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Abstract: The Sharpe ratio is a widely used tool for assessing investment strategy performance. An
essential part of investing involves creating an appropriate portfolio by determining the optimal
weights for desired assets. Before constructing a portfolio, selecting a set of investment opportunities
is crucial. In the absence of a risk-free asset, investment opportunities can be identified based on
the Sharpe ratios of risky assets and their correlation. The maximum squared Sharpe ratio serves
as a useful metric that summarizes the performance of an investment opportunity in a single value,
considering the Sharpe ratios of assets and their correlation coefficients. However, the assumption of
a normal distribution in asset returns, as implied by the Sharpe ratio and related metrics, may not
always hold in practice. Non-normal returns with a non-linear dependence structure can result in
an overestimation or underestimation of these metrics. Copula functions are commonly utilized to
address non-normal dependence structures. This study examines the impact of asset dependence on
the squared maximum Sharpe ratio using copulas and proposes a copula-based approach to tackle
the estimation issue. The performance of the proposed estimator is illustrated through simulation
and real-data analysis.

Keywords: copula; dependence; maximum squared Sharpe ratio; Sharpe ratio

1. Introduction

In finance the trade-off between return and risk is a key consideration when choosing
the best portfolio. Performance measures are important tools for assessing portfolio risk
and return. The Sharpe ratio Sharpe (1966) is a popular performance measure for portfolio
managers, evaluating the performance of a portfolio by calculating the mean and standard
error. The portfolio with the maximum Sharpe ratio represents the highest return-to-risk
trade-off. Therefore, the investment goal is to achieve the maximum Sharpe ratio. The
portfolio that maximizes the Sharpe ratio lies on the mean-variance-efficient frontier. This
portfolio corresponds to the point where the capital market line is tangent to the frontier,
and, as such, it is known as the tangency portfolio Markowitz (1952). While the Sharpe
ratio is commonly used in investment strategies, the squared Sharpe ratio is also used as
a performance measure in the literature; see, e.g., Treynor and Black (1973) and Grinold
and Kahn (1999), among many others. In this paper, we focus on the squared maximum
Sharpe ratio (SMSR) widely used in testing arbitrage pricing theory. Chamberlain and
Rothschild (1982) used SMSR to establish a bound for the sum of squared pricing errors in
beta pricing equations. MacKinlay (1995) used SMSR to examine the multifactor model’s
plausibility in explaining anomalies in the capital asset pricing model. Zhang (2009) devel-
oped test statistics based on the sample SMSR of factors extracted from individual stocks.
Barillas et al. (2020) used SMSR in an asymptotic analysis under general distributional
assumptions for model comparison. An important aspect of an investment is forming a
suitable portfolio by estimating the optimal weights for the desired assets. Before forming
a portfolio, selecting an investment opportunity set of assets is crucial. In the absence
of a risk-free asset, the investment opportunities can be determined based on the Sharpe
ratios of risky assets and their correlation. The maximum squared Sharpe ratio is a suitable

Risks 2024, 12, 88. https://doi.org/10.3390/risks12060088 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks12060088
https://doi.org/10.3390/risks12060088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0003-3220-3171
https://orcid.org/0000-0002-4976-9473
https://doi.org/10.3390/risks12060088
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks12060088?type=check_update&version=1


Risks 2024, 12, 88 2 of 17

index that summarizes the performance of an investment opportunity in a single value,
based on the Sharpe ratios of assets and the correlation coefficients between them. The
main assumption for the appropriateness of the Sharpe ratio and related measures is the
normality of asset returns. When returns are non-normal with a non-linear dependence
structure, these measures could be either overestimated or underestimated. Choy and Yang
(2021) demonstrated that under the assumption of a multivariate normal distribution for
excess returns, the sample SMSR has a significant upward bias, and they improved several
estimators of SMSR. Dealing with non-normal returns in portfolio selection is an important
consideration for investors, as it can significantly impact their portfolio’s performance. In-
vestors can account for non-normal returns by adjusting expected returns, using alternative
risk measures such as value at risk and conditional value at risk, and considering alternative
asset classes. Another common approach to accounting for non-normal dependence struc-
ture is the use of copulas (see, Cherubini et al. 2004; Embrechts et al. 2002, 2003; Fantazzini
2008; He and Gong 2009), which are a powerful tool for modeling the dependence structure
between different assets in a portfolio. By using copulas, investors can gain a more accurate
understanding of how different assets move relative to each other, helping them build
more efficient and diversified portfolios. Although the squared maximum Sharpe ratio
was developed in recent years, little research has been done to address its compatibility
as a measure of performance. As argued by Kourtis (2016), the expected squared Sharpe
ratio rises with the number of assets and the maximum Sharpe ratio, while it falls with
the length of the data. In this paper, we focus on the SMSR of a two-asset portfolio. This
index summarizes the joint performance of a bivariate random vector of asset returns as
a single value, which could help in selecting the components of a two-asset portfolio. A
topic in statistical arbitrage technique, pairs trading, explores how to identify a suitable
pair for trading Ramos-Requena et al. (2020). This paper makes two contributions toward
the squared maximum Sharpe ratio. First, we study the effect of dependence on SMSR.
Several theoretical properties of the bivariate Sharpe ratio, in terms of copulas, are given in
Section 2. The copula-based bivariate Sharpe ratio is presented in Section 3. In Section 4, we
provide an estimator for the proposed copula-based bivariate Sharpe ratio. A simulation
study is performed in this section. A real-data analysis is provided in Section 5. Section 6
concludes the paper.

2. Bivariate Squared Maximum Sharpe Ratio

Consider two assets, A and B, with the returns RA
t and RB

t over a time interval t (e.g.,
RA

t and RB
t could be the daily returns, so t = one day), respectively, defined on a common

probability space (Ω, F, P), endowed with a filtration F = {Ft : T ≥ t ≥ 0} representing
the information available to the investor up to time T. Let b be a benchmark investment
strategy, and let Rb denote its return over a time interval t. The benchmark b may be
riskless, hence Rb may be a fixed constant. We only present the case that the processes from
which the excess returns are sampled are stationary. That is, the means and the variances
of returns and the covariance between them are fixed for any time interval t. The excess
returns over the risk-free asset are random variables, which we denote by continuous
random variables X = RA

t − Rb and Y = RB
t − Rb. Let P = wX + (1 − w)Y, be a two-asset

portfolio with dependent components X and Y, where 0 < w < 1 is the weight of X and
1 − w is the weight of Y. Let µX = E(X) and σ2

X = var(X) be the mean and variance of X
and µY = E(Y), σ2

X = var(X) be the mean and variance of Y. We assume that variances
exist and are non-zero. By definition, the Sharpe ratios (SRs) of X and Y are given by
SRX = µX

σX
and SRY = µY

σY
, respectively. The Sharpe ratio of the portfolio P as a function of

the weight w is given by

SRP(w) =
wµX + (1 − w)µY√

w2σ2
X + (1 − w)2σ2

Y + 2w(1 − w)σX,Y

, (1)
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where σX,Y = cov(X, Y). It is known that the maximum happens at

w∗ =
µXσ2

Y − µYσX,Y

µXσ2
Y + µYσX

2
t − (µX + µY)σX,Y

;

that is maxw SRP(w) = SRP(w∗).

