Determinants of Corporate Indebtedness in Portugal: An Analysis of Financial Behaviour Clusters
Abstract
:1. Introduction
2. Literature Review
2.1. Corporate Reputation and the Business Relationship with Banks
2.2. Financing, Growth Cycle and Indebtedness
2.3. Company Operating Performance
2.4. Guarantees Used to Obtain Bank Financing
2.5. Analysing Financing Risk
2.6. Secondary Forms of Bank Financing
3. Methodology
3.1. Characterisation of the Population and Sample
3.2. Data Collection Instruments
3.3. Data Collection and Analysis Procedures
4. Results and Discussion
4.1. Determining Factors in Business Debt
4.2. Cluster Analysis
4.3. Comparative Analysis by Clusters
5. Conclusions
- -
- In the “Strategic Financial Cluster”, in secondary forms of bank financing, where non-family companies attach greater importance to this factor when compared to non-family companies;
- -
- In the “Operational Excellence Cluster”, companies under 25 years old attach greater importance to the financing, cycle and debt factor;
- -
- The “operational development of the company” factor is the only one that presents statistically significant differences in the three clusters, with certified companies attaching greater importance to this factor;
- -
- In the “financial risk analysis” factor, in the “Resilient Financial Cluster” and in the “Strategic Financial Cluster”, companies with less than 50 employees attribute greater importance to this factor;
- -
- In the “operational performance” factor, there are differences in the “Resilient Financial Cluster” and the “Strategic Financial Cluster”, with companies that are in the stabilised or declining phase of the life cycle being those that attach greater importance to this factor;
- -
- In the “business relationship with banks” factor, in the “Resilient Financial Cluster”, companies whose life cycle is in the stabilised or declining phases attribute greater importance to this factor;
- -
- In the factor “secondary forms of bank financing”, there are differences in the “Resilient Financial Cluster” and the “Strategic Financial Cluster”, with companies operating in the national market being those that attach greater importance to this factor;
- -
- In the “financing risk analysis” factor, the “Resilient Financial Cluster” presents differences, with companies operating in the local market being those that attach greater importance to this factor.
Practical Implications for Companies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aksoy, Mine, and Mustafa Kemal Yilmaz. 2023. Does board diversity affect the cost of debt financing? Empirical evidence from Turkey. Gender in Management 38: 504–24. [Google Scholar] [CrossRef]
- Almeida, Luís. 2023. Risk and Bankruptcy Research: Mapping the State of the Art. Journal of Risk and Financial Management 16: 361. [Google Scholar] [CrossRef]
- Amarna, Khayria, Raquel Garde Sánchez, Maria Victoria López-Pérez, and Mahmoud Marzouk. 2024. The effect of environmental, social, and governance disclosure and real earning management on the cost of financing. Corporate Social Responsibility and Environmental Management, 1–13. [Google Scholar] [CrossRef]
- Aziz, Sohail, and Ulfat Abbas. 2019. Effect of debt financing on firm performance: A study on non-financial sector of Pakistan. Open Journal of Economics and Commerce 2: 8–15. [Google Scholar] [CrossRef]
