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Abstract: Given the computational challenges associated with valuing large variable annuity (VA)
portfolios, a variety of data mining frameworks, including metamodeling and active learning, have
been proposed in recent years. Active learning, a promising alternative to metamodeling, enhances
the efficiency of VA portfolio assessments by adaptively improving a predictive regression model.
This is achieved by augmenting data for model training with strategically selected informative
samples. Successful application of active learning requires an effective metric in order to gauge
the informativeness of data. Current sampling methods, which focus on prediction error-based
informativeness, typically rely solely on prediction variance and assume an unbiased predictive
model. In this paper, we address the fact that prediction bias can be nonnegligible in large VA
portfolio valuation and investigate the impact of prediction bias in both the modeling and sampling
stages of active learning. Our experimental results suggest that bias-based sampling can rival the
efficacy of traditional ambiguity-based sampling, with its success contingent upon the extent of bias
present in the predictive model.

Keywords: variable annuity; machine learning; active learning; prediction bias; data mining

1. Introduction

Variable annuities (VAs), also known as segregated fund contracts in Canada, are
a popular type of equity-linked insurance product often utilized as investment vehicles
within North American retirement savings plans. VAs typically offer a range of guar-
anteed benefits aimed at providing protection, such as the Guaranteed Minimum Death
Benefit (GMDB), Guaranteed Minimum Maturity Benefit (GMMB), Guaranteed Minimum
Accumulation Benefit (GMAB), and Guaranteed Minimum Withdrawal Benefit (GMWB)
(see, e.g., Hardy (2003); Ledlie et al. (2008)). A substantial body of literature examines the
stochastic modeling of embedded guarantees and their valuation in a fair market (risk-
neutral) setting. However, the valuation of these embedded guarantees is complex due
to the inherent complexity of diverse benefit designs. For example, GMDB guarantees a
minimum amount to the policyholder upon death, exposing the insurer to various risks
including investment, interest rate, mortality, and surrender risks. For a comprehensive
overview of pricing, valuation, and risk management of individual VA contracts, we refer
readers to existing literature, including Feng et al. (2022) and references therein. This paper
primarily focuses on the valuation of large portfolios of VAs using statistical tools.

Due to the complex nature of the guarantees’ payoffs, closed-form solutions are often
not feasible. Consequently, insurance companies extensively utilize Monte Carlo (MC)
simulations for valuation and dynamic hedging purposes. However, valuing a large
portfolio of Variable Annuity (VA) contracts using Monte Carlo simulation is notably
time-intensive, as it requires projecting each contract across numerous scenarios over an
extended time period (Gan and Valdez 2018). To efficiently assess large VA portfolios
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within constrained timeframes or resources, numerous data mining techniques have been
introduced. The predominant framework, metamodeling, integrates both supervised and
unsupervised machine learning methods through several sequential modeling stages. It
employs unsupervised learning to generate a small, representative dataset, followed by
supervised learning to fit a predictive model to these data after valuation is completed.
Literature reviews reveal various unsupervised learning algorithms such as the truncated
fuzzy c-means algorithm (Gan and Huang 2017), conditional Latin hypercube sampling
(Gan and Valdez 2018; Minasny and McBratney 2006), and hierarchical k-means clustering
(Gan and Valdez 2019). On the other hand, supervised learning approaches for VA portfolio
valuation include kriging (Gan 2013), GB2 (Gan and Valdez 2018), group LASSO (Gan 2018),
and several tree-based methods (Gweon and Li 2023; Gweon et al. 2020; Quan et al. 2021).

An alternative data mining approach is active learning (Gweon and Li 2021; Settles
2012), which involves iterative and adaptive data sampling and model training. Within this
framework, the data sampling stage identifies a batch of informative policies, integrating
these selected contracts into the existing representative data set. This augmented data
set is then used for predictive model training. This cyclical process of sampling and
updating continues until the allocated computational resources for portfolio assessment
are exhausted. A prevalent strategy in active learning is uncertainty or ambiguity sampling
(Burbidge et al. 2007; Settles and Craven 2008), which targets contracts where the current
model shows significant predictive uncertainty.

