Deep Learning Option Price Movement
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Price-Volume (Parametric) Models
1.1.2. Machine Learning Models
2. Data and Variables
2.1. Data and Preprocessing
2.2. Variable
2.3. Label Construction
3. Models and Evaluation Metrics
3.1. Long Short-Term Memory Model
3.2. Benchmark Models
3.2.1. Decision Tree and Random Forest
3.2.2. Multinomial Logistic Regression
3.3. Evaluation Metrics
4. Results
4.1. Baseline Experiment Results
4.2. Cross-Asset Performance
4.3. Feature Importance
4.4. A Trading Simulation
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Both ETFs are intended to track two widely-used stock indices in China. SSE 50 Index is the stock index of Shanghai Stock Exchange, representing the top 50 companies by “float-adjusted” capitalization. The CSI 300 is a broader capitalization-weighted stock market index designed to replicate the performance of the top 300 stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange. The former has a much higher trading volume than the latter. In this paper, we only use the 300 ETF options from the Shanghai Stock Exchange. |
2 | The authors have made the tool available as a python package at https://github.com/marcotcr/lime (accessed on 1 December 2023). |
References
- Arroyo, Alvaro, Alvaro Cartea, Fernando Moreno-Pino, and Stefan Zohren. 2024. Deep attentive survival analysis in limit order books: Estimating fill probabilities with convolutional-transformers. Quantitative Finance 24: 35–57. [Google Scholar] [CrossRef]
- Bouchaud, Jean-Philippe, Julius Bonart, Jonathan Donier, and Martin Gould. 2018. Trades, Quotes and Prices: Financial Markets under the Microscope. Cambridge: Cambridge University Press. [Google Scholar]
- Cao, Charles, Oliver Hansch, and Xiaoxin Wang. 2009. The information content of an open limit-order book. Journal of Futures Markets 29: 16–41. [Google Scholar] [CrossRef]
- Cao, Jie, and Bing Han. 2013. Cross section of option returns and idiosyncratic stock volatility. Journal of Financial Economics 108: 231–49. [Google Scholar] [CrossRef]
- Chan, Kalok, and Wai-Ming Fong. 2000. Trade size, order imbalance, and the volatility–volume relation. Journal of Financial Economics 57: 247–73. [Google Scholar] [CrossRef]
- Chordia, Tarun, and Avanidhar Subrahmanyam. 2004. Order imbalance and individual stock returns: Theory and evidence. Journal of Financial Economics 72: 485–518. [Google Scholar] [CrossRef]
- Chordia, Tarun, Richard Roll, and Avanidhar Subrahmanyam. 2002. Order imbalance, liquidity, and market returns. Journal of Financial Economics 65: 111–30. [Google Scholar] [CrossRef]
- Cont, Rama, Arseniy Kukanov, and Sasha Stoikov. 2014. The price impact of order book events. Journal of Financial Econometrics 12: 47–88. [Google Scholar] [CrossRef]
- Cont, Rama, Mihai Cucuringu, and Chao Zhang. 2023. Cross-impact of order flow imbalance in equity markets. Quantitative Finance 23: 1373–93. [Google Scholar] [CrossRef]
- Easley, David, Marcos López de Prado, Maureen O’Hara, and Zhibai Zhang. 2021. Microstructure in the machine age. The Review of Financial Studies 34: 3316–63. [Google Scholar] [CrossRef]
- Goettler, Ronald L., Christine A. Parlour, and Uday Rajan. 2005. Equilibrium in a dynamic limit order market. The Journal of Finance 60: 2149–92. [Google Scholar] [CrossRef]
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge: MIT Press. [Google Scholar]
- Gu, Shihao, Bryan Kelly, and Dacheng Xiu. 2020. Empirical asset pricing via machine learning. The Review of Financial Studies 33: 2223–73. [Google Scholar] [CrossRef]
- Harris, Lawrence E., and Venkatesh Panchapagesan. 2005. The information content of the limit order book: Evidence from nyse specialist trading decisions. Journal of Financial Markets 8: 25–67. [Google Scholar] [CrossRef]
- Hastie, Trevor, Robert Tibshirani, and Friedman Jerome. 2008. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Berlin and Heidelberg: Springer. [Google Scholar]
