
Citation: Challet, Damien, and

Vincent Ragel. 2024. Multi-Timescale

Recurrent Neural Networks Beat

Rough Volatility for Intraday

Volatility Prediction. Risks 12: 84.

https://doi.org/10.3390/

risks12060084

Academic Editors: Evangelos

Giouvris and Mohammad Sharik Essa

Received: 19 April 2024

Revised: 16 May 2024

Accepted: 20 May 2024

Published: 22 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Multi-Timescale Recurrent Neural Networks Beat Rough
Volatility for Intraday Volatility Prediction
Damien Challet * and Vincent Ragel

Université Paris-Saclay, CentraleSupélec, Laboratoire MICS, 91190 Gif-sur-Yvette, France;
vincent.ragel@centralesupelec.fr
* Correspondence: damien.challet@centralesupelec.fr

Abstract: We extend recurrent neural networks to include several flexible timescales for each dimen-
sion of their output, which mechanically improves their abilities to account for processes with long
memory or highly disparate timescales. We compare the ability of vanilla and extended long short-
term memory networks (LSTMs) to predict the intraday volatility of a collection of equity indices
known to have a long memory. Generally, the number of epochs needed to train the extended LSTMs
is divided by about two, while the variation in validation and test losses among models with the same
hyperparameters is much smaller. We also show that the single model with the smallest validation
loss systemically outperforms rough volatility predictions for the average intraday volatility of equity
indices by about 20% when trained and tested on a dataset with multiple time series.

Keywords: time series; long memory; recurrent neural networks; rough volatility; volatility prediction

1. Introduction

Some time series in nature have a very long memory (Robinson 2003), e.g., fluid
turbulence (Resagk et al. 2006), asset price volatility (Cont 2001) and tick-by-tick events in
financial markets (Challet and Stinchcombe 2001; Lillo and Farmer 2004). From a modelling
point of view, this means that the current value of an observable of interest depends on the
past by a convolution of itself with a long-tailed kernel.

Deep learning tackles past dependence in time series with recurrent neural networks
(RNNs). These networks are in essence moving averages of nonlinear functions of the inputs
and learn the parameters of these averages and functions. Provided that they are sufficiently
large, these networks can approximate long-tailed kernels in a satisfactory way, and are of
course able to account for more complex problems than a simple linear convolution. Yet,
their flexibility may prevent them from learning the long memory of time series quickly and
efficiently. Several solutions exist: either one pre-filters the data by computing statistics at
various timescales and use them as inputs to RNNs in the same spirit as multi-timescale
volatility modelling (Corsi 2009; Zumbach and Lynch 2001), see, e.g., Kim and Won (2018)
or Ganesh and Rakheja (2018), or one extends the neural networks so as to improve their
abilities. For example, Zhao et al. (2020) add delay operators, taking inspiration from
ARIMA processes, to the states of recurrent neural networks, while Ohno and Kumagai
(2021) modify the update equation of the network output so that its dynamics mimic those
of a variable with a long memory. In both cases, the time dependence structure is enforced
by hand in the architecture of neural networks or in the data that are input to the networks.

Here, we propose a flexible and parsimonious way to extend the long-memory abilities
of recurrent neural networks by using an old trick: approximating long-memory kernels
with exponential functions, which helps recurrent neural networks learn faster and better
to predict time series with long memory.

Our main contributions are (i) we introduce RNNs with several multiple flexible
timescales for each dimension of the output; (ii) we show that learning to predict time

Risks 2024, 12, 84. https://doi.org/10.3390/risks12060084 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks12060084
https://doi.org/10.3390/risks12060084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0001-5457-1077
https://orcid.org/0009-0004-2336-6301
https://doi.org/10.3390/risks12060084
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks12060084?type=check_update&version=1


Risks 2024, 12, 84 2 of 10

series with a long memory (asset price volatility) is faster and more reliable with more
flexible timescales; and (iii) vanilla rough volatility predictions can be beaten by training a
fair number of recurrent neural networks on multiple time series and only using the one
with the best validation loss.

