 ∑
xi∈CB4

|xi − 2m1|2 + δ5 ∑
xi∈CB5

|xi − (m1 + m2)|2 + δ6 ∑
xi∈CB6

|xi − (m1 + m3)|2

+ δ7 ∑
xi∈CB7

|xi − 2m2|2 + δ8 ∑
xi∈CB8

|xi − (m2 + m3)|2 + δ9 ∑
xi∈CB9

|xi − 2m3|2,

and for the Gaussian distance kernel,

F(m1, m2, m3) = δ1 ∑
xi∈CB1

e−|xi−m1|2 + δ2 ∑
xi∈CB2

e−|xi−m2|2 + δ3 ∑
xi∈CB3

e−|xi−m3|2

+ δ4 ∑
xi∈CB4

e−|xi−2m1|2 + δ5 ∑
xi∈CB5

e−|xi−(m1+m2)|2 + δ6 ∑
xi∈CB6

e−|xi−(m1+m3)|2

+ δ7 ∑
xi∈CB7

e−|xi−2m2|2 + δ8 ∑
xi∈CB8

e−|xi−(m2+m3)|2 + δ9 ∑
xi∈CB9

e−|xi−2m3|2 .

To minimize such a risk value, we perform optimization on all possible values of (m1, m2, m3).
Additionally, we determine boundaries using the neighborhood approach.

4.3. Illustration

Let us consider the following dataset

{14, 52, 34, 81, 13, 12, 53, 1, 63, 124}.

The main reason for choosing a small dataset size is only to simplify the demonstration of
the example. Our algorithm can of course be applied to large datasets.
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Table 5 shows the means m1, m2, m3 and the rates λ1, λ2, λ3 for the three processes,
obtained using the two previous distance kernels. Neighborhood optimization is conducted
here by perturbing the boundaries between classes with ϵ ∈ (−2, 2). Of course, it is possible
to achieve better results with an advanced optimization technique.

Table 5. Means and rates obtained with different distance kernels.

Kernels m1 m2 m3 λ1 λ2 λ3
mλ ≈

m1λ1 + m2λ2 + m3λ3

Square distance kernel 6 26 59 0.9 0.6 0.4 44.6
With the neigborhood method 6 28 56 0.9 0.2 0.6 44.6

Gaussian distance kernel 5 11 55 0.3 0.6 0.6 41.1
With the neigborhood method 5 16 52 0.3 0.7 0.6 43.9

As expected, using different kernels with nearest neighbor approaches influence the
results. For the current analysis, we applied the squared distance kernel and thus obtain
m1 = 6, m2 = 26, m3 = 59 (which corresponds to scenario 6 of Table 3). In addition, the
dataset is distributed in the nine classes according to the distribution indicated in Table 6.
For this classification, midpoint values are used to define class boundaries. Note, that these
boundaries are dynamic and change in response to the values of m1, m2, m3.

Table 6. Classification of the data set for m1 = 6, m2 = 26, m3 = 59.

CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8 CB9

m1 m2 m3 2m1 m1 + m2 m1 + m3 2m2 m2 + m3 2m3
[1] [] [] [14, 13, 12] [34] [63] [52, 53] [81] [124]

The classes containing two claims, i.e., CB4 = {2m1}, CB5 = {m1 + m2}, CB6 =
{m1 + m3}, CB7 = {2m2}, CB8 = {m2 + m3}, CB9 = {2m3}, are separated with respect to
the weights of m1, m2, m3 as follows:

for CB4 , CB7 , CB9 : weights 1/2, 1/2, for CB5 : m1/(m1 + m2), m2/(m1 + m2),

for CB6 : m1/(m1 + m3), m3/(m1 + m3), for CB8 : m2/(m2 + m3), m3/(m2 + m3).

So, the two claims in CB4 of sum 14, for example, yield the amounts 7 and 7. For CB5 , the
sum 34 is subdivided into 6.38 and 27.63; for CB6 , 63 becomes 5.82 and 57.18; for CB8 , 81
yields 24.78 and 56.23.

Following this method, the claims in the three processes are listed in Table 7 and
displayed with their means and frequencies in Figure 2. According to Table 5, the claim
arrival rates for these processes are λ1 = 0.9, λ2 = 0.6, λ3 = 0.4.

Figure 2. Original claims versus split claims for the three stochastic processes.
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Table 7. Claims for the sub-processes.

Processes Claims

1st process (Small claims) V1 = {1, 7, 7, 6.5, 6.5, 6, 6, 6.38, 5.82},
2nd process (Medium claims) V2 = {27.63, 26, 26, 26.5, 26.5, 24.78},

3rd process (Large claims) V3 = {57.18, 56.23, 62, 62}.