- Huang, Charles, Weifeng Ge, Hongsong Chou, and Xin Du. 2021. Benchmark dataset for short-term market prediction of limit order book in china markets. The Journal of Financial Data Science 3: 171–83. [Google Scholar] [CrossRef]
- Ito, Katsuki, Hitoshi Iima, and Yoshihiro Kitamura. 2022. LSTM forecasting foreign exchange rates using limit order book. Finance Research Letters 47: 102517. [Google Scholar] [CrossRef]
- Jiang, Minqi, Jiapeng Liu, Lu Zhang, and Chunyu Liu. 2020. An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Physica A: Statistical Mechanics and its Applications 541: 122272. [Google Scholar] [CrossRef]
- Kelly, Bryan T., Semyon Malamud, and Kangying Zhou. 2023. The virtue of complexity in return prediction. The Journal of Finance 79: 459–503. [Google Scholar] [CrossRef]
- Kolm, Petter N., Jeremy Turiel, and Nicholas Westray. 2023. Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book. Mathematical Finance 33: 1044–81. [Google Scholar] [CrossRef]
- Liu, Qingfu, Zhenyi Tao, Yiuman Tse, and Chuanjie Wang. 2022. Stock market prediction with deep learning: The case of China. Finance Research Letters 46: 102209. [Google Scholar] [CrossRef]
- Lucchese, Lorenzo, Mikko S. Pakkanen, and Almut E. D. Veraart. 2024. The short-term predictability of returns in order book markets: A deep learning perspective. International Journal of Forecasting. in press. [Google Scholar] [CrossRef]
- Nian, Ke, Thomas F. Coleman, and Yuying Li. 2021. Learning sequential option hedging models from market data. Journal of Banking & Finance 133: 106277. [Google Scholar]
- Ntakaris, Adamantios, Giorgio Mirone, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. 2019. Feature engineering for mid-price prediction with deep learning. IEEE Access 7: 82390–412. [Google Scholar] [CrossRef]
- Ntakaris, Adamantios, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. 2020. Mid-price prediction based on machine learning methods with technical and quantitative indicators. PLoS ONE 15: e0234107. [Google Scholar] [CrossRef]
- Ntakaris, Adamantios, Martin Magris, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. 2018. Benchmark dataset for mid-price forecasting of limit order book data with machine learning methods. Journal of Forecasting 37: 852–66. [Google Scholar] [CrossRef]
- O’hara, Maureen. 1998. Market Microstructure Theory. Hoboken: John Wiley & Sons. [Google Scholar]
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “Why should i trust you?” explaining the predictions of any classifier. Paper presented at the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13–17; pp. 1135–44. [Google Scholar]
- Roşu, Ioanid. 2009. A dynamic model of the limit order book. The Review of Financial Studies 22: 4601–41. [Google Scholar] [CrossRef]
- Sidogi, Thendo, Wilson Tsakane Mongwe, Rendani Mbuvha, Peter Olukanmi, and Tshilidzi Marwala. 2023. A signature transform of limit order book data for stock price prediction. IEEE Access 11: 70598–609. [Google Scholar] [CrossRef]
- Sirignano, Justin A. 2019. Deep learning for limit order books. Quantitative Finance 19: 549–70. [Google Scholar] [CrossRef]
- Sirignano, Justin, and Rama Cont. 2019. Universal features of price formation in financial markets: Perspectives from deep learning. Quantitative Finance 19: 1449–59. [Google Scholar] [CrossRef]
- Tashiro, Daigo, Hiroyasu Matsushima, Kiyoshi Izumi, and Hiroki Sakaji. 2019. Encoding of high-frequency order information and prediction of short-term stock price by deep learning. Quantitative Finance 19: 1499–506. [Google Scholar] [CrossRef]
- Tsantekidis, Avraam, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. 2020. Using deep learning for price prediction by exploiting stationary limit order book features. Applied Soft Computing 93: 106401. [Google Scholar] [CrossRef]