2. Materials and Methods
2.1. Recurrent Neural Networks with Multiple Timescales

Let time series yt be of interest. Its moving average can be written as

ỹt =
∫ t

−∞
K(t − t′)y′tdt′, (1)

where K is a kernel. In a discrete-time context,

ỹt =
t

∑
−∞

K(t − t′)y′t. (2)

When the process is Markovian, its kernel is K(x) ≃ e−x/τ0 for large x, where τ0 is the
slowest timescale at which the process forgets its past. In this case, one can write yt in a
recursive way:

ỹt = ỹt−1(1 − λ) + λyt, (3)

where λ ≃ 1/τ0; ỹt is then an exponentially moving average (EMA) of yt.
Long memory processes, however, have a kernel that decreases at least as slowly as a

power law with an exponent smaller than one (Palma 2007). In turn, power laws can be
approximated by a sum of exponential functions; naively, if K(z) = z−α, one writes

K(z) ∝
∞

∑
i=1

wi exp(−z/τi) (4)

with wi ∝ (1/cα)i and τi = ci for a well-chosen constant c. One covers the z space in a
geometric way and the weights wi account for the power-law decreasing nature of K(z).
This rough approach works well and is widespread. Bochud and Challet (2007) propose a
more refined method to determine how many exponential functions one needs to optimally
approximate K and how to compute wi for a given α and for a given range of z over which
the kernel has to be approximated by a sum of exponential functions. For example, one
needs about four exponential functions to approximate a given power-law over three
decades (e.g., z ∈ [1, 1000]).

Writing down the update equations of well-known recurrent neural network architec-
tures makes it clear that they use exponentially moving averages with a single timescale
for each output dimension. For example, gate recurrent units (GRUs) (Cho et al. 2014)
transform the input vector xt ∈ RNI into a vector of timescales λt ∈ RNO

λt = σ(Wλxt + Uλct−1 + bλ), (5)

which is then used in the update of the output ct

ct = ct−1 ⊙ (1 − λt) + λt ⊙ c̃t, (6)

where the update c̃t is also computed from the input with learned weights, i.e.,

c̃t = σc(Wcxt + Uc(ct−1 ⊙ rt) + bc) (7)

rt = σr(Wrxt + Urct−1 + br) (8)

For non-linear functions σc and σr, ⊙ is the element-wise (Hadamar) product and rt
is the reset gate which modifies the value of ct−1 when computing c̃t. By design, GRUs



Risks 2024, 12, 84 3 of 10

can only exponentially compute moving averages of c̃t (which itself is then modified non-
linearly), although they possess the interesting ability to learn both λt and the update c̃t as
a function of their inputs. It is straightforward to extend GRUs to an arbitrary number of
timescales n by using n c̃(k)t , k = 1, . . . , n and

λ
(k)
t = σ(W(k)

λ xt + U(k)
λ c(k)t−1 + b(k)λ ) (9)

c(k)t = c(k)t−1 ⊙ (1 − λ
(k)
t ) + λ

(k)
t c̃t, (10)

where each c(k)t is an exponentially moving average at a timescale proportional to 1/λ
(k)
t .

Finally, the output will be

ct =
n

∑
k=1

wkc(k)t , (11)

The simple α-RNNs (Dixon and London 2021), which are simplified GRUs, share the same
assumption of a single timescale per output dimension and thus can be generalized in the
same way. Let us show now how to extend LSTMs with a forget gate (Gers et al. 2000).
Starting from their output ht ∈ RNh , one has

ht = ot ⊙ σh(ct) (12)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (13)

where ot, it, and c̃t are determined from the input xt and the previous output ht−1 with
learned weights, and σh is a nonlinear function. Writing ft = 1 − λt makes it obvious that
the cell vector ct evolves in the same way as yt in Equation (6) if it ≃ λt.

Extending LSTMs to include n timescales by cell state dimension is therefore straight-
forward: one needs to compute n EMAs and their associated timescales as follows:

f (k)t = σ(W(k)
f xt + U(k)

f ht−1 + b(k)f ) (14)

i(k)t = σ(W(k)
i xt + U(k)

i ht−1 + b(k)i ) (15)

c(k)t = f (k)t ⊙ c(k)t−1 + i(k)t ⊙ c̃t, (16)

where c̃t follows Equation (7), in which ct−1 evolves according to Equation (11). Note that
one could set i(k)t = 1 − f (k)t = λ