- Belkhaoui, Samir, Naif Alsagr, and Stefan F. van Hemmen. 2020. Financing modes, risk, efficiency and profitability in Islamic banks: Modeling for the GCC countries. Cogent Economics & Finance 8: 1750258. [Google Scholar] [CrossRef]
- Bhatia, Prince, and Rahul Kumar. 2023. Do debt, and operating efficiency contributes to corporate performance? International Journal of System Assurance Engineering and Management 15: 1203–9. [Google Scholar] [CrossRef]
- Boshnak, Helmi. 2023. The impact of capital structure on firm performance: Evidence from Saudi-listed firms. International Journal of Disclosure and Governance 20: 15–26. [Google Scholar] [CrossRef]
- Calcagnini, Giorgio, Fabio Farabullini, and Germana Giombini. 2014. The impact of guarantees on bank loan interest rates. Applied Financial Economics 24: 397–412. [Google Scholar] [CrossRef]
- Chai, Nana, Bi Wu, Weiwei Yang, and Baofeng Shi. 2019. A multicriteria approach for modeling small enterprise credit rating: Evidence from China. Emerging Markets Finance and Trade 55: 2523–43. [Google Scholar] [CrossRef]
- Cicogna, Maria Paula Vieira, Rudinei Toneto Junior, and Maurício Ribeiro do Valle. 2007. O impacto da adesão a padrões mais elevados de governança sobre o financiamento empresarial. Revista de Administração 42: 52–63. [Google Scholar]
- Forti, Cristiano Augusto Borges, Fernanda Maciel Peixoto, and Kellen Silva Freitas. 2011. Retenção de caixa, desempenho operacional e valor: Um estudo no mercado de capitais brasileiro. Revista de Contabilidade e Organizações 5: 20–33. [Google Scholar] [CrossRef]
- Ghouma, Hatem, Hamdi Ben-Nasr, and Ruiqian Yan. 2018. Corporate governance and cost of debt financing: Empirical evidence from Canada. The Quarterly Review of Economics and Finance 67: 138–48. [Google Scholar] [CrossRef]
- Gonçalves, Tadeu Junior, Anderson Roberto Pires, and Pedro Borges Junior. 2018. A forma de financiamento das companhias abertas sob os pressupostos da pecking order theory e trade off theory. Revista Evidenciação Contábil & Finanças 6: 101–18. [Google Scholar] [CrossRef]
- Hair, Joseph F., William C. Black, Barry J. Babin, and Rolph E. Anderson. 2014. Multivariate Data Analysis, 7th ed. Edinburgh: Pearson. [Google Scholar]
- Jucá, Michele Nascimento, Anderson Luís Saber Campos, Douglas Dias Bastos, and Eduardo Alexandre Mendes. 2016. Endividamento e estrutura de ativos: Evidências no Brasil. Revista de Finanças Aplicadas 7: 1–19. [Google Scholar]
- Kline, Rex B. 2016. Principles and Practice of Structural Equation Modeling. New York: Guilford Press. [Google Scholar]
- Lemma, Tesfaye T. 2015. Corruption, debt financing and corporate ownership. Journal of Economic Studies 42: 433–61. [Google Scholar] [CrossRef]
- Li, Luya, and Hongxun Li. 2021. Analysis of financing risk and innovation motivation mechanism of financial service industry based on Internet of things. Complexity 2021: 5523290. [Google Scholar] [CrossRef]
- Magnanelli, Barbara Sveva, and Maria Federica Izzo. 2017. Corporate social performance and cost of debt: The relationship. Social Responsibility Journal 13: 250–65. [Google Scholar] [CrossRef]
- Manuel, Benedito, Fernando Oliveira Tavares, and Luís Pacheco. 2018. Decisões de financiamento bancário por parte da banca angolana: O caso do Banco de Poupança e Crédito. e3-Revista de Economia, Empresas e Empreendedores na CPLP 4: 55–80. [Google Scholar] [CrossRef]