Definition 1. Let ρ ∈ [−1, 1] be the Pearson’s correlation of the excess returns X and Y with
the Sharpe ratios SRX and SRX, respectively. The bivariate squared maximum Sharpe ratio of a
two-asset portfolio with the components X and Y (denoted by SMSR(X, Y)) is defined by

SMSR(X, Y) =
SR2

X + SR2
Y − 2ρSRXSRY

1 − ρ2 . (2)

For the case of uncorrelated assets, i.e., ρ = 0, we have SMSR(X, Y) = SR2
X + SR2

Y. For the
cases ρ = −1 or ρ = 1, SMSR(X, Y) = +∞.

Remark 1. By considering the SMSR(X,Y) as a bivariate Sharpe ratio, which is a function of the
marginal Sharpe ratios and the correlation coefficient of the asset’s returns as outlined in this paper,
one can effectively choose the components of a portfolio. For instance, when forming a portfolio
with two assets, such as between the options (X1, Y1) and (X2, Y2), the more suitable option is the
one with a higher SMSR(X,Y) value. This approach can serve as a pre-selection of suitable assets
for portfolio formation, followed by determining the optimal weights of these selected assets in the
next step.

As noted in Dowd (2000), using the traditional Sharpe ratio may result in significant
errors when determining whether the true correlation is non-zero. When forming a portfolio
with two assets, let us consider two options: (X1, Y1) and (X2, Y2). In a given period,
suppose that the Sharpe ratio of the returns for both options are equal, i.e., SRX1 = SRX2 =
1.5 and SRY1 = SRY2 = 2, but the correlation coefficient of (X1, Y1) is equal to 0.4 and
the correlation of (X2, Y2) is equal to 0.8. Based on SMSR(X, Y), which option is suitable
for forming a portfolio? To provide a proper answer, we need to examine the impact of
correlation on the bivariate squared maximum Sharpe ratio.

Proposition 1. Let SRX > 0 and SRY > 0 be the Sharpe ratios of X and Y and let κ =

min( SRX
SRY

, SRY
SRX

). For SMSR(X,Y) defined by (2), the following hold:

(i) SMSR(X,Y) is decreasing in ρ, for ρ ∈ [−1, κ];
(ii) SMSR(X,Y) is increasing in ρ, for ρ ∈ [κ, 1];
(iii) SMSR(X, Y) ≥ max(SR2

X , SR2
Y), for each ρ ∈ [−1, 1], and the equality holds if, and only if,

ρ = min( SRX
SRY

, SRY
SRX

).

Proof. The derivative of SMSR(X,Y) with respect to ρ is given by

d
dρ

SMSR(X, Y) =
2SRXSRY(t − ρ)(ρ − 1

t )

(1 − ρ2)2 ,

where t = SRX/SRY. Note that κ = min(t, 1
t ). For ρ = κ, we have that d

dρ SMSR(X, Y) = 0.

For −1 ≤ ρ ≤ κ ≤ 1, we have that t − ρ > 0 and ρ − 1
t < 0 and thus, d

dρ SMSR(X, Y) < 0.

Similarly, for 0 < κ ≤ ρ ≤ 1, we have that t − ρ > 0 and ρ − 1
t > 0 or t − ρ < 0 and

ρ − 1
t < 0, and thus d

dρ SMSR(X, Y) > 0, which completes the proof of parts (i) and (ii).
For part (iii), let SMSR(X, Y) := SMSR(ρ). From parts (i) and (ii), for ρ ≤ κ, we have
that SMSR(ρ) ≥ SMSR(κ), and for ρ ≥ κ, SMSR(ρ) ≥ SMSR(κ). Since SMSR(κ) =
max(SR2

X, SR2
Y), it follows that SMSR(X, Y) ≥ max(SR2

X, SR2
Y), for each ρ ∈ [−1, 1]. To
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prove the last part, if ρ = κ, then SMSR(ρ) = SR2
Y for SRX < SRY, and SMSR(ρ) =

SR2
X, for SRY < SRX, that is SMSR(ρ) = max(SR2

X, SR2
Y). Conversely, if SMSR(ρ) =

max(SR2
X, SR2

Y), then ρ = SRX/SRY for SRX < SRY and ρ = SRY/SRX for SRY < SRX,
that is ρ = min( SRX

SRY
, SRY

SRX
).

Figure 1 shows the plot of SMSR(X, Y) as a function of ρ for different values of SRX
and SRY to illustrate the results of Proposition 1.
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Figure 1. Plot of SMSR(X,Y) versus ρ for (SRX , SRY) ∈ {(1, 1), (1, 2), (2, 1), (3, 4)} (red curves from
top left to the bottom right), horizontal lines present max(SR2

X , SR2
Y) (brown line) and min(SR2

X , SR2
Y)

(green line). In the top left figure, the lines max(SRX , SRY) and min(SRX , SRY) are overlapped.

Proposition 2. For each ρ ∈ [−1, 1], (SRX−SRY)
2

1−ρ2 ≤ SMSR(X, Y) ≤ (SRX+SRY)
2

1−ρ2 .

Proof. The result from the inequalities SR2
X + SR2

Y − 2ρSRXSRY ≥ (SRX − SRY)
2 and

SR2
X + SR2

Y − 2ρSRXSRY ≤ (SRX + SRY)
2 that hold for each ρ ∈ [−1, 1] and SRX > 0 and

SRY > 0.

Figure 2 shows the upper and lower bound for SMSR(X, Y) that is provided in
Proposition 2. In the statistical literature, it is common to assume that log-returns are dis-
tributed as a normal distribution. The following example illustrates the effect of dependence
on SMSR(X, Y) of log-normal returns.
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Figure 2. Plot of SMSR(X, Y) (green) and the upper bound (yellow) and the lower bound (red) in
Proposition 2, as a function of ρ for SRX = 2 and SRY = 3.