(k)
t and not learn the weights associated with it. Learning

i(k) as well is equivalent to modulating the importance of the update, which is known as
cognitive bias (Palminteri et al. 2017); this is made clear by writing i(k)t = v(k)t (1 − f (k)t ) =

v(k)t λ
(k)
t , where v(k)t is the modulation of the learning speed.
We will focus on the case n = 2; after setting w2 = (1 − w1), (11) amounts to

ct = c(1)t ⊙ w1 + (1 − w1)⊙ c(2)t , (17)

where the vector w1 is learnable and its components are bounded to the [0, 1] interval. We
call LSTMs with several timescales (n > 1) per dimension LaSTMs, which stands for long
and short-term memories (at the same time in a given hidden dimension). We reiterate
that this architecture is introduced in order to significantly increase the memory length
of a hidden dimension while not doubling the number of parameters. Other approaches,
such as VLSTMs (Ganesh and Rakheja 2018), are orthogonal to ours, as they train an LSTM
for each data resampling frequency. Here, we keep the complexity to a minimum while
retaining the full flexibility of LSTMs; i.e., we do not impose a data resampling frequency
by hand.

Naively, when learning to predict a process that is not too noisy, we expect the
difference between LaSTM and LSTM to be the highest when Nh = 1, i.e., precisely when
LSTMs are not able to compute long-term averages, and to decrease when Nh increases.



Risks 2024, 12, 84 4 of 10

Note that LSTMs with a sufficiently large cell dimension Nh can in principle learn
to superpose timescales in the same way as Equation (11) by learning one timescale per
dimension and using a final dense layer to learn how to combine them (effectively learning
the w1 vector). However, imposing constraints (or equivalently, injecting some known
structure) is known to lead to faster learning and better results (e.g., physics-guided deep
learning; see Thuerey et al. (2021) for a review). This makes LSTM training less of a hit-and-
miss process, as we shall see. We also emphasize that LaSTMs have fully flexible timescales
and hence learn fully flexible averaging kernels.

We do not intend to provide here a comprehensive study of the best possible volatility
prediction technique with deep learning involving more complex architectures, e.g., stacked
LSTMs, LSTM with CNNs, VLSTMs, LSTMS with attention, etc. Instead, we focus on how
to make vanilla LSTMs converge better and faster, which will mechanically improve all
the above variations; we first investigate how long memory is better learned with several
timescales per hidden state. A second research question is how to use a collection of trained
LSTMs: we advocate to use the one with the smallest validation loss instead of taking
averages. A final question is that of the universality of the volatility process, i.e., the ability
of a model to predict the volatility of many time series, which we confirm here.

2.2. Volatility Prediction

Given an asset price Pt and its log return rt = log Pt − log Pt−1, the asset price volatil-
ity σ is defined as σ =

√
E(r2). The dynamics of financial markets are ever-changing,

which results in a temporal dependence of σ with clear patterns of long-term dependence
(Cont 2001).

Risk management, portfolio optimization, and option pricing benefit from the ability
to predict the evolution of σt. Fortunately, σt is relatively easy to predict owing to its long
memory (Cont 2001); for example, its auto-correlation decreases very slowly, presumably
as a power-law over more than a year. Econometric models include GARCH, whose
simplest version involves only one timescale, while many variations use several timescales
(Corsi 2009; Zumbach 2015; Zumbach and Lynch 2001). Rough volatility (Gatheral et al.
2018), on the other hand, considers log σt as fractional Brownian motion and thus includes
all timescales. As can be expected, rough volatility models outperform GARCH-based
models for volatility prediction. Using LSTMs for volatility prediction is demonstrated,
e.g., in Filipović and Khalilzadeh (2021); Ganesh and Rakheja (2018); Kim and Won (2018);
Rosenbaum and Zhang (2022), which use various types of predictors (including GARCH
models) and architectures. Notably, Rosenbaum and Zhang (2022) show that the average
predictions of 10 stacked LSTMs with the past volatility and price return as predictors
match the performance of rough volatility and has universality properties; i.e., a single
model is able to predict the volatility dynamics of many assets.

2.3. Architecture and Hyperparameters

Our first aim is to characterize the effects of multiple timescales per cell dimension.
Therefore, we compare simple non-stacked LSTMs with or without the proposed modifica-
tion. Stacked LSTMs can learn additional timescales at the cost of doubling the number of
parameters, which we precisely wish to avoid here. We pass the outputs ht of the LSTMs
and LaSTMs through a dense layer of size Nh with sigmoid activation functions, to combine
the outputs in a non-trivial way, and a final dense layer with a single neuron with linear
activation that converts the output of the LaSTMs into an estimate of the volatility. Both
final layers have a bias term, which allows the model to learn a baseline volatility level. The
loss is the MSE of the log volatility. In other words, we ask the artificial neural networks to
minimize the relative prediction error instead of the absolute one. This choice is also more
robust as it accounts for the large range of values for volatility and decreases the influence
of rare and large events on the MSE.