- Marôco, João. 2018. Análise Estatística com o SPSS Statistics 25, 7th ed. Lisboa: ReportNumber. [Google Scholar]
- Mayordomo, Sergio, Antonio Moreno, Steven Ongena, and Maria Rodriguez-Moreno. 2021. Bank capital requirements, loan guarantees and firm performance. Journal of Financial Intermediation 45: 100825. [Google Scholar] [CrossRef]
- Mehtap, Ozge, and Ozgur Kokalan. 2013. The relationship between corporate reputation and organizational citizenship behavior: A comparative study on TV companies and banks. Quality & Quantity 47: 3609–19. [Google Scholar] [CrossRef]
- Mura, Ladislav, and Ján Buleca. 2012. Evaluation of financing possibilities of small and medium industrial enterprises. Procedia Economics and Finance 3: 217–22. [Google Scholar]
- Mutamimah, Mutamimah, Mochammad Tholib, and Robiyanto Robiyanto. 2021. Corporate governance, credit risk, and financial literacy for small medium enterprise in Indonesia. Business: Theory and Practice 22: 406–13. [Google Scholar] [CrossRef]
- Myers, Stewart C., and Nicholas S. Majluf. 1984. Corporate financing and investment decisions when firms have information that investors do not have. Journal of Financial Economics 13: 187–221. [Google Scholar] [CrossRef]
- Ogunmokun, Olapeju Comfort, Oluwasoye Mafimisebi, and Demola Obembe. 2024. Bank lending behaviour and small enterprise debt financing. Journal of Entrepreneurship in Emerging Economies 16: 675–97. [Google Scholar] [CrossRef]
- Ono, Arito, and Iichiro Uesugi. 2009. Role of collateral and personal guarantees in relationship lending: Evidence from Japan’s SME loan market. Journal of Money, Credit and Banking 41: 935–60. [Google Scholar] [CrossRef]
- O’Sullivan, Jennifer, Abdullah Mamun, and M. Kabir Hassan. 2016. The relationship between board characteristics and performance of bank holding companies: Before and during the financial crisis. Journal of Economics and Finance 40: 438–71. [Google Scholar] [CrossRef]
- Pacheco, Luís Miguei, Raquel Rosa, and Fernando Oliveira Tavares. 2019. Risco de falência de PME: Evidência no setor da construção em Portugal. Innovar 29: 143–57. [Google Scholar] [CrossRef]
- Rodrigues, Santiago Valcacer, Elton Eustáquio Casagrande, and David Ferreira Lopes Santos. 2018. A interdependência das decisões empresariais de investimento e endividamento na América Latina. Enfoque: Reflexão Contábil 37: 1–20. [Google Scholar] [CrossRef]
- Rosa, Fabio, Giovanni Liberatore, Francesco Mazzi, and Simone Terzani. 2018. The impact of corporate social performance on the cost of debt and access to debt financing for listed European non-financial firms. European Management Journal 36: 519–29. [Google Scholar] [CrossRef]
- Santos, Eulalia, Vasco Tavares, Fernando Oliveira Tavares, and Vanessa Ratten. 2022. How is risk different in family and non-family businesses? A comparative statistical analysis during the COVID-19 pandemic. Journal of Family Business Management 12: 1113–30. [Google Scholar] [CrossRef]
- Soares, Gustavo de Oliveira Godoy, Eduardo Senra Coutinho, and Marcos Antônio de Camargos. 2012. Determinantes do rating de crédito de companhias brasileiras. Contabilidade Vista & Revista 23: 109–43. [Google Scholar]