Example 1. Let X and Y be log-normal random variables with the bivariate density function given
by Mielke Jr, P.W., Williams, J.S., and Wu, S. (1977)

f (x, y) =
1

2πxyαβ
√

1 − r2
e−Q(x,y),

where

Q(x, y) =
1

2(1 − r2)

{[ log(x/A)

α

]2
+

[ log(y/B)
β

]2
− 2r

[ log(x/A)

α

][ log(y/B)
β

]}
,

for x > 0, y > 0, α > 0, β > 0, A > 0, B > 0 and −1 ≤ r ≤ 1. Where α and β are the marginal
distribution shape parameters, A and B are the scale parameters, r is the dependence parameter.
Clearly, X and Y have the univariate log-normal distribution with the means and the variances
given by

µX = Ae
α2
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X = A2eα2
(eα2 − 1),
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Cov(X, Y) = AB(erαβ − 1)e
(α2+β2)
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Example 1. Let X and Y be log-normal random variables with the bivariate density function given
by Mielke et al. (1977)

f (x, y) =
1

2πxyαβ
√

1 − r2
e−Q(x,y),

where

Q(x, y) =
1

2(1 − r2)

{[ log(x/A)

α

]2
+

[ log(y/B)
β

]2
− 2r

[ log(x/A)

α

][ log(y/B)
β

]}
,

for x > 0, y > 0, α > 0, β > 0, A > 0, B > 0 and −1 ≤ r ≤ 1; where α and β are the marginal
distribution shape parameters, A and B are the scale parameters, r is the dependence parameter.
Clearly, X and Y have the univariate log-normal distribution with the means and the variances
given by

µX = Ae
α2
2 , σ2

X = A2eα2
(eα2 − 1),

µY = Be
β2
2 , σ2

Y = B2eβ2
(eβ2 − 1),

Cov(X, Y) = AB(erαβ − 1)e
(α2+β2)

2 ,

and

ρX,Y =
erαβ − 1√

(eα2 − 1)(eβ2 − 1)
.

Then,

SRX =
1√

eα2 − 1
, SRY =

1√
eβ2 − 1

.

Let κ = min
(

SRX
SRY

, SRY
SRX

)
. Then, it is easy to see that ρX,Y ≤ κ, if, and only if, r ≤ min

(
α
β , β

α

)
.

The squared Sharpe ratio for the pair (X, Y) is given by

SMSR(X, Y) =
eα2

+ eβ2 − 2erαβ

(eα2 − 1)(eβ2 − 1)− (erαβ − 1)2
.
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Let SMSR(X, Y) := SMSR(r). We note that

d
dr

SMSR(r) =
−2αβerαβ(eβ2 − erαβ)(eα2 − erαβ)

(
eα2+β2 − eα2 − eβ2

+ 2erαβ − e2rαβ
)2 .

Thus, the function SMSR(r) has a minimum at the point r = min( α
β , β

α ) and from Proposition 1,
the following properties hold:

• If r ≤ min( α
β , β

α ), then SMSR(r) is decreasing in r;

• If r ≥ min( α
β , β

α ), then SMSR(r) is increasing in r;

• For each r ∈ [−1, 1], SMSR(r) ≥ 1
e(min(α,β))2−1

, and the equality holds, if r = min( α
β , β

α ).

3. Copula-Based Squared Maximum Sharpe Ratio

Let X and Y be two continuous random variables with the univariate marginal cumu-
lative distribution functions (CDF) F(x) = P(X ≤ x) and G(y) = P(Y ≤ y) for x, y ∈ R
and the joint CDF H(x, y) = P(X ≤ x, Y ≤ y). In Formula (2), SR2

X and SR2
Y are calculated

from the marginal CDFs and ρ is associated with the joint CDFs of X and Y. Following
Sklar’s Theorem, see, Nelsen (2006), there exists a unique copula C such that

H(x, y) = C(F(x), G(y)), x, y ∈ R, (3)

where C(u, v) = P(U ≤ u, V ≤ v) is the joint CDF of the pair (U, V) = (F(X), G(Y))
whose margins are uniform on [0,1]. The copula C characterizes the dependence in the
pair (X, Y) Nelsen (2006). Let σX,Y(C) denotes the covariance of random variables X and
Y, whose associated copula is C. By using Hoeffding’s identity Hoeffding (1994) and
transformations u = F(x) and v = G(y), from (3) we have

σX,Y(C) =
∫ ∞

−∞

∫ ∞

−∞
(H(x, y)− F(x)G(y))dxdy

=
∫ 1

0

∫ 1

0
(C(u, v)− uv)dF−1(u)dG−1(v), (4)

or equivalently,

σX,Y(C) =
∫ ∞

−∞

∫ ∞

−∞
xydH(x, y)− µXµY

=
∫ 1

0

∫ 1

0
F−1(u)G−1(v)dC(u, v)− µXµY. (5)

When the joint CDF of (X, Y) is non-normal, we can model it by selecting suitable
parametric forms for the marginal CDFs F, G, and the copula C in (3). For example, F might
be the CDF of normal random variables with the parameters µ and σ2 and G might the
CDF of a gamma random variable with the parameters α and β and the copula C might
be taken from a parametric family of copulas. Popular choices of copulas are described in
Joe (2014) and Nelsen (2006). The main advantage of this approach is that the distributions
F, G, and C in (3) can be chosen independently of one another. The means µX , µY and the
variances σ2

X and σ2
Y of X and Y are calculated from the marginal CDFs, and their Pearson’s

correlation coefficient can be obtained by

ρC =

∫ 1
0

∫ 1
0 F−1(u)G−1(v)dC(u, v)− µXµY

σXσY
. (6)
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In the following, we define the copula-based version of the squared maximum Sharpe
ratio of a two-asset portfolio with the components X and Y and the associated copula C,
denoted SMSRC(X, Y).

Definition 2. Let (X, Y) be a pair of continuous random variables with the marginal CDF F (of
X) and G (of Y) and associated copula C. We define the copula-based squared maximum Sharpe
ratio of a two-asset portfolio with the excess returns X and Y and the marginal, the Sharpe ratios
SRX and SRX , by

SMSRC(X, Y) =
SR2

X + SR2
Y − 2ρCSRXSRY

1 − ρ2
C

. (7)

A copula C is said to be positive quadrant dependent (PQD) if for all (u, v) ∈ [0, 1]2,
C(u, v) ≥ Π(u, v), and negative quadrant dependent (NQD) if C(u, v) ≤ Π(u, v), where
Π(u, v) = uv, is the copula of independent random variables Nelsen (2006). The following
result compares the SMSRC(X, Y) of a pair of dependent returns under a copula C with
the SMSRΠ(X, Y) of the independent copula Π.

Proposition 3. Let (X, Y) be two excess returns with the Sharpe ratios SRX = a > 0 and
SRY = b > 0 and the associated copula C.

(i) If C is PQD, then SMSRC(X, Y) ≤ (≥)SMSRΠ(X, Y), if and only if, ρC ≤ (≥)κH , where
κH = 2ab

a2+b2 ;
(ii) If C is NQD then, SMSRC(X, Y) ≥ SMSRΠ(X, Y).

Proof. Note that SMSRΠ(X, Y) = a2 + b2. Let

SMSRC(X, Y) := SMSRC(ρC) =
a2 + b2 − 2abρC

1 − ρ2
C

.

We note that SMSRC(κH) = a2 + b2 = SMSRΠ(X, Y). If C is PQD, then C(u, v) ≥ uv.
By using (5), we have that ρC ≥ 0. For ρC ≥ 0, it is easy to see that SMSRC(ρC) ≤
(≥)SMSRC(κH), if and only if, ρC ≤ (≥)κH . If C is NQD, then ρC ≤ 0, and thus
a2+b2−2abρC

1−ρ2
C

≥ a2+b2

1−ρ2
C
≥ a2 + b2, which completes the proof.