We report a systematic study of the relative performance of LSTMs vs. LaSTMs. We
vary the sequence length Tseq from 10 to 100 by steps of 15, and the dimension of the



Risks 2024, 12, 84 5 of 10

hidden state is Nh ∈ {1, . . . , 5}. Finally, we train models with and without biases (except
for the final two dense layers which always have biases). There are thus 70 variations of
hyperparameters per architecture choice.

For each hyperparameter and architecture couple, we train 20 networks, which yields
2800 models altogether. We use a standard 60/20/20 train/validation/test split and apply
an early stopping criterion of the minimum validation loss over the five last epochs, with a
maximum of 1000 epochs. The batch size is set to 128. Computations were carried out on a
large CPU cluster using Tensorflow 2.12. We train the networks to predict log σt+1 with an
MSE loss function.

We use the following data workflow: all the data used in this paper come from a dataset
published by the Oxford-Man Institute, which contains daily index prices and estimates of
intraday realized volatility for 31 indices1 and 2117 to 5385 data points per index (Heber
et al. 2022). From this dataset, we keep the rk_twoscale column that corresponds to the
two-scale realized kernel estimation method (Barndorff-Nielsen et al. 2008) and compute
Close-to-Close returns. The predictors are then the log volatility itself and lagged Close-to-
Close returns, as in Rosenbaum and Zhang (2022). Since the volatility individual time series
start and end on heterogeneous dates, we used the dates to define the train/validation/test
splits: the train set ranges from 4 January 2000 to 6 September 2012, the validation set
from 7 September 2012 to 23 November 2016 and the test set from 24 November 2016 to
17 February 2021. This is necessary as the time series are cross-correlated; hence, splitting
them according to their respective length would cause information leakage from the future
and thus overfitting.

3. Results
3.1. Average Loss

Let us plot the average test loss of LSTMs and LaSTMs as a function of Nh at fixed
Tseq, the dimension of the memory cell, and Tseq at fixed Nh. This approach is taken by
Rosenbaum and Zhang (2022), who trained 10 LSTMs instead of 20 here. Figure 1 shows
that LaSTMs enjoy a sizeable advantage on average. We note that when Nh = 1, our
initial intuition was correct: LaSTMs have a smaller average test loss for all variations of
hyperparameters (Tseq and bias).

Large loss fluctuations among models are associated with large average test losses
for both LaSTMs and LSTMs; however, the test losses of LaSTMs are more likely to be
small (and have accordingly small fluctuations). This is explained by the large difference
in training convergence time, as shown below. We also note that, at least for volatility
prediction, keeping bias terms in the computation of i, f , c̃, and c (referred to as internal
biases henceforth) is manifestly problematic; it turns out to be the default option both for
PyTorch and Keras and is probably implicitly used in other papers. On the whole, we
note that a simple average of the outputs of an ensemble of models leads to quite large
fluctuations; hence, the question of the convergence of the models must be investigated, and
a way to select good models would vastly improve the usefulness of LSTMs in this context.

Convergence during the training process, it turns out, is a hit and miss process: some
models are stuck in a high-loss regime, while some models do learn a more realistic
dynamical process and achieve much lower losses. This yields a bi-modal density of losses
(see Figure 2). It is noteworthy that the fraction of LaSTMs that learn better is much larger.
This is linked to the fact that LaSTMs learn much faster (see below) and that LaSTMs
without internal biases are less likely to be stuck in a high loss regime.

We take the simple rough volatility model as our first benchmark (Gatheral et al. 2018):
the vanilla rough volatility model assumes that log σt follows a fractional Brownian motion;
given a time series, there are only a few parameters to calibrate and predictions are obtained
from a formula (see Gatheral 2016).

The very fact that even this simple rough volatility model is able to predict volatility
relatively well strongly suggests that the test loss of any well-trained model should be com-
mensurate with the validation loss, itself commensurate with the train loss. This is exactly



Risks 2024, 12, 84 6 of 10

what happens for neural networks as well, as shown in Figure 2. The same figure also shows
that test losses are bimodal as well, with the majority of models not stuck in the high loss
regime and some having a test loss substantially smaller than vanilla rough volatility models.