- Tavares, Fernando Oliveira, Eulália Santos, and Vasco Capela Tavares. 2021. Risk categorization in Portuguese organizations in times of the COVID-19 pandemic—An exploratory statistical analysis. Journal of Entrepreneurship and Public Policy 10: 306–22. [Google Scholar] [CrossRef]
- Tavares, Fernando Oliveira, Eulália Santos, Vasco Capela Tavares, and Vanessa Ratten. 2023. Risk Planning and Management in Portuguese Companies—A Statistical Approach. Journal of Risk and Financial Management 16: 314. [Google Scholar] [CrossRef]
- Tavares, Fernando Oliveira, Luís Pacheco, and Emanuel Ferreira Almeida. 2015. Financiamento das pequenas e médias empresas: Análise das empresas do distrito do Porto em Portugal. Revista de Administração 50: 254–67. [Google Scholar] [CrossRef]
- Ugwueze, Catherine Amaka, C. E. Nwoha, and Uche Lucy Onyekwelu. 2019. Effect of financing decisions on operational performance of pharmaceutical firms in Nigeria. Academic Journal of Current Research 6: 3244–5621. [Google Scholar]
- Uyar, Ali, Nouha Ben Arfa, Cemil Kuzey, and Abdullah S. Karaman. 2024. Do creditors appreciate CSR transparency and credibility in emerging markets? Journal of Accounting Literature ahead-of-print. [Google Scholar] [CrossRef]
- Van Osnabrugge, Mark. 2000. A comparison of business angel and venture capitalist investment procedures: An agency theory-based analysis. Venture Capital: An International Journal of Entrepreneurial Finance 2: 91–109. [Google Scholar] [CrossRef]
- Yazdanfar, Darush, and Peter Öhman. 2015. Debt financing and firm performance: An empirical study based on Swedish data. Journal of Risk Finance 16: 102–18. [Google Scholar] [CrossRef]
- Ye, Zhiwei, Yasir Shahab, Yasir Riaz, and Collins G. Ntim. 2023. Strategic deviation and the cost of debt financing. Economic Modelling 125: 106371. [Google Scholar] [CrossRef]
- Zhang, Wen, Shaoshan Yan, Jian Li, Xin Tian, and Taketoshi Yoshida. 2022. Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data. Transportation Research Part E: Logistics and Transportation Review 158: 102611. [Google Scholar] [CrossRef]
Variables | Categories | n | % |
---|---|---|---|
Number of employees | Less than 10 | 633 | 32.3 |
From 10 to 49 | 991 | 50.6 | |
From 50 to 249 | 275 | 14.1 | |
More than 250 | 58 | 3.0 | |
Sector/area of activity commerce | Business | 522 | 26.7 |
Services | 449 | 22.9 | |
Manufacturing industry | 359 | 18.3 | |
Construction | 343 | 17.5 | |
Tourism | 96 | 4.9 | |
Transport | 68 | 3.5 | |
Restoration | 46 | 2.4 | |
Agriculture | 34 | 1.7 | |
Gas, electricity, water | 27 | 1.4 | |
Extractive industry | 13 | 0.7 | |
Main market where the company has the highest sales volume | National market | 870 | 44.5 |
Regional market | 401 | 20.5 | |
Local market | 346 | 17.7 | |
International market | 340 | 17.3 | |
Type of company | Family | 1328 | 67.9 |
Unfamiliar | 629 | 32.1 | |
Type of society | Quota company | 1603 | 81.9 |
Anonymous society | 349 | 17.8 | |
Cooperative | 3 | 0.2 | |
Limited partnership | 1 | 0.1 | |
Company life cycle phase | Rapid growth | 35 | 1.8 |
Healthy and growing | 776 | 39.7 | |
Stabilised | 967 | 49.4 | |
Decline | 173 | 8.8 | |
Accounts certified by an external entity | Yes | 1247 | 63.7 |
No | 710 | 36.3 |
Loadings | |
---|---|
Factor 1: Business relationship with banks (α = 0.913) | |
R4. Increase negotiating power with banks | 0.792 |