Active learning methodologies have predominantly focused on classification prob-
lems, where the response variable is categorical. When the output variable is continuous,
uncertainty can be quantified by prediction error, which can be decomposed into variance
and squared bias. Current approaches to informativeness-based sampling for regression
problems typically rely on prediction variance, under the assumption that the predictive
model is approximately unbiased (Burbidge et al. 2007; Krogh and Vedelsby 1995; Kumar
and Gupta 2020). However, as noted by Gweon et al. (2020), there are practical instances
where prediction bias is significant and cannot be overlooked. This recognition that predic-
tion bias is a critical component of prediction error has spurred interest in using prediction
bias as a measure of uncertainty in active learning. This paper explores the potential of
bias-based sampling techniques in light of these findings.

To the best of our knowledge, this study represents pioneering research that explores
the application of bias-based sampling in active learning for regression problems. We
introduce a metric for bias-based sampling and investigate its utility under conditions
where the predictive model exhibits significant or minimal bias. Empirical evaluations on
a large synthetic VA portfolio with six response variables demonstrate the effectiveness
of bias-based sampling using random forest (RF, Breiman (2001)), particularly compared
to variance-based sampling. However, the effectiveness diminishes when bias reduction
techniques for RF are implemented.

The remainder of the paper is structured as follows: Section 2 reviews the active
learning framework and discusses the estimation and application of prediction bias within
this context. Section 2.4 applies the proposed methods to the efficient valuation of a large
synthetic VA dataset. Section 3 concludes the paper.

2. Main Methodology

In this section, we propose several strategies to incorporate prediction bias into the
active learning framework. We begin with a brief overview of the active learning framework
and explore how prediction uncertainty is measured using random forest. Subsequently,
we detail the integration of prediction bias into the modeling and sampling stages of
active learning.

2.1. The Active Learning Framework for Large VA Valuation

Supervised statistical learning typically involves a one-time model training session
using a complete set of labeled data. When large unlabeled data are available during the
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model training phase, active learning that uses both labeled and unlabeled data offers
a viable alternative to traditional supervised learning. The primary objective of active
learning is to iteratively enhance the predictive model by incorporating additional, infor-
mative samples selected from the pool of unlabeled data. This approach is particularly
advantageous for rapidly valuing large VA portfolios because there are a large number of
unlabeled contracts available during the model training process. As described by Gweon
and Li (2021), the active learning process comprises the following steps:

(1) Formulate the initial representative data set by selecting a small subset from the
entire portfolio, which can be chosen randomly.

(2) Determine the values of the response variable for the selected contracts using Monte
Carlo simulation, thereby generating the labeled data necessary for training the
predictive model.

(3) (Modeling stage) Train the predictive model using the labeled representative data.
(4) (Sampling stage) Apply the predictive model to the remaining set of unlabeled VA

contracts to identify a subset of contracts whose information could significantly
improve the model.

(5) Use a Monte Carlo simulation to label the newly selected contracts and integrate
them into the existing set of labeled data, resulting in an expanded labeled dataset.

(6) Repeat steps (3) through (5) until specific stopping criteria are met, typically when
the allocated time for valuation expires.

(7) Finalize the assessment by applying the updated predictive model to estimate the
response values for the remaining unlabeled contracts.