1 2 3 4 5
Nh

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
a
n

 t
e
st

 l
o
ss

LSTM bias

LaSTM bias

1 2 3 4 5
Nh

0.2

0.4

0.6

0.8

1.0

1.2

m
e
a
n

 t
e
st

 l
o
ss

LSTM no bias

LaSTM no bias

10 25 40 55 70 85 100
Tseq

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
a
n

 t
e
st

 l
o
ss

LSTM bias

LaSTM bias

10 25 40 55 70 85 100
Tseq

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
e
a
n

 t
e
st

 l
o
ss

LSTM no bias

LaSTM no bias

Figure 1. Volatility prediction. Upper plots: mean test loss vs. the memory cell dimension Nh
(Tseq = 40); lower plots: mean test loss vs. the sequence length Tseq (Nh = 2). Left plots: LaSTMs
with bias weights; right plots: LaSTMs with no bias weights. The dashed line is the average MSE of
predictions made with rough volatility models.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
validation loss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
n

si
ty

NN
LSTM no bias

LSTM bias

LaSTM no bias

LaSTM bias

100

validation loss

100

te
st

 l
o
ss

LSTM no bias

LSTM bias

LaSTM no bias
LaSTM bias

Figure 2. Left plot: density of validation losses by architecture. Right plot: test loss vs. validation
loss. Multiple volatility time series prediction. The dashed line is the average MSE of predictions
made with vanilla rough volatility models.

The vanilla rough volatility model can be extended to account for the Zumbach effect
(Zumbach 2010), which reflects the influence of recent trends on future volatility, as in
(Rosenbaum and Zhang 2021). Other simpler volatility models, such as that of Guyon and
Lekeufack (2023), also contain a Zumbach term. Whereas this term significantly improves
the implied volatility prediction in both models, we did not find any improvement in
average intraday volatility prediction with respect to vanilla rough volatility, and hence we
only report the results for the latter.

3.2. Keeping the Better Models

Figure 3 suggests to select the groups of good models, since the validation loss dis-
tribution is bimodal and the test losses are roughly proportional to validation losses. To



Risks 2024, 12, 84 7 of 10

select models whose validation loss belongs in the lower peak, we compute nine quantiles
q(p) with a regular sequence of probabilities p = 0.1, . . . , 0.9, and keep the models whose
validation loss is smaller than the quantile corresponding to the maximum change between
quantiles, a simple yet effective way to find well-separated peaks. We call these models the
better ones in the following. This procedure allows for a fairer comparison between LSTMs
and LaSTMs.

1 2 3 4 5
Nh

0.22

0.24

0.26

0.28

0.30

0.32

0.34

m
e
a
n

 t
e
st

 l
o
ss

Better models Tseq= 100

LSTM bias

LaSTM bias

1 2 3 4 5
Nh

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

m
e
a
n

 t
e
st

 l
o
ss

Better models Tseq= 100

LSTM no bias

LaSTM no bias

10 25 40 55 70 85 100
Sequence length

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

m
e
a
n

 t
e
st

 l
o
ss

Better models Nh= 3

LSTM bias

LaSTM bias

10 25 40 55 70 85 100
Sequence length

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

m
e
a
n

 t
e
st

 l
o
ss

Better models Nh= 3

LSTM no bias

LaSTM no bias

Figure 3. Multiple volatility time series prediction test losses of the models with below-average
validation losses. Upper plots: mean test loss vs. the memory cell dimension Nh (Tseq = 100); lower
plots: mean test loss vs. the sequence length Tseq (Nh = 3). Left plots: LaSTMs with bias weights;
right plots: LaSTMs with no bias weights. The dashed line is the average MSE of predictions made
with rough volatility models.

Table 1 reports the MSE of various model choices. LaSTMs are still better than LSTMs,
even for larger Nh. Figure 3 plots the average test loss of the models with a below-average
validation loss versus Nh and the sequence length. The test losses are now much closer, but
LaSTMs still retain a sizeable advantage: their test losses are both lower on average and
their fluctuations are much smaller.

Table 1. Better models: average loss and standard deviation of the test losses, computed over all the
values of Nh and Tseq.