R6. Have the option to choose which bank you want to work with | 0.770 |
R3. Possibility of reducing interest rates charged | 0.756 |
R7. Caution about a financial institution | 0.752 |
R2. Diversity of advice to support the activity | 0.746 |
R5. Possibility of obtaining higher amounts of financing | 0.732 |
R8. Increase acceptance of credit applications | 0.723 |
R1. Variety of products and services offered | 0.718 |
R9. Share the risk across more than one bank | 0.695 |
Factor 2: Financing, life cycle and debt (α = 0.887) | |
F4. The debt capital/own capital ratio of other companies in the same sector of activity | 0.772 |
F5. The business life cycle phase | 0.741 |
F7. The fact that new financing signals to competitors that the company will not reduce installed capacity or production | 0.733 |
F3. The fact that the use of foreign capital is limited provides customers and suppliers with a stable financial situation | 0.720 |
F6. The volatility of cash flows | 0.709 |
F8. A new level of debt signals the company’s ability to grow results | 0.680 |
F1. The fact that the level of debt discourages potential buyers | 0.657 |
F9. The rating classification | 0.649 |
F2. The nature of your business | 0.642 |
Factor 3: Company operational performance (α = 0.849) | |
D3. Standard operating procedures are helpful to employees at work | 0.823 |
D5. Instructions for the operations to be carried out are important for employees at work | 0.818 |
D4. Harmonious working relationships are important to the company | 0.807 |
D2. Company regulations inform employees about what is expected of them | 0.746 |
D1. Details of job requirements and instructions are important | 0.650 |
D6. Preserving public image is one of the company’s main policies | 0.635 |
Factor 4: Guarantees used to obtain bank financing (α = 0.838) | |
G2. Promissory note signed by the company with personal guarantee | 0.784 |
G4. Mutual guarantee | 0.782 |
G1. Declaration signed by your company | 0.731 |
G5. Financing using mutual guarantee | 0.681 |
G3. Mortgage guarantee | 0.645 |
Factor 5: Financing risk analysis (α = 0.820) | |
A2. Analysis of managers’ hobbies | 0.820 |
A3. Way of life of company managers | 0.818 |
A4. Analysis of the political exposure of company managers | 0.707 |
A5. Company succession assured | 0.701 |
A1. Duration of the relationship with suppliers | 0.645 |
Factor 6: Secondary forms of bank financing (α = 0.800) | |
FS2. Loan discount | 0.740 |
FS1. Factoring | 0.738 |
FS3. Discount on promissory notes | 0.733 |
FS5. Confirming | 0.700 |
FS4. Financing/foreign operations | 0.633 |
Clusters | Factors | Type of Company | t-Test | |||||
---|---|---|---|---|---|---|---|---|
Family | Non-Family | |||||||
n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 641 | 3.89 | 0.56 | 305 | 3.86 | 0.57 | 0.663 |
FLCI | 641 | 3.30 | 0.66 | 305 | 3.23 | 0.66 | 1.576 | |
COP | 641 | 4.10 | 0.49 | 305 | 4.08 | 0.48 | 0.574 | |
GUBF | 641 | 2.54 | 1.00 | 305 | 2.47 | 1.00 | 1.022 | |
FRA | 641 | 2.29 | 0.84 | 305 | 2.17 | 0.76 | 2.052 * | |
SFBF | 641 | 1.81 | 0.72 | 305 | 1.90 | 0.70 | −1.843 | |
Cluster of Excellence Operational | NBR | 247 | 2.81 | 1.09 | 141 | 2.98 | 1.00 | −1.517 |
FLCI | 247 | 2.38 | 0.95 | 141 | 2.44 | 0.94 | −0.648 | |
COP | 247 | 3.84 | 0.75 | 141 | 3.94 | 0.67 | −1.350 | |