The key part of an active learning algorithm is the selection of informative samples
from the unlabeled data at each sampling iteration. Such informative samples lead to a great
improvement in the current predictive model. Most existing approaches for informative
sampling have been developed for classification problems and thus cannot be directly
adapted to the VA valuation in which the target variables are continuous. Also, sampling
a batch, instead of a single contract, is desirable for an efficient use of resources such as
model runtime and parallel computing systems. Recently, Gweon and Li (2021) proposed
batch-mode active learning approaches using random forest (Breiman 2001) for an efficient
valuation of large VA portfolios. To quantify the informativeness of each VA contract,
they adopted the principle of Query-By-Committee (Abe and Mamitsuka 1998; Burbidge
et al. 2007; Freund et al. 1997) and used prediction ambiguity that is equivalent to the
sample variance of bootstrap regression trees. They found that active learning can be highly
effective when the informative samples are chosen by a weighted random sampling for
which the sampling weights are proportional to prediction ambiguities.

A critical component of the active learning algorithm involves selecting informative
samples from the unlabeled data during each iteration. These samples substantially en-
hance the accuracy and robustness of the existing predictive model. Traditional approaches
for informative sampling, primarily developed for classification problems, are not directly
applicable to VA valuation, where the target variables are continuous. Moreover, batch
sampling—as opposed to selecting individual contracts—is desirable for an efficient use
of resources, such as model runtime and parallel computing systems. Recently, Gweon
and Li (2021) introduced batch-mode active learning strategies using random forest for the
efficient valuation of large VA portfolios. To assess the informativeness of each contract,
they implemented the Query-By-Committee principle (Breiman 2001) and measured pre-
diction ambiguity, akin to the sample variance of bootstrap regression trees. Their findings
indicate that active learning can be exceptionally effective when informative samples are
selected through weighted random sampling, where the weights are proportional to the
prediction ambiguities.
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2.2. Random Forests and Quantifying Prediction Bias

Suppose that a VA portfolio contains a total of N contracts, X = {x1, . . . , xN} where
each xi ∈ Rp represents a vector of feature variables associated with a contact. Random for-
est predicts the continuous response value Yi for each contract xi using the regression form:

Yi = f (xi) + ϵi,

where f (·) represents the underlying model, and ϵi denotes random error. This modeling
approach employs bootstrap regression trees (Breiman 1984) to estimate the regression
function, with foundational concepts detailed in Gweon et al. (2020) and Quan et al. (2021).

Let L represent the labeled representative data containing n VA contracts. Random
forest consisting of M regression trees constructs each regression tree f̂Lm(x) using the
m-th bootstrap sample Lm (m = 1, . . . , M). The predicted response value for an unlabeled
contract x is then derived by averaging across all M bootstrap regression trees:

f̂ (x) =
1
M

M

∑
m=1

f̂Lm(x).

The effectiveness of random forest in VA portfolio valuation has been demonstrated in
prior studies (Gweon et al. 2020; Quan et al. 2021).

Given the necessity of quantifying prediction uncertainty in active learning, we focus
on the mean square error (MSE), defined as:

MSE( f̂ (x)) = E
(
( f̂ (x)− f (x))2

)
.

MSE is decomposed into the prediction (squared) bias and variance:

MSE( f̂ (x)) = E
(
( f̂ (x)− E( f̂ (x)) + E( f̂ (x))− f (x))2

)
=

(
E( f̂ (x))− f (x)

)2
+ E

(
( f̂ (x)− E( f̂ (x)))2

)
, (1)

where the first term represents the squared bias and the second term, the variance.
Although the averaging technique in random forest greatly improves the predictive

performance of regression trees by reducing the prediction variance, it does not influence
the prediction bias. With the response values in a VA portfolio potentially exhibiting
a highly skewed distribution, Gweon et al. (2020) identified that the prediction bias of
random forest is not negligible. Gweon et al. (2020) showed a bias-correction technique
(Breiman 1999; Zhang and Lu 2012) can effectively estimate and correct prediction bias.
Specifically, prediction bias can be assessed by fitting an additional random forest model to
the out-of-bag (OOB) errors of the trained model. The OOB prediction for a data vector xi
in the labeled set is defined as:

f̂ OOB(xi) =
1

Mi

M

∑
m=1

f̂Lm(xi)I((xi, yi) /∈ Lm),

where I(·) denotes the indicator function, and Mi is the number of bootstrap samples
not containing (xi, yi) (i.e., Mi = ∑M

m=1 I((xi, yi) /∈ Lm)). A subsequent model g(·) is
then trained where the response variable is the bias B(x) = f̂ OOB(x)− Y, allowing the
estimation of the prediction bias:

B̂(x) = ĝ(x). (2)

Combining the two random forest models, the bias-corrected random forest (BC-RF) pre-
dicts the response variable as the sum of f̂ (x) and ĝ(x). Gweon et al. (2020) utilized the
quantity B̂(x) exclusively for mitigating prediction bias within the RF model as applied
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in the metamodeling framework. In the following section, we discuss how this bias is
leveraged within the active learning process.

2.3. Using Prediction Bias in Active Learning Process

Our focus is to explore the integration of prediction bias, B̂(x), into the sampling
stage of the active learning process. Instead of developing a new sampling methodology,
we adopt the weighted random sampling (WRS) approach from Gweon and Li (2021),
which is already established as effective. Utilizing prediction bias within this framework
is straightforward. Under WRS with prediction bias, the active learning algorithm selects
a batch of unlabeled contracts of size d, where the sampling probability for a contract xi
within the unlabeled data set U is defined as:

wi =
B2

i

∑h B2
h

,

where Bi = B̂(xi) for i = 1, . . . , |U|. We employ the squared bias terms to ensure non-
negative sampling probabilities for all contracts and to facilitate a natural combination with
the ambiguity component since the mean square error of the regression trees is the sum of
variance and squared bias. We denote this approach as WRS-B to differentiate it from the
ambiguity-based WRS (WRS-A), which calculates the weight as:

wi =
Ai

∑h Ah
,

where the ambiguity score Ai =
1

M−1 ∑M
m=1

(
f̂Lm(xi)− f̂ (xi)

)2
represents the sample vari-

ance of the bootstrap regression trees, as detailed in Gweon and Li (2021).
When is WRS-B particularly effective in active learning? We posit that its effectiveness

is contingent on the severity of prediction biases. If the predicted biases of the target
response variable are significant, the weight wi in WRS-B acts as a measure of relative
prediction uncertainty for the i-th contract. Conversely, if predictions are nearly unbiased,
the bias estimates (Bi) may merely introduce noise and offer no substantial information,
rendering the use of these scores a less effective uncertainty measure.

This analysis suggests that WRS-B could serve as a promising uncertainty measure
for RF in the valuation of large VA portfolios in the presence of prediction biases, as
demonstrated by Gweon et al. (2020). A deeper analysis is required for BC-RF, which
predicts the response variable using two sequential RF models. In the j-th iteration of active
learning, the prediction by BC-RF is formulated as:

Ŷ = f̂ j(x) + ĝj(x),

where f̂ j(x) is the response prediction by an RF model, and ĝj(x) is the predicted bias by a
subsequent RF model. If the primary contribution of WRS-B to the enhancement of f̂ j+1(x)
in the (j + 1)-th iteration is bias reduction, the updated model f̂ j+1(x) will yield less biased
predictions, potentially reducing the impact of ĝj+1(x).

Furthermore, we need to examine the relative effectiveness of WRS-B compared to
WRS-A. If prediction ambiguity and bias are highly correlated, both sampling approaches
may yield similar outcomes. However, if they are not, the samples selected by WRS-B and
WRS-A are likely to differ. Moreover, these two uncertainty components—ambiguity and
bias—can be combined in various ways. Since their sum corresponds to the mean square
error of the individual trees, another variant, WRS based on mean square error (WRS-MSE),
uses the weight:

wi =
Ai + B2

i

∑h(Ah + B2
h)

.
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In Section 2.4, we further explore the application of prediction bias in active learning across
various settings.