Architecture Bias Test Loss
Average

Test Loss
Std Dev.

rough vol. 0.288 0.015
LSTM yes 0.241 0.032
LSTM no 0.245 0.057

LaSTM yes 0.232 0.017
LaSTM no 0.230 0.015

Both the variability in results and the strange results for Nh = 1 when biases are
allowed in the computation of the internal states of LaSTMs can be traced back to training
convergence problems. A simple way to ascertain the main difference between LaSTM
and LSTM training is to measure the time it takes for them to converge, i.e., to reach the



Risks 2024, 12, 84 8 of 10

early stopping criterion. Figure 4 reports the fraction of models that have converged as
a function of the number of epochs (limited to 1000). LSTMs need more epochs to be
trained. We also found that the case Nh = 1 and small Tseq is hard to learn for this kind of
architecture; the training of many models requires more than 1000 epochs to reach the early
stopping criterion.

100 200 300 400
epoch

0.0

0.2

0.4

0.6

0.8

1.0
e
a
rl

y 
st

o
p

p
in

g
 p

ro
p

o
rt

io
n

Batter-than-average models Nh= 1

NN
LSTM bias

LSTM no bias

LaSTM bias

LaSTM no bias

0 100 200 300 400 500
epoch

0.0

0.2

0.4

0.6

0.8

1.0

e
a
rl

y 
st

o
p

p
in

g
 p

ro
p

o
rt

io
n

Better-than-average models Tseq= 100

NN
LSTM bias

LSTM no bias

LaSTM bias

LaSTM no bias

Figure 4. Fraction of models with convergence before a given number of epochs. Left plot: Nh = 1,
right plot: all Nh; multiple time series volatility prediction, Tseq = 100.

3.3. Best Model

Finally, let us investigate the test loss of the model with the best validation loss among
the 20 models trained for each of the 140 hyperparameters/architecture choices. It turns out
that under these conditions, LaSTMs and LSTMs exhibit essentially the same performance.
What differentiates them however is the speed at which they learn. Let us plot the test loss
versus the time of convergence for LSTMs and LaSTMs with and without biases (left plot in
Figure 5). There is slight negative dependence between test losses and convergence times;
the longer one learns, the better. Notably, the convergence times of LSTMs are spread all
over the whole [1, 1000] interval, while LaSTMs converge before 400 epochs. The right plot
in Figure 5 displays the ECDF of the convergence times, which shows a sizeable difference
between LSTMs and LaSTMs: whereas 20% of LSTMs models do not manage to converge
before 1000 epochs, all LaSTMs do before 400, except one, when biases are allowed.

Thus, training a given number of models is significantly shorter with LaSTMs because
they do not need to learn how to approximate the kernel K(x). One also sees that models
with internal biases converge slightly more slowly than those without them. We also wish
to point out that because the fluctuation in validation losses among the trained models is
much smaller for LaSTMs than for LSTMs, one needs to train fewer LaSTMs than LSTMs
before finding a good one.

0 200 400 600 800 1000
Convergence time

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

T
e
st

 l
o
ss

Best model

LSTM bias

LSTM no bias

LaSTM bias

LaSTM no bias

0 200 400 600 800 1000
Convergence time

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

Best model

NN
LSTM bias

LSTM no bias

LaSTM bias

LaSTM no bias

Figure 5. Left plot: test loss of the models with the best validation loss for all architectures and
hyperparameter choices. Right plot: empirical cumulative distribution function of the convergence
time for the four architecture choices. All values of Nh and Tseq; multiple time series volatility
prediction. The dashed line is the average MSE of predictions made with rough volatility models.



Risks 2024, 12, 84 9 of 10

4. Discussion

Adding an explicit but flexible kernel structure to LSTMs brings significant improve-
ments in almost every metric: the number of epochs needed to reach convergence, the
overall prediction accuracy, and the accuracy variation between models at fixed parameters.
There is a cost as LaSTMs have more trainable parameters than LSTMs for a given set pf
hyperparameters, but doubling the number of timescales does not require one to double
the number of trainable parameters thanks to the explicit kernel approximation structure.
Although this paper focuses on LSTMs, the same idea can be applied to GRUs and α-RNNs
in a straightforward way.

Our results mirror those of Rosenbaum and Zhang (2022): we also trained a single
model on many volatility time series of various underlying asset types. This reflects the
universality of volatility dynamics, a fact also hinted at by rough volatility (Gatheral et al.
2018) and multi-scale GARCH-like models (Zumbach 2015). By examining the performance
of a larger population of trained models, we proposed a different way to select which
models to use in the test phase.