GUBF | 247 | 1.34 | 0.42 | 141 | 1.36 | 0.50 | −0.466 | |
FRA | 247 | 1.82 | 0.81 | 141 | 1.75 | 0.77 | 0.829 | |
SFBF | 247 | 1.29 | 0.50 | 141 | 1.27 | 0.47 | 0.408 | |
Cluster Financial Strategic | NBR | 440 | 4.09 | 0.50 | 183 | 4.10 | 0.51 | −0.336 |
FLCI | 440 | 3.52 | 0.61 | 183 | 3.51 | 0.63 | 0.155 | |
COP | 440 | 4.09 | 0.59 | 183 | 4.07 | 0.64 | 0.344 | |
GUBF | 440 | 3.52 | 0.66 | 183 | 3.59 | 0.66 | −1.228 | |
FRA | 440 | 3.07 | 0.69 | 183 | 3.15 | 0.75 | −1.204 | |
SFBF | 440 | 2.70 | 0.88 | 183 | 2.94 | 0.96 | −3.022 ** |
Clusters | Factors | Company Age | t-Test | |||||
---|---|---|---|---|---|---|---|---|
Under 25 Years Old | 25 Years or Older | |||||||
n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 571 | 3.88 | 0.58 | 375 | 3.87 | 0.54 | −0.272 |
FLCI | 571 | 3.29 | 0.64 | 375 | 3.26 | 0.68 | −0.638 | |
COP | 571 | 4.09 | 0.49 | 375 | 4.09 | 0.48 | 0.092 | |
GUBF | 571 | 2.52 | 0.98 | 375 | 2.51 | 1.03 | −0.154 | |
FRA | 571 | 2.24 | 0.83 | 375 | 2.27 | 0.79 | 0.576 | |
SFBF | 571 | 1.87 | 0.74 | 375 | 1.80 | 0.67 | −1.585 | |
Cluster of Excellence Operational | NBR | 226 | 2.88 | 1.09 | 162 | 2.87 | 1.03 | −0.079 |
FLCI | 226 | 2.48 | 0.94 | 162 | 2.29 | 0.96 | −1.975 * | |
COP | 226 | 3.86 | 0.71 | 162 | 3.90 | 0.74 | 0.497 | |
GUBF | 226 | 1.37 | 0.47 | 162 | 1.30 | 0.42 | −1.602 | |
FRA | 226 | 1.78 | 0.77 | 162 | 1.82 | 0.83 | 0.461 | |
SFBF | 226 | 1.30 | 0.46 | 162 | 1.26 | 0.53 | −0.805 | |
Cluster Financial Strategic | NBR | 387 | 4.08 | 0.52 | 236 | 4.10 | 0.48 | 0.522 |
FLCI | 387 | 3.53 | 0.60 | 236 | 3.49 | 0.64 | −0.797 | |
COP | 387 | 4.10 | 0.61 | 236 | 4.07 | 0.59 | −0.564 | |
GUBF | 387 | 3.56 | 0.62 | 236 | 3.51 | 0.72 | −0.833 | |
FRA | 387 | 3.11 | 0.71 | 236 | 3.06 | 0.71 | −0.937 | |
SFBF | 387 | 2.83 | 0.93 | 236 | 2.67 | 0.86 | −2.117 * |
Clusters | Factors | Has Accounts Certified by an External Entity | t-Test | |||||
---|---|---|---|---|---|---|---|---|
Yes | No | |||||||
n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 606 | 3.91 | 0.54 | 340 | 3.83 | 0.59 | 1.954 |
FLCI | 606 | 3.30 | 0.63 | 340 | 3.25 | 0.71 | 0.909 | |
COP | 606 | 4.14 | 0.47 | 340 | 4.01 | 0.51 | 3.982 *** | |
GUBF | 606 | 2.50 | 1.01 | 340 | 2.55 | 0.99 | −0.725 | |
FRA | 606 | 2.23 | 0.77 | 340 | 2.28 | 0.89 | −0.880 | |
SFBF | 606 | 1.87 | 0.71 | 340 | 1.79 | 0.72 | 1.841 | |
Cluster of Excellence Operational | NBR | 227 | 2.90 | 1.05 | 161 | 2.84 | 1.08 | 0.512 |
FLCI | 227 | 2.36 | 0.93 | 161 | 2.46 | 0.97 | −1.058 | |
COP | 227 | 3.96 | 0.68 | 161 | 3.75 | 0.77 | 2.840 ** | |
GUBF | 227 | 1.34 | 0.45 | 161 | 1.35 | 0.46 | −0.212 | |
FRA | 227 | 1.82 | 0.78 | 161 | 1.77 | 0.82 | 0.548 | |
SFBF | 227 | 1.29 | 0.52 | 161 | 1.28 | 0.45 | 0.201 | |
Cluster Financial Strategic | NBR | 414 | 4.09 | 0.52 | 209 | 4.10 | 0.46 | −0.298 |
FLCI | 414 | 3.54 | 0.63 | 209 | 3.47 | 0.57 | 1.203 | |
COP | 414 | 4.13 | 0.60 | 209 | 4.01 | 0.60 | 2.273 * | |
GUBF | 414 | 3.55 | 0.67 | 209 | 3.51 | 0.64 | 0.667 | |
FRA | 414 | 3.10 | 0.72 | 209 | 3.07 | 0.69 | 0.541 | |
SFBF | 414 | 2.74 | 0.90 | 209 | 2.82 | 0.92 | −0.970 |
Clusters | Factors | Number of Workers | t-Test | |||||
---|---|---|---|---|---|---|---|---|
Less Than 50 Workers | 50 or More Workers | |||||||
n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 788 | 3.86 | 0.57 | 158 | 3.97 | 0.51 | 2.325 * |