As shown in Figures 3 and 4, the deviation from the mean in the sub-processes is
minimized after the claims splitting and categorization process.

Figure 3. Original claims and mean before analysis.

Figure 4. Split and categorized claims and means after analysis.

The detailed pseudo-code is provided by the Algorithm 1.
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Algorithm 1: for splitting the main claim process and classifying the cyber data.
Input : Synthetic data representing historical cyber claim data.
Output :Optimum number of subprocesses, mean and occurrence rate for each of

them, risk values and likelihood value.
1 Calculate the mean and frequency for the main process.
2 Compute the likelihood value.
3 Compute the risk function and assign as minimum risk value.
4 for the number of sub-processes n (≥ 2), do
5 for m3 = min(claims) + 2 to max(claims), do
6 for m2 = min(claims) + 1 to m3, do
7 for m1 = min(claims) to m2, do
8 Create classes according to the number of sub-processes and the

maximum number of claims per unit of time.
9 Distribute all claims into the n sub-processes.

10 Compute the frequencies λi for each sub-process.
11 Compute the claim probabilities δj.
12 Compute the likelihood value.
13 Compute the risk value for the chosen distance.
14 if the minimum risk value > the risk value, then
15 Assign new risk value as minimum risk value.
16 Assign m1, m2, m3 as optimum mean values.
17 Assign λ1, λ2, λ3 as optimum rates.
18 else
19 Do nothing.
20 end if
21 end for
22 end for
23 end for
24 end for
25 Separate the classes with two claims with respect to the weights of m1, m2, m3.
26 Add zeros to the sub-processes to match their size for meeting the occurrence rates.

5. Generating Dependent Cyber Claims with Copulas

In the previous section, we analyzed a synthetic dataset by dividing the main claim
process into three subprocesses. We are now able to estimate new claims by working
precisely within this framework.

5.1. When the Sub-Processes Are Independent

Let us start by assuming that the behaviors of the subprocesses are always independent.
Then, we can directly estimate the spectrum V̄ of future cyber claims by

V̄ ≡ ln
(

eV̄1 ⊗ eV̄2 ⊗ eV̄3
)

= ln
[ ev1,1

· · ·
ev1,n1

⊗

 ev2,1

· · ·
ev2,n2

⊗

 ev3,1

· · ·
ev3,n3

]
, (20)

where V̄i, i = 1, 2, 3, is the set of distinct elements vi,j from Vi, which are in number ni. For
example, in subsection 4.3, V̄1 = {1, 7, 6.5, 6, 6.38, 5.82} and n1 = 6. So, the expected value
of the spectrum is as follows

E(V̄) =
n1n2n3

∑
k=1

(c)k (V̄)k,
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where (V̄)k is the k-th element of the column vector V̄ (of size n1n2n3), and (c)k denotes its
probability mass function which is calculated through the vector c given by

c ≡ pV̄1
(v1)⊗ pV̄2

(v2)⊗ pV̄3
(v3)

=

 P(V̄1 = v1,1)
· · ·

P(V̄1 = v1,n1)

⊗

 P(V̄2 = v2,1)
· · ·

P(V̄2 = v2,n2)

⊗

 P(V̄3 = v3,1)
· · ·

P(V̄3 = v3,n3)

.

Without change, E(V̄) ≈ m since merging the separate claims should give us the same
result. In conclusion, V̄ in (20) applies in the independent case.

Of course, if the behaviors of the three processes change due to emerging technologies
or risks, we may modify the claims associated with these processes accordingly as follows:

V̄ = ln
[ ev1,1+ϵ1

· · ·
ev1,n1

+ϵ1

⊗

 ev2,1+ϵ2

· · ·
ev2,n2+ϵ2

⊗

 ev3,1+ϵ3

· · ·
ev3,n3+ϵ3

]
,

where ϵi ∈ R, i = 1, 2, 3, represents the amount of change in each subprocess.

5.2. When the Sub-Processes Can Be Correlated

Consider a scenario involving the presence of dependence effects over time. A practical
way to predict future claims is then to use some copula functions. We briefly recall basic
points in the theory of copulas. Let (U1, . . . , Un) be a vector of n random variables that
are distributed uniformly on (0, 1). A copula C is the joint distribution function of such a
vector, i.e.,

C(u1, . . . , un) = P(U1 ≤ u1, . . . , Un ≤ un), u1, . . . , un ∈ (0, 1).