While rough volatility and factor models are simple to calibrate, we found that even
simple LSTMs can beat them, provided that one trains a population of models and selects
the best one according to its validation loss. Using LSTMs for this purpose requires training
more models over more epochs than using LaSTMs.

The fact that the best trained recurrent neural networks beat simpler models of volatil-
ity is probably linked to their abilities to learn to modulate the kernel over which the
features are averaged, which would account for structural breaks better than a single kernel.
Finally, volatility prediction can be further improved by adding some more features, such
as prior knowledge of predictable special events, and possibly by using more complex
neural architectures.

Author Contributions: Conceptualization, D.C.; methodology, D.C. and V.R.; software, D.C.; vali-
dation, D.C. and V.R.; formal analysis, D.C. and V.R.; investigation, D.C. and V.R.; resources, D.C.
and V.R.; data curation, D.C. and V.R.; writing—original draft preparation, D.C. and V.R.; writing—
review and editing, D.C. and V.R.; visualization, D.C. and V.R.; supervision, D.C. and V.R.; project
administration, D.C. and V.R.; funding acquisition, D.C. and V.R. All authors have read and agreed to
the published version of the manuscript.

Funding: V.R. acknowledges funding from the Association Nationale de la Recherche et de la
Technologie (ANRT), grant number 2020/0622.

Data Availability Statement: Data and full source code to, including the Keras LaSTM class for
Tensorflow 2.X, are available at https://github.com/damienchallet/LaSTM (accessed 14 May 2024).

Acknowledgments: We are grateful to Mathieu Rosenbaum and Julien Guyon for useful discussions.
This work used HPC resources from the “Mésocentre” computing center of CentraleSupélec and
École Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Note
1 AEX, AORD, BFX, BSESN, BVLG, BVSP, DJI, FCHI, FTMIB, FTSE, GDAXI, GSPTSE, HSI, IBEX, IXIC, KS11, KSE, MXX, N225,

NSEI, OMXC20, OMXHPI, OMXSPI, OSEAX, RUT, SMSI, SPX, SSEC, SSMI, STI, STOXX50E

References
Barndorff-Nielsen, Ole E., Peter Reinhard Hansen, Asger Lunde, and Neil Shephard. 2008. Designing realized kernels to measure the

ex post variation of equity prices in the presence of noise. Econometrica 76: 1481–536.
Bochud, Thierry, and Damien Challet. 2007. Optimal approximations of power laws with exponentials: Application to volatility

models with long memory. Quantitative Finance 7: 585–89. [CrossRef]
Challet, Damien, and Robin Stinchcombe. 2001. Analyzing and modeling 1 + 1d markets. Physica A: Statistical Mechanics and Its

Applications 300: 285–99. [CrossRef]

https://github.com/damienchallet/LaSTM
http://doi.org/10.1080/14697680701278291
http://dx.doi.org/10.1016/S0378-4371(01)00335-1


Risks 2024, 12, 84 10 of 10

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
2014. Learning phrase representations using rnn encoder–decoder for statistical machine translation. Paper Presented at the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, October 25–29 ; Cedarville:
Association for Computational Linguistics, p. 1724.

Cont, Rama. 2001. Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance 1: 223. [CrossRef]
Corsi, Fulvio. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7: 174–96.

[CrossRef]
Dixon, Matthew, and Justin London. 2021. Financial forecasting with α-RNNs: A time series modeling approach. Frontiers in Applied

Mathematics and Statistics 6: 551138. [CrossRef]
Filipović, Damir, and Amir Khalilzadeh. 2021. Machine Learning for Predicting Stock Return Volatility. Swiss Finance Institute Research

Paper. Zürich: Swiss Finance Institute, pp. 21–95.
Ganesh, Prakhar, and Puneet Rakheja. 2018. Vlstm: Very long short-term memory networks for high-frequency trading. arXiv,

arXiv:1809.01506.
Gatheral, Jim. 2016. Rough Volatility with Python. Available online: https://tpq.io/p/rough_volatility_with_python.html (accessed

on 14 May 2024 ).
Gatheral, Jim, Thibault Jaisson, and Mathieu Rosenbaum. 2018. Volatility is rough. Quantitative Finance 18: 933–49. [CrossRef]
Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with LSTM. Neural