2.4. Application in Large Variable Annuity Portfolio Valuation
2.5. Description of Data

The data utilized in this study comprises a synthetic dataset from Gan and Valdez
(2017), containing 190,000 variable annuity (VA) contracts. These contracts are characterized
by 16 explanatory variables (14 continuous and 2 categorical), as summarized in Table 1.
Each of the ten investment funds within the dataset is linked to one or more market indices,
with the specific mappings to the five market indices detailed in Table 2.

Table 1. Summary statistics of the predictor attributes in the VA dataset.

Category Description Count

Gender M (Male Policyholder) 113,993
F (Female policyholder) 76,007

Product type ABRP (GMAB with return of premium) 10,000
ABRU (GMAB with annual roll-up) 10,000
ABSU (GMAB with annual ratchet) 10,000
DBAB (GMDB + GMAB with annual ratchet) 10,000
DBIB (GMDB + GMIB with annual ratchet) 10,000
DBMB (GMDB + GMMB with annual ratchet) 10,000
DBRP (GMDB with return of premium) 10,000
DBRU (GMDB with annual roll-up) 10,000
DBSU (GMDB with annual ratchet) 10,000
DBWB (GMDB + GMWB with annual ratchet) 10,000
IBRP (GMIB with return of premium) 10,000
IBRU (GMIB with annual roll-up) 10,000
IBSU (GMIB with annual ratchet) 10,000
MBRP (GMMB with return of premium) 10,000
MBRU (GMMB with annual roll-up) 10,000
MBSU (GMMB with annual ratchet) 10,000
WBRP (GMWB with return of premium) 10,000
WBRU (GMWB with annual roll-up) 10,000
WBSU (GMWB with annual ratchet) 10,000

Continuous Description Minimum Mean Maximum

gmwbBalance GMWB balance 0 35,611.54 499,708.73
gbAmt Guaranteed benefit amount 0 326,834.59 1,105,731.57
FundValue1 Account value of the 1st investment fund 0 33,433.87 1,099,204.71
FundValue2 Account value of the 2nd investment fund 0 38,542.81 1,136,895.87
FundValue3 Account value of the 3rd investment fund 0 26,740.18 752,945.34
FundValue4 Account value of the 4th investment fund 0 26,141.80 610,579.68
FundValue5 Account value of the 5th investment fund 0 23,026.50 498,479.36
FundValue6 Account value of the 6th investment fund 0 35,575.67 1,091,155.87
FundValue7 Account value of the 7th investment fund 0 29,973.25 834,253.63
FundValue8 Account value of the 8th investment fund 0 30,212.11 725,744.64
FundValue9 Account value of the 9th investment fund 0 29,958.29 927,513.49
FundValue10 Account value of the 10th investment fund 0 29,862.24 785,978.60
age Age of the policyholder 34.52 49.49 64.46
ttm Time to maturity in years 0.59 14.54 28.52

For the response variables, we analyze six variables: the fair market values (FMV) and
five deltas. The FMV of a VA contract is defined as the difference between the guaranteed
payoff and the guaranteed cost. The delta measures the rate of change of the theoretical
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option value relative to changes in the underlying asset’s price for a specific market index.
The partial dollar deltas for a VA contract are calculated as follows:

Deltai =
FMV(PA1, . . . , 1.01PAi, . . . , PA5)

0.02
− FMV(PA1, . . . , 0.99PAi, . . . , PA5)

0.02
,

where PAi denotes the partial account value linked to the i-th market index and FMV
is the fair market value as a function of partial account values. The partial dollar delta
indicates the sensitivity of the guarantee value to fluctuations in the index, which is critical
for determining appropriate hedge positions.

Figure 1 illustrates the distribution of the six response variables. Observations indicate
that the distribution of FMV is significantly skewed to the right, while the distributions of
the deltas are predominantly skewed to the left.

Table 2. Ten investment funds. Each row is a mapping from an investment fund to a combination of
five indices.