Remark 2. The above result shows that, when the returns are positively or negatively dependent,
but considered independent, the SMSR(X,Y) is more or less estimated.

Example 2. Let X and Y be two exponential random variables with means
1

λ1
and

1
λ2

, respectively,

and the associated FGM copula Nelsen (2006) given by

Cθ(u, v) = uv[1 + θ(1 − u)(1 − v)], −1 ≤ θ ≤ 1. (8)

So, σC =
θ

4λ1λ2
, ρC =

θ

4
, and SRX = SRY = 1. Therefore, SMSRCθ

(X, Y) =
8

4 + θ
∈

[ 8
5 , 8

3 ], which is decreasing with respect to the dependency parameter θ and does not depend on
the marginal parameters λ1 and λ2. The value of the SMSRCθ

(X, Y) decreases as the dependence
between X and Y increases. For the case of independence, i.e., θ = 0, we have SMSRC0(X, Y) = 2.
Note that the copula Cθ is PQD (NQD) for θ ≥ 0 (θ ≤ 0).

The following example compares two investment opportunity sets (X1, Y1) and
(X2, Y2) with the common marginal CDFs and different dependence structures.
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Example 3. Let X and Y be two beta random variables having the CDFs

F(x) = xα, 0 < x < 1, and G(y) = yβ, 0 < y < 1,

with α > 0 and β > 0, and the associated copula Cθ be the FGM copula given by (8). The joint
CDF of (X, Y) is given by

H(x, y) = xαyβ[1 + θ(1 − xα)(1 − yβ)], x, y ∈ [0, 1],

with −1 ≤ θ ≤ 1. It is easy to see that

SRX =
√

α(α + 2), SRY =
√

β(β + 2).

We note that SRX
SRY

≤ 1, if and only if, α ≤ β. The Pearson’s correlation is given by

ρC =
θ
√

αβ(α + 2)(β + 2)
(2α + 1)(2β + 1)

.

The expression for SMSRCθ
(X, Y) is given by

SMSRCθ
(X, Y) =

α(α + 2) + β(β + 2)− 2θαβ(α + 2)(β + 2)[(2α + 1)(2β + 1)]−1

1 − θ2αβ(α + 2)(β + 2)[(2α + 1)(2β + 1)]−2 .

Let κ = min
(

SRX
SRY

, SRY
SRX

)
= min

(√ α(α+2)
β(β+2) ,

√
β(β+2)
α(α+2)

)
. It follows that ρC ≤ κ if and only

if, θ ≤ κ′, where κ′ = min
(
(2α+1)(2β+1)

β(β+2) , (2α+1)(2β+1)
α(α+2)

)
. From Proposition 1,

• If θ ≤ κ′, then SMSRCθ
(X, Y) is decreasing in ρC;

• If θ ≥ κ′, then SMSRCθ
(X, Y) is increasing in ρC.

Since ρ is an increasing function of θ, then the following hold

• If θ ≤ κ′, then SMSRCθ
(X, Y) is decreasing in θ;

• If θ ≥ κ′, then SMSRCθ
(X, Y) is increasing in θ.

For i = 1, 2, let (Xi, Yi) have the FGM copula Cθi . Then, from Proposition 1, the following hold

• If θ1 ≤ θ2 ≤ κ′, then SMSRCθ1
(X, Y) ≥ SMSRCθ2

(X, Y);
• If κ′ ≤ θ1 ≤ θ2, then SMSRCθ1

(X, Y) ≤ SMSRCθ2
(X, Y);

• If θ1 ≤ κ′ ≤ θ2, then the value of SMSRCθ1
(X, Y) and SMSRCθ2

(X, Y) care not comparable.

Note that ρC = κH , where κH = 2SRXSRY
SR2

X+SR2
Y

, if and only if, θ = κ′H , where κ′H = 2(2α+1)(2β+1)
α(α+2)+β(β+2) .

Since for θ ≥ 0, the copula Cθ is PQD, then from Proposition 3, SMSRCθ
(X, Y) ≤ (≥)SR2

X +
SR2

Y, if θ ≤ κ′H(θ ≥ κ′H). For θ ≤ 0, Cθ is NQD, and then, SMSRCθ
(X, Y) ≥ SR2

X + SR2
Y.

4. Estimators of Squared Maximum Sharpe Ratio

Let (Xt, Yt), t = 1, 2, ..., n, be a sample of size n from a pair (X, Y). A natural estimator
of SMSR(X, Y) defined by (2) is its sample version given by

ŜMSR(X, Y) =
ŜR

2
X + ŜR

2
Y − 2rŜRX ŜRY
1 − r2 , (9)

where X =
1
n ∑n

t=0 Xt, Y =
1
n ∑n

t=0 Yt, ŜRX = X
SX

, ŜRY = Y
SY

and

r = ∑n
t=1(Xt − X)(Yt − Y)√

∑n
t=1(Xt − X)2 ∑n

t=1(Yt − Y)2
, (10)
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is the sample Pearson’s correlation coefficient. We note that the expression (2) for ŜMSR(X, Y)
can be rewritten as

ŜMSR(X, Y) = ZTS−1Z,

where

Z = (X, Y)T , S =

[
S2

X SXY

SXY S2
Y

]
,

with

S2
X =

1
n − 1

n

∑
t=1

(Xt − X)2, S2
Y =

1
n − 1

n

∑
t=1

(Yt − Y)2, SXY =
1

n − 1

n

∑
t=1

(Xt − X)(Yt − Y).

Under the explicit assumption that the returns are normally distributed, from the
standard theory of normal quadratic form, see, e.g., Anderson et al. (1958), we have that

n − 22ŜMSR(X, Y) ∼ F(2, n − 2, δ),

where F(2, n − 2, δ) is the non-central F-distribution Anderson et al. (1958) with 2 and n − 2
degree of freedom and non-centrality parameter δ = nSMSR(X, Y). Note that

E(ŜMSR(X, Y)) =
nSMSR(X, Y) + 2

n − 4
.