Computation 12: 2451–71. [CrossRef] [PubMed]
Guyon, Julien, and Jordan Lekeufack. 2023. Volatility is (mostly) path-dependent. Quantitative Finance 23: 1221–58. [CrossRef]
Heber, Gerd, Asger Lunde, Neil Shephard, and Kevin Sheppard. 2022. Oxford-Man Institute’s Realized Library. Available online:

https://realized.oxford-man.ox.ac.uk/ (accessed on 18 February 2021 ).
Kim, Ha Young, and Chang Hyun Won. 2018. Forecasting the volatility of stock price index: A hybrid model integrating lstm with

multiple GARCH-type models. Expert Systems with Applications 103: 25–37. [CrossRef]
Lillo, Fabrizio, and J. Doyne Farmer. 2004. The long memory of the efficient market. Studies in Nonlinear Dynamics & Econometrics 8:

1–27. [CrossRef]
Ohno, Kentaro, and Atsutoshi Kumagai. 2021. Recurrent neural networks for learning long-term temporal dependencies with

reanalysis of time scale representation. Paper Presented at the 2021 IEEE International Conference on Big Knowledge (ICBK),
Auckland, New Zealand, December 7–8, pp. 182–89.

Palma, Wilfredo. 2007. Long-Memory Time Series: Theory and Methods. Hoboken: John Wiley & Sons.
Palminteri, Stefano, Germain Lefebvre, Emma J Kilford, and Sarah-Jayne Blakemore. 2017. Confirmation bias in human reinforcement

learning: Evidence from counterfactual feedback processing. PLoS Computational Biology 13: e1005684. [CrossRef] [PubMed]
Resagk, Christian, Ronald du Puits, André Thess, Felix V Dolzhansky, Siegfried Grossmann, Francisco Fontenele Araujo, and Detlef

Lohse. 2006. Oscillations of the large scale wind in turbulent thermal convection. Physics of Fluids 18: 095105. [CrossRef]
Robinson, Peter M. 2003. Advanced Texts in Econometrics. In Time Series with Long Memory. Oxford: Oxford University Press.
Rosenbaum, Mathieu, and Jianfei Zhang. 2021. Deep calibration of the quadratic rough heston model. arXiv, arXiv:2107.01611.
Rosenbaum, Mathieu, and Jianfei Zhang. 2022. On the universality of the volatility formation process: When machine learning and

rough volatility agree. arXiv, arXiv:2206.14114.
Thuerey, Nils, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um. 2021. Physics-based Deep Learning.

arXiv, arXiv:2109.05237.
Zhao, Jingyu, Feiqing Huang, Jia Lv, Yanjie Duan, Zhen Qin, Guodong Li, and Guangjian Tian. 2020. Do RNN and LSTM have long

memory? Paper Presented at the International Conference on Machine Learning, Online, July 13–18, pp. 11365–75.
Zumbach, Gilles. 2010. Volatility conditional on price trends. Quantitative Finance 10: 431–42. [CrossRef]
Zumbach, Gilles. 2015. Cross-sectional universalities in financial time series. Quantitative Finance 15: 1901–12. [CrossRef]
Zumbach, Gilles, and Paul Lynch. 2001. Heterogeneous volatility cascade in financial markets. Physica A: Statistical Mechanics and Its

Applications 298: 521–29. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/713665670
http://dx.doi.org/10.1093/jjfinec/nbp001
http://dx.doi.org/10.3389/fams.2020.551138
https://tpq.io/p/rough_volatility_with_python.html
http://dx.doi.org/10.1080/14697688.2017.1393551
http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
http://dx.doi.org/10.1080/14697688.2023.2221281
https://realized.oxford-man.ox.ac.uk/
http://dx.doi.org/10.1016/j.eswa.2018.03.002
http://dx.doi.org/10.2202/1558-3708.1226
http://dx.doi.org/10.1371/journal.pcbi.1005684
http://www.ncbi.nlm.nih.gov/pubmed/28800597
http://dx.doi.org/10.1063/1.2353400
http://dx.doi.org/10.1080/14697680903266730
http://dx.doi.org/10.1080/14697688.2015.1060353
http://dx.doi.org/10.1016/S0378-4371(01)00249-7

	Introduction
	Materials and Methods 
	Recurrent Neural Networks with Multiple Timescales
	Volatility Prediction
	Architecture and Hyperparameters

	Results
	Average Loss
	Keeping the Better Models
	Best Model

	Discussion
	References