Fund US Large US Small Intl Equity Fixed Income Money Market

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 0.6 0.4 0 0 0
7 0.5 0 0.5 0 0
8 0.5 0 0 0.5 0
9 0 0.3 0.7 0 0
10 0.2 0.2 0.2 0.2 0.2
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Figure 1. Distributions of the six response variables.
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2.6. Experimental Setting

The active learning framework was initiated with a set of 100 representative contracts,
selected through simple random sampling without replacement, to fit an initial regression
model. For the response variable and the bias estimation, we employed two RF models,
each using 300 regression trees to ensure stable performance, as supported by Gweon et al.
(2020); Quan et al. (2021). Furthermore, consistent with findings from Quan et al. (2021),
all 16 features were utilized in each binary split during tree construction, which has been
shown to optimize performance for this dataset.

During each iteration of active learning, each sampling approach selected 50 contracts
based on sampling probabilities. These contracts were then incorporated into the represen-
tative data set, and the RF models were subsequently updated with this augmented data.
The iterative process was terminated once the representative data set expanded to include
800 contracts. To mitigate the impact of random variability, each active learning method
was executed 20 times using different seeds. This experimental setup was consistently
applied across all six response variables.

For each of the five partial deltas, it was noted that some contracts exhibited zero
delta values, indicating no association with the relevant market index. Given that the link
between a contract and its market index is predetermined, contracts with zero delta values
were excluded from our prediction assessments to maintain the integrity and relevance of
the analysis.

2.7. Evaluation Measures

To assess predictive performance, we employ several metrics: R2, mean absolute error
(MAE), and absolute percentage error (APE):

R2 = 1 − ∑i( f̂ (xi)− f (xi))
2

∑i( f (xi)− f̄ (x))2 ,

MAE =
1
N ∑

i
| f̂ (xi)− f (xi)|,

and

APE =
|∑i f (xi)− ∑i f̂ (xi)|

∑i f (xi)
,

where f̄ (x) = N−1 ∑i f (xi). The R2 and MAE measure accuracy at the individual contract
level, while APE assesses portfolio-level accuracy, allowing for the offsetting of positive
and negative prediction errors at the contract level. Higher values of R2 indicate better
performance, whereas lower values of MAE and APE are preferable.

2.8. Results

Initial investigations focused on identifying prediction bias across the six response
variables. Figure 2 presents the out-of-bag (OOB) error of RF as a function of the true
response variable. An observed increasing or decreasing pattern suggests a likely severe
bias in RF predictions of the remaining data, underscoring the potential of prediction bias
as a valuable uncertainty measure in active learning.

Figure 3 compares the performance of RF when using simple random sampling (RS),
WRS-A and WRS-B. Both WRS-A and WRS-B consistently outperformed RS in terms of R2

and MAE across all response variables as the active learning process progressed. However,
in terms of APE, WRS-B tended to show more biased performance than RS. No clear
advantage was observed between WRS-A and WRS-B; for instance, WRS-B yielded better
R2 results than WRS-A for FMV, while WRS-A excelled over WRS-B for delta 5. The two
sampling methods performed comparably for other response variables.

The observed correlations between ambiguity and squared bias ranged from 0.4
to 0.5, indicating that WRS-A and WRS-B selected somewhat different contracts during
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the sampling process. Figure 4 illustrates the average prediction standard errors and
absolute biases under WRS-A and WRS-B, noting a gradual decrease across multiple
iterations of active learning. Interestingly, WRS-A was more effective in reducing prediction
standard errors than WRS-B, which excelled in diminishing prediction bias. These findings
demonstrate distinct contributions of WRS-A and WRS-B to model improvement.
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Figure 2. Out-of-bag prediction error results of RF on the initial representative data. Each panel
corresponds to one of the six response variables.
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Figure 3. Predictive performance of RF under simple random sampling (solid), WRS-A (dotted), and
WRS-B (dashed).
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Figure 4. Averaged uncertainty of RF predictions for unlabeled data under WRS-A (dashed) and
WRS-B (solid).