FLCI | 788 | 3.29 | 0.67 | 158 | 3.24 | 0.57 | −0.957 | |
COP | 788 | 4.08 | 0.49 | 158 | 4.15 | 0.47 | 1.600 | |
GUBF | 788 | 2.52 | 0.99 | 158 | 2.52 | 1.04 | −0.053 | |
FRA | 788 | 2.28 | 0.85 | 158 | 2.08 | 0.62 | −3.470 ** | |
SFBF | 788 | 1.84 | 0.72 | 158 | 1.88 | 0.67 | 0.661 | |
Cluster of Excellence Operational | NBR | 326 | 2.84 | 1.08 | 62 | 3.05 | 0.93 | 1.540 |
FLCI | 326 | 2.41 | 0.96 | 62 | 2.32 | 0.91 | −0.694 | |
COP | 326 | 3.86 | 0.74 | 62 | 3.95 | 0.61 | 0.814 | |
GUBF | 326 | 1.35 | 0.47 | 62 | 1.30 | 0.36 | −0.823 | |
FRA | 326 | 1.82 | 0.83 | 62 | 1.67 | 0.56 | −1.790 | |
SFBF | 326 | 1.29 | 0.51 | 62 | 1.24 | 0.36 | −0.979 | |
Cluster Financial Strategic | NBR | 510 | 4.09 | 0.52 | 113 | 4.11 | 0.45 | 0.389 |
FLCI | 510 | 3.51 | 0.62 | 113 | 3.55 | 0.58 | 0.688 | |
COP | 510 | 4.08 | 0.62 | 113 | 4.11 | 0.54 | 0.466 | |
GUBF | 510 | 3.51 | 0.66 | 113 | 3.65 | 0.65 | 2.095 * | |
FRA | 510 | 3.12 | 0.72 | 113 | 2.96 | 0.65 | −2.288 * | |
SFBF | 510 | 2.78 | 0.92 | 113 | 2.74 | 0.83 | −0.338 |
Clusters | Factors | Company Life Cycle Phase | t-Test | |||||
---|---|---|---|---|---|---|---|---|
Fast and Healthy Growth | Stabilised or Declining | |||||||
n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 539 | 3.85 | 0.55 | 405 | 3.92 | 0.58 | −2.010 * |
FLCI | 539 | 3.31 | 0.67 | 405 | 3.25 | 0.64 | 1.376 | |
COP | 539 | 4.05 | 0.48 | 405 | 4.14 | 0.49 | −2.846 ** | |
GUBF | 539 | 2.52 | 1.01 | 405 | 2.52 | 0.99 | −0.002 | |
FRA | 539 | 2.28 | 0.80 | 405 | 2.22 | 0.84 | 1.079 | |
SFBF | 539 | 1.84 | 0.72 | 405 | 1.85 | 0.71 | −0.193 | |
Cluster of Excellence Operational | NBR | 238 | 2.85 | 1.07 | 150 | 2.91 | 1.05 | −0.525 |
FLCI | 238 | 2.47 | 0.96 | 150 | 2.28 | 0.92 | 1.925 | |
COP | 238 | 3.87 | 0.70 | 150 | 3.89 | 0.76 | −0.268 | |
GUBF | 238 | 1.36 | 0.47 | 150 | 1.32 | 0.42 | 0.806 | |
FRA | 238 | 1.80 | 0.83 | 150 | 1.80 | 0.74 | −0.020 | |
SFBF | 238 | 1.30 | 0.52 | 150 | 1.26 | 0.44 | 0.858 | |
Cluster Financial Strategic | NBR | 363 | 4.08 | 0.49 | 256 | 4.11 | 0.53 | −0.845 |
FLCI | 363 | 3.53 | 0.63 | 256 | 3.50 | 0.59 | 0.522 | |
COP | 363 | 4.04 | 0.61 | 256 | 4.15 | 0.59 | −2.327 * | |
GUBF | 363 | 3.61 | 0.67 | 256 | 3.44 | 0.63 | 3.157 ** | |
FRA | 363 | 3.11 | 0.74 | 256 | 3.07 | 0.66 | 0.656 | |
SFBF | 363 | 2.82 | 0.94 | 256 | 2.70 | 0.86 | 1.638 |
Markets in Which Companies Operate | Welch’s Test | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clusters | Factors | Local Market | Regional Market | National Market | International Market | |||||||||
n | M | SD | n | M | SD | n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 158 | 3.83 | 0.61 | 208 | 3.88 | 0.57 | 408 | 3.89 | 0.55 | 172 | 3.91 | 0.55 | 0.636 |
FLCI | 158 | 3.24 | 0.75 | 208 | 3.29 | 0.62 | 408 | 3.30 | 0.65 | 172 | 3.27 | 0.61 | 0.273 | |
COP | 158 | 4.06 | 0.53 | 208 | 4.07 | 0.45 | 408 | 4.12 | 0.47 | 172 | 4.07 | 0.52 | 1.078 | |
GUBF | 158 | 2.37 | 0.98 | 208 | 2.48 | 1.01 | 408 | 2.54 | 0.97 | 172 | 2.66 | 1.05 | 2.396 | |
FRA | 158 | 2.39 | 0.89 | 208 | 2.37 | 0.87 | 408 | 2.19 | 0.79 | 172 | 2.13 | 0.71 | 5.203 ** | |
SFBF | 158 | 1.67 | 0.71 | 208 | 1.75 | 0.70 | 408 | 1.94 | 0.70 | 172 | 1.88 | 0.73 | 7.357 *** | |
Cluster of Excellence Operational | NBR | 82 | 2.85 | 1.11 | 85 | 2.91 | 1.08 | 149 | 2.88 | 1.04 | 72 | 2.85 | 1.05 | 0.063 |