Thus, ŜMSR(X, Y) is a biased estimator of SMSR(X, Y).
An estimator for the copula-based SMSRC(X, Y) defined by (7) could be found as

follows:

Step 1. Based on a random sample (X1, Y1), ..., (Xn, Yn), find suitable models for the
marginal distributions, namely F̂ and Ĝ, using the standard goodness-of-fit tests;

Step 2. Compute the marginal Sharpe ratios ŜR
∗
X and ŜR

∗
Y from the estimated marginal

distributions by ŜR
∗
X = µ̂X

σ̂X
and ŜR

∗
Y = µ̂Y

σ̂Y
;

Step 3. Choose a suitable copula model, namely Ĉ, using the copula goodness-of-fit
testing Genest et al. (2009) for the dependence structure of data;

Step 4. Compute the copula-based estimator of Pearson’s correlation coefficient ρC, de-
noted by rC using

rC =

∫ 1
0

∫ 1
0 F̂−1(u)Ĝ−1(v)dĈ(u, v)− µ̂X µ̂Y

σ̂X σ̂Y
; (11)

Step 5. Compute the copula-based estimator of SMSRC(X, Y) by

ŜMSRC(X, Y) =
ŜR∗2

X + ŜR∗2
Y − 2rCŜR∗X ŜR∗

Y

1 − r2
C

. (12)

When dealing with time-series data for underlying commodities, the initial step
involves conducting standard tests, such as those proposed by Box and Pierce (1970) and
Ljung and Box (1978), on the log-returns and their squared values to identify any presence
of autocorrelation and heteroscedasticity within the series. If these tests yield insignificant
results, the log-returns can be considered as a random sample from a distribution F, leading
us to proceed with Step 1. In cases where strong autocorrelation and heteroscedasticity
are observed, it is necessary to apply a time-series model initially to eliminate temporal
dependence. Subsequently, the marginal parameters can be derived using the filtered
residuals, and a copula can be fitted to these residuals, which are then transformed to
uniform marginals. An estimator for the copula-based SMSRC(X, Y) as defined by (7) can
be obtained as follows:
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Step 1. Fit appropriate models to the time-series data and obtain their standardized
residuals;

Step 2. Transform the marginal standardized residuals into uniformly distributed sam-
ples;

Step 3. Estimate the dependence structure of two uniformly distributed residuals using
copula modeling by maximum likelihood method;

Step 4. Generate n random samples (S1t, S2t), t = 1, ..., n with the estimated copula
models. Apply probability integral transform to (S1t, S2t), t = 1, ..., n and then,
calculate the Pearson’s moment correlation rC and the marginal Sharpe ratios
ŜR

∗
X and ŜR

∗
Y based on the means and variances of the estimated models;

Step 5. Compute the copula-based estimator of SMSRC(X, Y) by (12).

In this section, we compare the values of the copula-based (SMSRC(X, Y)) and empir-
ical (SMSR(X, Y)) squared maximum Sharpe ratio by simulation. In the simulation, we
consider the effect of sample size, marginal distributions, dependence structure, and the
level of dependency. The simulation study was carried out according to a factorial design
involving four factors that affect the estimation process:

(1) Sample size: n ∈ {50, 200, 500};
(2) Type of marginal distributions: symmetric (normal distribution) and skewed (gamma

distribution);
(3) Dependence structure, represented by the copula C:

Clayton (an asymmetric copula with the lower tail dependence)

Cθ(u, v) = {max(u−θ + v−θ − 1, 0)}− 1
θ , θ ∈ [−1, ∞)− {0};

Frank (a symmetric copula)

Cθ(u, v) = −1
θ

ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ (−∞, ∞)− {0};

Gumbel (an asymmetric copula with the upper tail dependence)

Cθ(u, v) = exp{−[(− ln(u))θ + (− ln(v))θ ]
1
θ }, θ ∈ [1, ∞);

(4) Degree of dependence in terms of Kendall’s tau

τ = 4
∫ 1

0

∫ 1

0
Cθ(u, v)dCθ(u, v)− 1,

at τ ∈ {−0.3, 0.3, 0.8}, which corresponds to θ ∈ {−0.46, 0.86, 8} for the Clayton
copula and θ ∈ {−2.93, 2.93, 18.20} for the Frank copula. For the Gumbel copula we
consuder τ ∈ {0.3, 0.8} which corresponds to θ ∈ {1.43, 5}.

For each combination of factors, 1000 random samples were generated, and the val-
ues of SMSRC(X, Y) were computed. The results are shown in Tables 1 and 2. The
tables provide the copula structure, dependency level (Kendall’s τ), the exact values of
SMSRC(X, Y), considered sample sizes (n), the simulated bias (Bias), and mean square
error (MSE) for the empirical estimator ŜMSR(X, Y) defined by (2) and the copula-based
estimator ŜMSRC(X, Y) defined by (12), as well as the relative efficiency (RE) and negative
bias of two estimators. The results show that the MSE and bias in all cases decrease with
the sample size, as expected. As we see, the relative efficiency of the copula-based estimator
compared to the empirical method increases significantly when the sample size and level of
dependence increase. From Table 2, it can be seen that when the marginal distributions are
skewed, the copula-based estimator will have a much better performance than the empirical
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method. In summary, when the assets are normally distributed, using the copula-based
method or empirical method to estimate the SMSRC(X, Y) does not make much difference.

Table 1. The exact values and simulation results for SMSRC(X, Y), when the marginal distributions
are X ∼ N(1, 2) and Y ∼ N(1, 2), the copula C ∈ {Clayton, Frank, Gumbel}, and different level of
dependency in terms of Kendall’s τ and sample size n ∈ {50, 200, 500}.

Exact SMSRC(X, Y) Copula τ n ̂SMSRC(X, Y) ̂SMSR(X, Y) RE Negative Bias

Bias MSE Bias MSE ̂SMSRC(X, Y) ̂SMSR(X, Y)

0.5218 Clayton 0.8 50 0.0684 0.0757 0.0565 0.0720 0.9511 45.12 47.11

200 0.0174 0.0150 0.0145 0.0148 0.9842 47.22 48.20

500 0.0055 0.0058 0.0044 0.0058 0.9956 48.94 49.31

0.6869 Clayton 0.3 50 0.1077 0.1307 0.0909 0.1247 0.9551 42.80 44.78

200 0.0239 0.0246 0.0201 0.0243 0.9891 46.54 47.78

500 0.0103 0.0094 0.0089 0.0094 1.0045 47.02 47.61

1.7720 Clayton −0.3 50 0.1373 0.1659 0.1250 0.1839 1.1086 39.50 41.75

200 0.0353 0.0312 0.0339 0.0376 1.2043 44.18 44.79

500 0.0132 0.0118 0.0119 0.0144 1.2256 46.18 46.53

0.5219 Frank 0.8 50 0.0978 0.0782 0.0866 0.0738 0.9436 39.80 41.45

200 0.0239 0.0144 0.0210 0.0141 0.9791 44.90 45.94

500 0.0095 0.0053 0.0084 0.0053 0.9897 46.64 47.34

0.7054 Frank 0.3 50 0.1001 0.1050 0.0827 0.0998 0.9502 42.36 44.55

200 0.0245 0.0196 0.0205 0.0192 0.9791 45.62 46.70

500 0.0085 0.0074 0.0069 0.0073 0.9931 47.87 48.65

1.7168 Frank −0.3 50 0.2003 0.4053 0.1778 0.4026 0.9931 41.50 43.30

200 0.0477 0.0740 0.0427 0.0776 1.0477 45.50 46.52

500 0.0168 0.0275 0.0150 0.0294 1.0691 47.67 48.59

0.5139 Gumbel 0.8 50 0.1029 0.0830 0.0892 0.0789 0.9496 39.81 41.61

200 0.0258 0.0141 0.0230 0.0138 0.9806 44.13 45.18

500 0.0099 0.0053 0.0088 0.0052 0.9925 46.43 47.01

0.6866 Gumbel 0.3 50 0.1183 0.1027 0.1039 0.0977 0.9520 37.21 41.52

200 0.0241 0.0182 0.0205 0.0180 0.9872 45.49 46.85

500 0.0101 0.0067 0.0087 0.0067 0.9975 46.79 47.40

Table 2. Simulation results for SMSRC(X, Y), when the marginal distributions are X ∼ gamma(1, 2)
and Y ∼ gamma(1, 2), the copula C ∈ {Clayton, Frank, Gumbel}, and different level of dependency
in terms of Kendall’s τ and sample size n ∈ {50, 200, 500}.