Subsequently, we explore the utilization of prediction bias in the modeling and sam-
pling stages. Table 3 compares the performance of RF with BC-RF under each sampling
approach. The introduction of bias correction in the modeling stage significantly enhanced
predictive performance across all metrics. Notably, the large APE previously observed
in RF under both WRS-A and WRS-B were considerably reduced in BC-RF. Given these
comparative results, BC-RF is recommended for use in active learning regardless of the
sampling strategy.

We further examine the performance of BC-RF using WRS-A, WRS-B, and WRS-MSE
in Figure 5. Contrary to the inconclusive results observed with RF where no distinct advan-
tage was noted between WRS-A and WRS-B, the implementation of BC-RF in the modeling
stage generally showed WRS-A to be more effective than WRS-B in most situations. This ob-
servation aligns with earlier findings indicating that WRS-B substantially contributes to bias
reduction in RF (refer to Figure 4). Given that RF under WRS-B is relatively less biased com-
pared to its counterpart under WRS-A, the subsequent application of BC-RF yields smaller
gains from further bias reduction. This outcome is evidenced in Tables 4 and 5, where the
transition from RF to BC-RF exhibits more pronounced improvements under WRS-A.

Table 6 presents the runtime for each method until the representative VA contracts
reached 800. When utilizing RF, WRS-A required approximately half the time compared
to the other methods, as it did not involve an additional RF model for estimating pre-
diction bias. In contrast, when BC-RF was employed, all sampling methods showed
similar runtimes.

Interestingly, WRS-MSE often matched or exceeded the performance of WRS-A, as
noted in the cases of Delta 1 and Delta 4. Considering that the computational times for WRS-
MSE and WRS-A are nearly identical, these findings support a preference for WRS-MSE.
Based on our analysis, we recommend employing BC-RF in the modeling stage alongside
WRS-A or WRS-MSE in the sampling stage as an effective active learning strategy.
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Table 3. Predictive performance of RF and BC-RF under each sampling approach (N = 800).

R2 MAE APE
Response Sampling RF BC-RF RF BC-RF RF BC-RF

FMV RS 0.9192 0.9480 25821.807 21142.456 0.0253 0.0176
WRS-A 0.9537 0.9690 23813.411 19586.261 0.0409 0.0104
WRS-B 0.9578 0.9650 22804.387 20953.240 0.0279 0.0119

Delta 1 RS 0.6962 0.7396 9078.134 7812.380 0.0197 0.0143
WRS-A 0.7729 0.8114 8761.108 7469.906 0.0425 0.0139
WRS-B 0.7761 0.8062 8847.688 7877.713 0.0412 0.0135

Delta 2 RS 0.6821 0.6735 6464.244 5831.808 0.0234 0.0171
WRS-A 0.7903 0.8278 6282.434 5448.818 0.0493 0.0194
WRS-B 0.7949 0.8173 6326.927 5742.336 0.0596 0.0185

Delta 3 RS 0.6483 0.6926 6899.186 5992.517 0.0312 0.0175
WRS-A 0.7388 0.7928 6603.941 5544.816 0.0490 0.0132
WRS-B 0.7443 0.7802 6708.572 5925.164 0.0762 0.0310

Delta 4 RS 0.7059 0.7470 4673.581 3973.629 0.0462 0.0194
WRS-A 0.8126 0.8647 4486.339 3573.041 0.0395 0.0124
WRS-B 0.8270 0.8574 4413.975 3905.542 0.0629 0.0304

Delta 5 RS 0.7742 0.7766 4524.483 3960.967 0.0425 0.0159
WRS-A 0.9145 0.9311 4072.907 3438.134 0.0395 0.0079
WRS-B 0.9038 0.9111 4091.317 3716.284 0.0373 0.0142
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Figure 5. Boxplot results of BC-RF under different active learning sampling approaches.
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Table 4. Relative improvement (in %) obtained by switching RF to BC-RF under WRS-A and WRS-B
(N = 500).