FLCI | 82 | 2.41 | 0.99 | 85 | 2.28 | 0.89 | 149 | 2.45 | 0.98 | 72 | 2.43 | 0.90 | 0.664 | |
COP | 82 | 3.98 | 0.64 | 85 | 3.85 | 0.58 | 149 | 3.87 | 0.75 | 72 | 3.82 | 0.90 | 0.856 | |
GUBF | 82 | 1.37 | 0.42 | 85 | 1.28 | 0.42 | 149 | 1.34 | 0.49 | 72 | 1.38 | 0.45 | 0.834 | |
FRA | 82 | 1.77 | 0.80 | 85 | 1.88 | 0.80 | 149 | 1.82 | 0.83 | 72 | 1.69 | 0.70 | 0.926 | |
SFBF | 82 | 1.25 | 0.43 | 85 | 1.34 | 0.59 | 149 | 1.30 | 0.49 | 72 | 1.21 | 0.41 | 1.212 | |
Cluster Financial Strategic | NBR | 106 | 4.11 | 0.55 | 108 | 4.09 | 0.52 | 313 | 4.10 | 0.49 | 96 | 4.05 | 0.47 | 0.268 |
FLCI | 106 | 3.43 | 0.60 | 108 | 3.45 | 0.55 | 313 | 3.55 | 0.63 | 96 | 3.56 | 0.64 | 1.586 | |
COP | 106 | 4.04 | 0.65 | 108 | 4.07 | 0.59 | 313 | 4.10 | 0.60 | 96 | 4.10 | 0.57 | 0.310 | |
GUBF | 106 | 3.58 | 0.66 | 108 | 3.46 | 0.59 | 313 | 3.54 | 0.69 | 96 | 3.56 | 0.61 | 0.861 | |
FRA | 106 | 3.19 | 0.72 | 108 | 3.09 | 0.73 | 313 | 3.10 | 0.69 | 96 | 2.97 | 0.71 | 1.527 | |
SFBF | 106 | 2.67 | 0.86 | 108 | 2.60 | 0.85 | 313 | 2.88 | 0.94 | 96 | 2.72 | 0.88 | 3.380 * |
Clusters | Factors | Type of Company | t-Test | |||||
---|---|---|---|---|---|---|---|---|
Limited Liability Company | Anonymous Society | |||||||
n | M | SD | n | M | SD | |||
Cluster Financial Resilient | NBR | 763 | 3.87 | 0.58 | 181 | 3.93 | 0.49 | −1.592 |
FLCI | 763 | 3.27 | 0.67 | 181 | 3.35 | 0.58 | −1.594 | |
COP | 763 | 4.09 | 0.49 | 181 | 4.11 | 0.47 | −0.579 | |
GUBF | 763 | 2.51 | 0.98 | 181 | 2.56 | 1.08 | −0.559 | |
FRA | 763 | 2.26 | 0.84 | 181 | 2.20 | 0.69 | 1.057 | |
SFBF | 763 | 1.85 | 0.73 | 181 | 1.82 | 0.66 | 0.441 | |
Cluster of Excellence Operational | NBR | 322 | 2.84 | 1.09 | 64 | 3.07 | 0.92 | −1.730 |
FLCI | 322 | 2.38 | 0.97 | 64 | 2.51 | 0.85 | −1.085 | |
COP | 322 | 3.85 | 0.73 | 64 | 3.99 | 0.71 | −1.345 | |
GUBF | 322 | 1.35 | 0.46 | 64 | 1.31 | 0.40 | 0.721 | |
FRA | 322 | 1.82 | 0.84 | 64 | 1.71 | 0.50 | 1.483 | |
SFBF | 322 | 1.30 | 0.51 | 64 | 1.23 | 0.36 | 1.329 | |
Cluster Financial Strategic | NBR | 518 | 4.08 | 0.51 | 104 | 4.15 | 0.46 | −1.214 |
FLCI | 518 | 3.51 | 0.60 | 104 | 3.55 | 0.64 | −0.605 | |
COP | 518 | 4.09 | 0.58 | 104 | 4.05 | 0.70 | 0.687 | |
GUBF | 518 | 3.52 | 0.64 | 104 | 3.61 | 0.75 | −1.168 | |
FRA | 518 | 3.11 | 0.71 | 104 | 3.01 | 0.72 | 1.360 | |
SFBF | 518 | 2.76 | 0.91 | 104 | 2.78 | 0.89 | −0.163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, F.; Santos, E.; Oliveira, M.F.; Almeida, L. Determinants of Corporate Indebtedness in Portugal: An Analysis of Financial Behaviour Clusters. Risks 2024, 12, 91. https://doi.org/10.3390/risks12060091
Tavares F, Santos E, Oliveira MF, Almeida L. Determinants of Corporate Indebtedness in Portugal: An Analysis of Financial Behaviour Clusters. Risks. 2024; 12(6):91. https://doi.org/10.3390/risks12060091
Chicago/Turabian StyleTavares, Fernando, Eulália Santos, Margarida Freitas Oliveira, and Luís Almeida. 2024. "Determinants of Corporate Indebtedness in Portugal: An Analysis of Financial Behaviour Clusters" Risks 12, no. 6: 91. https://doi.org/10.3390/risks12060091
APA StyleTavares, F., Santos, E., Oliveira, M. F., & Almeida, L. (2024). Determinants of Corporate Indebtedness in Portugal: An Analysis of Financial Behaviour Clusters. Risks, 12(6), 91. https://doi.org/10.3390/risks12060091