Exact SMSRC(X, Y) Copula τ n ̂SMSRC(X, Y) ̂SMSR(X, Y) RE Negative Bias

Bias MSE Bias MSE ̂SMSRC(X, Y) ̂SMSR(X, Y)

0.5980 Clayton 0.8 50 0.0260 0.0123 0.0870 0.0290 2.3532 44.73 32.16

200 0.0073 0.0026 0.0242 0.0065 2.4773 46.66 38.78

500 0.0022 0.0009 0.0094 0.0025 2.5781 48.56 43.42

0.8359 Clayton 0.3 50 0.0397 0.0239 0.1156 0.0601 2.5170 43.56 33.18

200 0.0087 0.0050 0.0299 0.0129 2.5706 47.08 40.32

500 0.0029 0.0019 0.0116 0.0051 2.6269 48.62 44.42
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Table 2. Cont.

Exact SMSRC(X, Y) Copula τ n ̂SMSRC(X, Y) ̂SMSR(X, Y) RE Negative Bias

Bias MSE Bias MSE ̂SMSRC(X, Y) ̂SMSR(X, Y)

1.1921 Clayton −0.3 50 0.0560 0.0234 0.2179 0.1780 7.5780 37.35 29.06

200 0.0120 0.0043 0.0552 0.0340 7.7702 44.18 39.01

500 0.0050 0.0017 0.0226 0.0136 7.9614 46.53 42.78

0.5588 Frank 0.8 50 0.0288 0.0094 0.0987 0.0284 3.0173 42.02 28.50

200 0.0074 0.0019 0.0268 0.0062 3.2380 45.33 36.98

500 0.0023 0.0007 0.0109 0.0023 3.2798 48.01 41.80

0.7737 Frank 0.3 50 0.0424 0.0179 0.1141 0.0582 3.2398 40.50 31.73

200 0.0088 0.0034 0.0288 0.0112 3.2489 46.67 40.09

500 0.0042 0.0012 0.0120 0.0043 3.3303 46.92 42.86

1.3151 Frank −0.3 50 0.0652 0.0422 0.2436 0.2016 4.7797 39.46 28.75

200 0.0152 0.0085 0.0696 0.0437 5.1292 45.02 37.54

500 0.0071 0.0032 0.0285 0.0169 5.2931 45.57 41.88

0.5079 Gumbel 0.8 50 0.0410 0.0109 0.0930 0.0367 3.3562 36.85 30.67

200 0.0087 0.0019 0.0241 0.0079 4.0439 44.88 40.12

500 0.0027 0.0007 0.0093 0.0030 4.3266 46.68 43.81

0.6468 Gumbel 0.3 50 0.0453 0.0177 0.1284 0.0692 3.8939 40.00 29.80

200 0.0107 0.0033 0.0372 0.0157 4.7633 44.69 38.87

500 0.0046 0.0012 0.0150 0.0061 4.8852 46.01 42.88

5. Empirical Analysis

In this section, we will compare the estimation of SMSRC(X, Y) using real data anal-
ysis. We will use the copula-based method under the assumption of normality and also
under the independence of returns. The stock market considered is SP 500, and the daily
asset returns of five stocks, namely, Amazon, Apple, Google, Tesla, and Microsoft, are
used. The period is from the 1 January 2018 to the 31 December 2022. The data sets are
selected from “finance.yahoo.com (accessed on 26 February 2023)”. As an application of
SMSRC(X, Y) in selecting stocks for investment, we consider each stock pair as an invest-
ment opportunity to build a portfolio with two assets. Using these five stocks, we can
form 10 two-asset portfolios with the investment opportunity pairs in the set {(Amazon,
Microsoft), (Apple, Microsoft), (Google, Microsoft), (Microsoft, Tesla), (Amazon, Apple),
(Apple, Tesla), (Apple, Google), (Google, Tesla), (Amazon, Google), and (Amazon, Tesla).}
Looking at the summary statistics and histograms (not shown here), it seems that all returns
are almost symmetric. The high positive values of kurtosis for all returns indicate that the
underlying distributions of all returns are heavy-tailed.

As the stock returns follow a time-series pattern, we seek appropriate models to ana-
lyze them. Common approaches for modeling and predicting the volatility of financial time
series include the Autoregressive Moving Average (ARMA) model, the Autoregressive
Conditional Heteroscedasticity (ARCH) model, the Generalized Autoregressive Condi-
tional Heteroscedasticity (GARCH) model, and hybrid ARMA-GARCH models. The fitted
time-series models are detailed in Table 3. Various models have been employed to model
the volatility of Tesla’s returns, and overall, the GARCH(1,1) model outperformed others:

rt = µ0 + ϵt, σ2
t = ω + αϵ2

t−1 + βσ2
t−1,

where σ2
t represents the conditional variance, ϵt denotes the residual returns defined

as ϵt = σtZt, with Zt being an i.i.d. process with zero mean and unit variance, and
µ0, ω, α, β > 0 are the estimated parameters detailed in Table 3. The volatility of the

finance.yahoo.com
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returns from Amazon, Apple, Google, and Microsoft has also been modeled using different
approaches, and overall, the ARMA(1,0)-GARCH(1,1) model demonstrated a better fit:

rt = µ0 + a0rt−1 + ϵt, σ2
t = ω + αϵ2

t−1 + βσ2
t−1,

with the estimated parameters provided in Table 3. We examined four symmetric dis-
tributions—Normal, Cauchy, Logistic, and Student-t Johnson et al. (1995)—for filtered
conditional residuals. Table 4 displays the estimated parameters, Loglikelihood, Akaike’s
Information Criterion (AIC), the Kolmogorov–Smirnov (K-S) statistic, and p-values of
the fitted distributions. It is evident that the distribution of all filtered returns deviates
significantly from normal, and the Student-t distribution emerges as a suitable choice. The
density function of Student-t vs. the degree of freedom is given by:

f (x) =
Γ( ν+1

2 )√
νπΓ( ν

2 )

(
1 +

x2

ν

)− ν+1
2

, x ∈ R, ν > 0.

Table 3. Fitted ARMA-GARCH time-series models for each return.