In the particular degenerate case where the Ui are independent, then C(u1, . . . , un) =
u1 . . . un. Sklar’s key theorem states that the joint distribution function F of any continuous
vector (X1, . . . , Xn) having marginal distribution functions Fi admits a unique copula
representation as

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

Now, a copula is called Archimedean if it has the simplified form

C(u1, . . . , un) = ϕ−1[ϕ(u1) + . . . + ϕ(un)], u1, . . . , un ∈ [0, 1],

for some univariate function ϕ(x) : [0, 1] → [0, ∞) which is completely monotonic with
ϕ(0) = ∞ and ϕ(1) = 0. Observe that in this case, the vector (U1, . . . , Un) is automatically
exchangeable (in de Finetti sense). We note, however, that the symmetry of the distribution
can be broken by making this vector only partially exchangeable (see Lefèvre 2021). One of
the most common Archimedean copulas is the Clayton copula defined by

Cθ(u1, . . . , un) =
(

max{u−θ
1 + . . . + u−θ

n − n + 1, 0}
)−1/θ , (21)

where θ represents a positive parameter. Here, we will work precisely with this copula for
n = 2.

More precisely, we assume that there is dependence between claims coming from
the first and second sub-processes, while claims originating from the third one remain
independent. Then, we use the bivariate Clayton copula Cθ(u1, u2) given by (21) to model
claims of these first two sub-processes. For a discrete version of the copula, we refer
to Trivedi and Zimmer (2017) which provides its probability mass function, denoted
cθ(u1,j1 , u2,j2), as

cθ(u1,j1 , u2,j2) = Cθ(u1,ji , u2,j2)− Cθ(u1,j1−1, u2,j2)− Cθ(u1,j1 , u2,j2−1) + Cθ(u1,j1−1, u2,j2−1),
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where ji = 1, . . . , ni for i = 1, 2.
Let c be the column vector (of dimension n1n2) representing this mass function. The

joint probability distribution for the three sub-processes is then given by

c ⊗ pV̄3
(v3) = c ⊗

 P(V̄3 = v3,1)
· · ·

P(V̄3 = v3,n3)

.

Therefore, the expected spectrum of future cyber claims becomes

E(V̄) =
n1n2n3

∑
k=1

(
c ⊗ pV̄3

(v3)
)

k

(
ln

[ ev1,1+ϵ1

· · ·
ev1,n1

+ϵ1

⊗

 ev2,1+ϵ2

· · ·
ev2,n2+ϵ2

⊗

 ev3,1+ϵ3

· · ·
ev3,n3+ϵ3

])
k
.

The detailed pseudo-code is provided by the Algorithm 2 below.

Algorithm 2: for merging correlated claims in the sub-processes.
Inputs : Cyber data derived from sub-processes.
Output : Estimated future claims.

1 Identify unique values for V1, V2, and V3, respectively.
2 Calculate the values of the probability mass function.
3 if there is no change or correlation in the behavior of the sub-processes, then
4 Calculate possible claims using the tensor product.
5 Determine probabilities for the possible claims via the tensor product.
6 Compute the expected claim amount.
7 else
8 Modify the claims in the V̄i based on the change amounts.
9 Calculate possible claims using the tensor product.

10 Determine joint probabilities using the copula with the parameter θ.
11 Calculate probabilities for the possible claims via the tensor product.
12 Compute the expected claim amount.
13 end if

6. Conclusions

With the advent of new technologies, such as generative AI, quantum computing
and metaverse platforms, coupled with challenges such as climate change, pandemics
and globalization, humanity has entered a period of exponential change. In such a rapidly
evolving environment, relying solely on historical data can lead to incorrect predictions. As a
solution, we used a stochastic process based on historical data, dividing it into three distinct
sub-processes to better discern patterns. To account for parameter changes and correlated
cases, we used Clayton copula, one of the well-known Archimedean copulas, which allows
us to predict future claims by updating claims from the subprocesses and considering the
magnitude of change. This methodology provides a fairly compelling example of how to
turn unreliable historical data into a reliable resource in a rapidly changing environment.

Analyzing cyber insurance data is far more complex than what has been discussed
here. In particular, it would be extremely beneficial to process actual cyber data and test
the performance of the non-standard approach we are proposing. Nevertheless, in this
work, we have demonstrated how cyber data can be considered as quantum data. We
also explained how to segment the dataset using various subprocesses and how to make
predictions in an uncertain environment.

In the analysis of cyber insurance data and forecasting, working with researchers in an
agile environment and updating current models are essential. This necessity arises because
hackers are becoming more innovative, and technology is rapidly evolving. In this paper,
we have introduced a different approach from a mathematical perspective. We would like
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to emphasize that this approach is only applicable if the data are distributed across a wide
spectrum, exhibiting high bias relative to the mean, in order to yield more accurate estimates.
The approach can be used for large datasets. However, from the industrial perspective, the
model should be tested and validated by experts using real cyber insurance data.
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