R2 MAE APE
WRS-A WRS-B WRS-A WRS-B WRS-A WRS-B

FMV 1.80 0.87 15.54 8.96 60.54 32.84
Delta 1 7.46 3.15 15.42 9.18 46.31 60.88
Delta 2 5.18 3.63 11.88 9.29 54.47 67.90
Delta 3 8.98 6.50 14.86 11.42 47.05 54.50
Delta 4 8.04 4.37 18.32 10.08 44.98 41.40
Delta 5 2.07 1.49 15.22 9.60 63.55 62.05

Table 5. Relative improvement (in %) obtained by switching RF to BC-RF under WRS-A and WRS-B
(N = 800).

R2 MAE APE
WRS-A WRS-B WRS-A WRS-B WRS-A WRS-B

FMV 1.60 0.75 17.75 8.12 74.47 57.29
Delta 1 4.99 3.88 14.74 10.96 67.19 67.15
Delta 2 4.75 2.82 13.27 9.24 60.65 68.93
Delta 3 7.31 4.84 16.04 11.68 72.99 59.30
Delta 4 6.41 3.68 20.36 11.52 68.48 51.72
Delta 5 1.82 0.81 15.59 9.17 79.96 61.90

Table 6. Runtime (in seconds) of each active learning approach. Each active learning process was
terminated at N = 800.

RF BC-RF
WRS-A WRS-B WRS-MSE WRS-A WRS-B WRS-MSE

FMV 61.63 128.38 128.37 130.74 128.52 130.94
Delta 1 64.00 130.33 133.53 133.32 135.07 132.94
Delta 2 57.48 119.00 122.13 122.50 120.47 119.65
Delta 3 59.28 124.65 125.05 119.17 122.96 122.27
Delta 4 52.71 107.24 108.37 109.23 109.72 109.74
Delta 5 52.82 101.41 102.77 104.10 103.87 104.00

3. Concluding Remarks

In this study, we explored the integration of prediction bias within the active learning
framework, specifically for the valuation of large variable annuity portfolios. Using a
synthetic portfolio with six distinct response variables, we assessed the utility of prediction
bias in both the modeling and sampling stages of active learning. Our experimental findings
indicate that (a) employing prediction bias for uncertainty sampling (WRS-B) enhances
performance of RF in terms of R2 and MAE, proving more effective than random sampling
and as competitive as ambiguity-based uncertainty sampling (WRS-A); (b) uncertainty
sampling based on prediction bias significantly contributes to the reduction of bias in
RF; (c) prediction bias proves beneficial in the modeling stage across different sampling
methods; and (d) WRS-B tends to be less effective than WRS-A when bias reduction is
actively pursued during the modeling phase.

The batch-mode active learning framework necessitates an initial set of labeled repre-
sentative data and a defined batch size. Although we employed simple random sampling
to generate the initial datasets, alternative strategies involving unsupervised learning al-
gorithms might be viable. Our tests with conditional Latin hypercube sampling indicated
that the unsupervised learning method did not significantly influence the outcomes within
the active learning framework. Furthermore, the batch size inversely affects the runtime of
the active learning process; a larger batch size decreases the number of iterations needed
to achieve the desired dataset size, as more data are labeled and incorporated at each
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step. Our analysis, initially based on a batch size of 50, showed that increasing this to 100
maintained similar performance across different sampling methods.

In conclusion, this paper highlights the potential of prediction bias as an effective
uncertainty measure within active learning for actuarial applications. While our approach
utilized RF, other statistical learning algorithms could be considered if prediction bias can
be appropriately quantified. A comprehensive examination of bias-based active learning
employing various statistical methods merits further investigation.
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