Return Time-Series Model Fitted Model

Amazon AR(1)-GARCH(1,1) xt = 0.0012 + 0.0106xt−1 + at, at = σtϵt, σ2
t = 0.000012 + 0.1404a2

t−1 + 0.8484σ2
t−1, ϵt ∼ t(5.45)

Apple AR(1)-GARCH(1,1) xt = 0.0019 − 0.0290xt−1 + at, at = σtϵt, σ2
t = 0.000016 + 0.1324a2

t−1 + 0.8392σ2
t−1, ϵt ∼ t(5.68)

Google AR(1)-GARCH(1,1) xt = 0.0014 − 0.0360xt−1 + at, at = σtϵt, σ2
t = 0.000010 + 0.1048a2

t−1 + 0.8838σ2
t−1, ϵt ∼ t(5.684.17)

Microsoft AR(1)-GARCH(1,1) xt = 0.0018 − 0.0908xt−1 + at, at = σtϵt, σ2
t = 0.000010 + 0.1564a2

t−1 + 0.8271σ2
t−1, ϵt ∼ t(6.40)

Tesla GARCH(1,1) xt = 0.0019 + at, at = σtϵt, σ2
t = 0.000052 + 0.0909a2

t−1 + 0.8946σ2
t−1, ϵt ∼ t(3.71)

Table 4. Fitted marginal distributions of for filtered residual of each return.

Return Distribution Paremeters Loglikelihood AIC BIC K.S Statistic p-Value

Amazon

normal µ = −0.0287, σ = 0.6891 −1316.62 2637.234 2647.51 0.0711 0.00

Cauchy location = 0.0028, scale = 0.3186 −1326.07 2656.15 2666.42 0.0516 0.00

Logistic location = −0.0184, scale = 0.3558 −1243.16 2490.31 2500.59 0.0391 0.04

Student-t df = 3.31 −1224.47 2454.95 2470.36 0.0213 0.61

Apple

normal µ = −0.0391, σ = 0.8885 −1636.31 3276.61 3286.89 0.0712 0.00

Cauchy location = −0.0203, scale = 0.4199 −1654.49 3312.97 3323.25 0.0577 0.00

Logistic location = −0.0257, scale = 0.4581 −1558.08 3120.16 3130.44 0.0353 0.08

Student-t df = 3.64 −1540.42 3086.83 3102.25 0.0174 0.83

Google

normal µ = −0.0323, σ = 0.6679 −1277.20 2558.40 2568.68 0.0801 0.00

Cauchy location = 0.0028, scale = 0.3053 −1280.69 2565.38 2575.65 0.0530 0.00

Logistic location = −0.0184, scale = 0.3442 −1202.82 2409.65 2419.93 0.0436 0.02

Student-t df = 3.22 −1182.44 2370.89 2386.30 0.0229 0.52

Microsoft

normal µ = −0.0318, σ = 0.7911 −1490.27 2984.56 2994.83 0.0801 0.00

Cauchy location = −0.0025, scale = 0.3642 −1481.97 2967.94 2978.22 0.0530 0.00

Logistic location = −0.0183, scale = 0.4019 −1397.15 2798.30 2808.58 0.0436 0.02

Student-t df = 3.40 −1373.91 2753.83 2769.24 0.0229 0.52

Tesla

normal µ = −0.0085, σ = 0.6882 −1314.97 2633.94 2644.22 0.0721 0.00

Cauchy location = −0.0058, scale = 0.3134 −1310.95 2625.90 2636.17 0.0475 0.00

Logistic location = −0.0067, scale = 0.3529 −1236.46 2476.93 2487.21 0.0421 0.02

Student-t df = 3.13 −1213.15 2432.29 2447.71 0.0218 0.59

The marginal squared Sharpe ratios estimated under the fitted models and the nor-
mality assumption (empirical) are shown in Table 5. Next, we estimated the dependence
parameters using the maximum likelihood method. Before modeling the dependence
structure between margin-filtered returns, we transformed the standardized residuals into
uniformly distributed data. To model the dependence of each pair of returns, we utilized
the filtered residuals of the fitted time series models and identified a suitable copula for
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them. We considered some commonly used families of copulas in finance, including ellipti-
cal copulas (Gaussian, Student-t) and Archimedean copulas (Gumbel, Frank, and Clayton).
Parameter estimation is based on the so-called inference for margins, which is a two-stage
method, see, Joe (2014). The fitted copulas are presented in Table 6. To select the most
appropriate copulas, we employed the BiCopSelect function in the R package VineCopula
Nagler et al. (2023). A review and comparison of copula goodness-of-fit test procedures can
be found in Genest et al. (2009). The log-likelihood values, the Cramér–von Mises statistic
Sn, the Akaike information criterion (AIC), and the Bayesian Information Criteria (BIC)
of the fitted models are detailed in Table 6. The Gaussian copula and Student-t copula
outperform the other three, based on a larger log-likelihood and smaller AIC and BIC
values. The returns of portfolios (1), (2), (3), (5), (7), and (9) fit well with the Student-t
copula, as follows:

Cρ,ν(u, v) = Tρ,ν(T−1
ν (u), T−1

ν (v)),

where Tν(.) and T−1
ν (.)are the CDF of the Student-t random variable with the degrees of

freedom v ∈ N − {0} and its inverse, and Tρ,ν(., .) is the bivariate Student-t distribution
with the correlation parameter −1 ≤ ρ ≤ 1 and the degrees of freedom ν Joe (2014). The
returns of the portfolio (4) fit well with the BB1 copula Joe (2014) given by

C(u, v) = {1 + [(u−θ − 1)δ + (v−θ + 1)δ]
1
δ } 1

θ , θ ≥ 0, δ ≥ 1.

The returns of the portfolios (6), (8), and (10) fit with the survival of the BB1 copula,
i.e., CS(u, v) = u + v − 1 + C(1 − u, 1 − v). The estimated parameters θ and δ are given in
Table 6. Finally, Table 7 shows the value of the copula-based SMSRC(X, Y) defined by (12),
the value of the SMSRC(X, Y) under the independence assumption, and the empirical value
of the SMSR(X, Y) defined by (9). The value of the Pearson correlation coefficient of the
returns for each portfolio is calculated with the copula-based method (11) and the ordinary
empirical value is shown in Table 7. It can be seen that all five stocks have a high positive
correlation with each other, and the correlation between Microsoft and the other four stocks
is higher. According to the results of Tables 5 and 7, the copula-based estimator is consistent
with Part 3 of Proposition 1. The value of SMSRC(X, Y) for each pair of stocks is greater
than the squared Sharpe ratio of the marginal stocks. The estimated values of SMSRC(X, Y)
in Table 7 are consistent with the result of Proposition 3, that is, in the case that stocks have
positive dependence, the value of the copula-based estimator of SMSRC(X, Y) is always
smaller than the value of SMSR(X, Y) under the assumption of independence. Therefore, if
dependence is not considered in the estimation of SMSR(X, Y), it gives misleading results.
As an application of SMSR(X, Y) in selecting stocks for investment, if we consider each
stock pair as an investment opportunity set to build a portfolio with two assets, according
to Table 7, the order of selecting options based on the three estimation methods is not the
same. Therefore, incorrectly considering the assumption of independence will produce
the wrong results. Based on the value of SMSRC(X, Y), the first three options are the
(Microsoft, Amazon), (Microsoft, Apple), and (Microsoft, Tesla) pairs.