- Wang, Weiguan, and Johannes Ruf. 2022. A note on spurious model selection. Quantitative Finance 22: 1797–800. [Google Scholar] [CrossRef]
- Zhang, Zihao, Bryan Lim, and Stefan Zohren. 2021. Deep learning for market by order data. Applied Mathematical Finance 28: 79–95. [Google Scholar] [CrossRef]
- Zhang, Zihao, Stefan Zohren, and Stephen Roberts. 2019. Deeplob: Deep convolutional neural networks for limit order books. IEEE Transactions on Signal Processing 67: 3001–12. [Google Scholar] [CrossRef]
Set | Time Length | Time Range | No. of Options | Sample Size (10 K) |
---|---|---|---|---|
Training | 16 | 2020.01–2021.04 | 2096 | 11,533 |
Validation | 4 | 2021.05–2021.8 | 572 | 2906 |
Test | 4 | 2021.9–2021.12 | 379 | 1994 |
Mean | Std | Min | 25% | 50% | 75% | Max | |
---|---|---|---|---|---|---|---|
askprice1 | 0.099 | 0.109 | 0.000 | 0.027 | 0.068 | 0.134 | 1.426 |
askprice2 | 0.099 | 0.109 | 0.000 | 0.027 | 0.068 | 0.134 | 1.428 |
askprice3 | 0.100 | 0.109 | 0.000 | 0.028 | 0.068 | 0.134 | 1.430 |
askprice4 | 0.100 | 0.109 | 0.000 | 0.028 | 0.068 | 0.134 | 1.433 |
askprice5 | 0.100 | 0.109 | 0.000 | 0.028 | 0.069 | 0.135 | 1.434 |
bidprice1 | 0.099 | 0.108 | 0.000 | 0.027 | 0.068 | 0.133 | 1.424 |
bidprice2 | 0.098 | 0.108 | 0.000 | 0.027 | 0.068 | 0.133 | 1.423 |
bidprice3 | 0.098 | 0.108 | 0.000 | 0.027 | 0.067 | 0.133 | 1.421 |
bidprice4 | 0.098 | 0.108 | 0.000 | 0.027 | 0.067 | 0.133 | 1.420 |
bidprice5 | 0.098 | 0.107 | 0.000 | 0.027 | 0.067 | 0.132 | 1.418 |
asksize1 | 31.222 | 75.964 | 1.000 | 9.000 | 15.000 | 32.000 | 3674.000 |
asksize2 | 37.760 | 69.594 | 0.000 | 10.000 | 20.000 | 43.000 | 2816.000 |
asksize3 | 37.631 | 67.262 | 0.000 | 10.000 | 20.000 | 41.000 | 2421.000 |
asksize4 | 35.498 | 68.580 | 0.000 | 10.000 | 20.000 | 40.000 | 3920.000 |
asksize5 | 33.144 | 63.252 | 0.000 | 10.000 | 20.000 | 37.000 | 4521.000 |
bidsize1 | 32.778 | 89.341 | 0.000 | 9.000 | 15.000 | 34.000 | 4885.000 |
bidsize2 | 41.880 | 110.408 | 0.000 | 10.000 | 20.000 | 45.000 | 10,580.000 |
bidsize3 | 41.233 | 103.241 | 0.000 | 10.000 | 20.000 | 43.000 | 9136.000 |
bidsize4 | 38.526 | 85.076 | 0.000 | 10.000 | 20.000 | 40.000 | 4577.000 |
bidsize5 | 36.176 | 73.618 | 0.000 | 10.000 | 20.000 | 39.000 | 2747.000 |
Parameter | Lag Order | Learning Rate | Batch Size | Epoch | Hidden States |
---|---|---|---|---|---|
Optimal value | 50 | 56 | 40 | ||
Tuning range | 0–50 | – | – | 50–60 | 20–50 |
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
Decision tree | 42.38% | 42.41% | 42.38% | 42.35% |
Random forest | 50.53% | 50.90% | 50.53% | 50.61% |
Logistic regression | 51.59% | 52.02% | 51.59% | 51.68% |
LSTM(1) | 53.36% | 51.12% | 50.73% | 50.75% |
LSTM(5) | 53.26% | 51.17% | 50.77% | 50.80% |
LSTM(10) | 53.31% | 51.07% | 50.75% | 50.79% |
LSTM(20) | 53.45% | 50.97% | 50.70% | 50.68% |
LSTM(50) | 53.47% | 52.55% | 51.91% | 52.07% |
Set | Underlying Asset | Time Range | Number of Options | Samples (10 K) |
---|---|---|---|---|
Training | 50 ETF | 2020.01–2021.04 | 752 | 5464 |
Validation | 50 ETF | 2021.05–2021.08 | 214 | 1423 |
Test | 300 ETF | 2021.09–2021.12 | 92 | 781 |
Metric | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
Decision tree | 41.78% | 41.81% | 41.78% | 41.75% |
Random forest | 49.65% | 49.91% | 49.65% | 49.63% |
Logistic regression | 51.11% | 51.32% | 51.11% | 51.12% |
LSTM(20) | 52.72% | 51.43% | 51.28% | 51.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xu, J. Deep Learning Option Price Movement. Risks 2024, 12, 93. https://doi.org/10.3390/risks12060093
Wang W, Xu J. Deep Learning Option Price Movement. Risks. 2024; 12(6):93. https://doi.org/10.3390/risks12060093
Chicago/Turabian StyleWang, Weiguan, and Jia Xu. 2024. "Deep Learning Option Price Movement" Risks 12, no. 6: 93. https://doi.org/10.3390/risks12060093
APA StyleWang, W., & Xu, J. (2024). Deep Learning Option Price Movement. Risks, 12(6), 93. https://doi.org/10.3390/risks12060093