Table 5. Estimated marginal squared Sharpe ratios (SR2) of returns.

Return Distribution Based Empirical

Amazon 0.0345 0.0371

Apple 0.0635 0.0778

Google 0.0508 0.0456

Microsoft 0.0691 0.0668

Tesla 0.0339 0.0317
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Table 6. Fitted copulas for each pair of filtered residual of fitted models.

Pair of Returns Copula θ Loglikelihood Sn AIC BIC
(Amazon, Microsoft) Student-t 0.75, df = 3.61 537.00 0.0807 −1070.09 −1059.91

Gumbel 2.08 460.00 0.2844 −917.99 −912.90
Clayton 2.40 440.70 0.1338 −879.42 −874.32
Frank 6.72 460.10 0.2076 −918.26 −913.17

Normal 0.74 479.20 0.1009 −956.42 −951.34
(Apple, Microsoft) Student-t 0.76, df = 3.06 582.10 0.0290 −1160.21 −1150.04

Gumbel 2.19 513.30 0.1607 −1024.56 −1019.47
Clayton 2.54 449.40 0.2377 −896.74 −891.65
Frank 7.02 488.30 0.1439 −974.68 −969.59

Normal 0.76 515.40 0.0435 −1028.86 −1023.77
(Google, Microsoft) Student-t 0.81, df = 2.66 686.9 0.0386 −1369.85 −1359.67

Gumbel 2.39 600.0 0.1834 −1197.94 −1192.85
Clayton 2.94 549.9 0.2386 −1097.89 −1092.80
Frank 7.85 565.7 0.1945 −1129.31 −1124.22

Normal 0.79 599.3 0.0574 −1196.58 −1191.49
(Microsoft, Tesla) Student-t 0.46, df = 6.32 166.50 0.0281 −329.07 −318.80

Gumbel 1.40 137.60 0.1075 −273.23 −268.10
Clayton 0.88 140.90 0.1352 −279.81 −274.67
Frank 3.04 138.60 0.0840 −275.24 −270.10

Normal 0.46 153.10 0.0400 −304.23 −299.09
BB1 θ = 0.42, δ = 1.2 168.81 0.0243 −333.63 −323.36

(Amazon, Apple) Student-t 0.69, df = 4.44 429.60 0.0656 −855.23 −844.96
Gumbel 1.83 364.20 0.2502 −726.48 −721.35
Clayton 1.92 341.30 0.1589 −680.50 −675.37
Frank 5.62 377.80 0.1921 −753.66 −748.52

Normal 0.68 385.00 0.0862 −768.00 −762.86
(Apple, Tesla) Student-t 0.48, df = 6.46 173.10 0.0393 −342.10 −331.82

Gumbel 1.40 138.00 0.1551 −274.04 −268.91
Clayton 0.92 155.00 0.0903 −307.91 −302.77
Frank 3.16 149.20 0.0909 −296.33 −291.19

Normal 0.47 159.10 0.0487 −316.23 −311.10
Survival BB1 θ = 0.09, δ = 1.4 178.41 0.0369 −352.83 −342.55

(Apple, Google) Student-t 0.71, df = 3.67 467.30 0.0742 −930.65 −920.47
Gumbel 1.93 392.80 0.2679 −783.55 −778.46
Clayton 2.08 390.80 0.1326 −779.55 −774.46
Frank 6.02 396.30 0.1928 −790.66 −785.57

Normal 0.71 409.60 0.0938 −817.26 −812.17
(Google, Tesla) Student-t 0.43, df = 7.43 135.70 0.0475 −267.35 −257.08

Gumbel 1.34 108.40 0.1580 −214.70 −209.56
Clayton 0.80 121.50 0.0725 −240.91 −235.77
Frank 2.81 120.70 0.0943 −239.35 −234.21

Normal 0.42 126.20 0.0574 −250.32 −245.18
Survival BB1 θ = 0.07, δ = 1.35 139.80 0.0423 −275.61 −265.33

(Amazon, Google) Student-t 0.74, df = 3.72 519.40 0.0658 −1011.14 −1000.96
Gumbel 2.01 425.20 0.2529 −848.31 −843.22
Clayton 2.30 405.80 0.1540 −809.60 −804.51
Frank 6.51 441.30 0.1895 −880.50 −875.41

Normal 0.72 433.30 0.0838 −864.66 −859.57
(Amazon, Tesla) Student-t 0.46, df = 6.81 157.80 0.0408 −311.64 −301.36

Gumbel 1.38 126.80 0.1607 −251.63 −246.49
Clayton 0.88 132.90 0.0802 −263.78 −258.64
Frank 3.05 138.90 0.1046 −275.72 −270.58

Normal 0.45 145.80 0.0572 −289.53 −284.39
Survival BB1 θ = 0.11, δ = 1.37 161.74 0.0388 −319.48 −309.21
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Table 7. The estimated SMSRC(X, Y) for each pair of returns.

Pair of Returns τ rC r Copula-Based Under
Independence Empirical

(Amazon,
Microsoft) 0.539 0.749 0.716 0.0054 0.0060 0.0047

(Apple,
Microsoft) 0.552 0.759 0.775 0.0051 0.0088 0.0062

(Google,
Microsoft) 0.600 0.809 0.811 0.0048 0.0073 0.0046

(Microsoft, Tesla) 0.307 0.480 0.469 0.0046 0.0059 0.0045

(Amazon, Apple) 0.487 0.688 0.653 0.0042 0.0052 0.0064

(Apple, Google) 0.504 0.707 0.704 0.0041 0.0066 0.0060

(Apple, Tesla) 0.317 0.484 0.474 0.0040 0.0051 0.0061

(Google, Tesla) 0.285 0.439 0.418 0.0027 0.0037 0.0023

(Amazon,
Google) 0.532 0.739 0.685 0.0026 0.0038 0.0021

(Amazon, Tesla) 0.308 0.476 0.437 0.0016 0.0023 0.0017

6. Conclusions

One of the key issues in investment is creating a suitable portfolio by estimating
optimal weights for desired assets. Before forming a portfolio, selecting an investment
opportunity set of assets is crucial. In the absence of a risk-free asset, the investment
opportunities can be determined based on the Sharpe ratios of risky assets and their
correlation. The maximum Sharpe ratio is a suitable index that summarizes the performance
of an investment opportunity in a single value, which is a function of the Sharpe ratios of
assets and their correlation coefficients. In this study, we examined the maximum square of
the Sharpe ratio as the Sharpe ratio of a vector and obtained results about the dependence
effect on this measure. We provided a copula-based estimator for it and investigated the
performance of the proposed index by simulating and analyzing real data. The bivariate
squared maximum Sharpe ratio was considered in this study, and future work could be
developed for dimensions bigger than 2.
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