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Abstract: Understanding how price-volume information determines future price movement is
important for market makers who frequently place orders on both buy and sell sides, and for traders
to split meta-orders to reduce price impact. Given the complex non-linear nature of the problem, we
consider the prediction of the movement direction of the mid-price on an option order book, using
machine learning tools. The applicability of such tools on the options market is currently missing.
On an intraday tick-level dataset of options on an exchange traded fund from the Chinese market,
we apply a variety of machine learning methods, including decision tree, random forest, logistic
regression, and long short-term memory neural network. As machine learning models become more
complex, they can extract deeper hidden relationship from input features, which classic market
microstructure models struggle to deal with. We discover that the price movement is predictable,
deep neural networks with time-lagged features perform better than all other simpler models, and
this ability is universal and shared across assets. Using an interpretable model-agnostic tool, we find
that the first two levels of features are the most important for prediction. The findings of this article
encourage researchers as well as practitioners to explore more sophisticated models and use more
relevant features.

Keywords: limit order book; model agnostic; neural networks; options

JEL Classification: G13; G120

1. Introduction

Much of the market microstructure research is about understanding how trading
affects price and liquidity dynamics (Easley et al. 2021). Such understandings are also
meaningful for market makers who regularly place limit orders based on their prediction of
critical microstructure characteristics to make profit and reduce market risk. The continuing
adoption of electronic trading and its faster frequency have accumulated a massive amount
of data, for which simple market microstructure models may not be applicable. By studying
a tick-level intraday data, this article intends to shed light on how prices are impacted by
real-time trading activities in a high-frequency trading environment.

To this end, we demonstrate in this article how machine learning can provide a
different viewpoint on the market microstructure for option markets. Machine learning has
shown great success in many prediction tasks since it can extract a non-linear and complex
relationship given a large amount of data. In this article, we investigate the predictability of
option price movement based on limit order book (LOB). Options are financial derivatives
that offer the holder the right to buy/sell an asset at a certain strike price sometime in
the future. Hence, in contrast to equities, they have a few characteristics that makes their
price movement prediction more difficult. First, the prices of different options are more
closely related since they are written on the same underlying asset (for index options). This
could provide an additional source of predictability. Second, options are much less traded
than equities, hence having a different market microstructure. Simply put, it is worthwhile
investigating the applicability of machine learning on this asset class.
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In this paper, we take the prices and volumes of the five levels of buy and sell orders
in the limit order book as predictive variables. The dataset being studied comprises tick-
level intraday data, as they reveal subtle market behaviors within shorter periods that
are often not observable in traditional daily data. The directions of price movement of
corresponding options are the dependent variable. Thus, a three-class classification problem
is investigated.

This formulation has been adopted frequently in the literature. Ntakaris et al. (2018)
offer the first publicly available benchmark dataset of high-frequency limit order markets
for mid-price prediction. They extract normalized data representations of time series data
for five stocks from the Nasdaq stock market for 10 consecutive days. This dataset is used
later in a few studies, such as that of Zhang et al. (2019). Easley et al. (2021) construct
several classic market microstructure measures and show that they continue to provide
insights into the price process in current complex markets. They only use random forests to
handle classification problems of changes in various market microstructure indicators on
futures data, including changes in bid–ask spread, volatility, and liquidity. They find that
microstructure features with high explanatory power do not always lead to high predictive
power. Instead of constructing a classification problem, Kolm et al. (2023) use deep learning
in forecasting high-frequency returns at multiple horizons for 115 stocks traded on Nasdaq
using order book information at the most granular level. They basically predict a return
term structure using a long short-term memory neural network and hand-crafted features
called order-imbalance flows. Their results show that “information-rich” stocks can be
predicted more accurately.

This article contributes to the rapidly growing literature on applying deep learning
models to financial data (Gu et al. 2020; Liu et al. 2022). The novelty of this paper lies in
three aspects. First, previous papers mostly focus on applying machine learning to primary
asset limit order book, such as equities (see Kolm et al. (2023); Sirignano and Cont (2019);
Zhang et al. (2019)) or foreign exchanges (see Ito et al. (2022)). However, the predictability
of a derivative limit option book has not been well studied yet. The outcome of this study
encourages researchers to build more informative features to improve the performance
of prediction. Second, we confirm that complex models such as deep neural networks
are able to predict the mid-price movement better than simple models, also highlighted
by Kelly et al. (2023) in the case of equity market timing. Third, we apply an interpretability
analysis on the importance of features to provide a machine learning viewpoint on the
market microstructure. Overall, this work is an empirical exploration of the challenges
brought about by high-frequency trading and the application of machine learning.

Our main findings are as follows. First, complex deep learning models predict the
price trends of options more accurately than simpler models. A three-layer long short-term
memory (LSTM) model with multiple time-lagged features achieves the best performance
among all candidate models. Second, we discover that the universality of the predictive
model exists, i.e., a model train on one asset can be deployed to predict on another asset
in the spirit of transfer learning. This property allows one to train a complex model for
a new product for which the data are not rich yet. Last, we apply a local interpretable
model-agnostic tool to provide an explanation for the prediction of a deep neural network
model. It turns out that the first two levels of features are more important than the rest.
This observation aligns with common knowledge and enhances our confidence in deep
learning models. A trading simulation shows that predictions based on deep learning
models result in economic gains with a minor drawdown.

1.1. Literature Review

Predicting asset price movement has been an important part of market microstructure
research. This literature review introduces related works in two categories, price-volume
(parametric) models and machine learning models.
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1.1.1. Price-Volume (Parametric) Models

Market microstructure models trade off between execution price and waiting cost using
limit order. On the theoretical side, O’hara (1998) is a classic introductory textbook. Goettler
et al. (2005) model a dynamic limit order market as a stochastic sequential game with
rational traders. They find transaction costs paid by market order submitters are negative
on average, and are negatively correlated with spread. Roşu (2009) propose a model of
an order-driven market where fully strategic, symmetrically informed liquidity traders
dynamically choose between limit and market orders. It suggests that high competition
leads to smaller spread and lower price impact, buy and sell orders can cluster away from
bid–ask spread, and the bid and ask price shows comovement.

On the empirical side, there is ample evidence in the literature that price move-
ment is predictable with price-volume information, particularly order imbalance. For
instance, Chordia et al. (2002) investigate the role of the aggregate daily order imbalance,
buy order less sell orders. They find that it increases following market declines and vice
verse. Order imbalance in either direction reduces liquidity. In addition, market returns
are strongly affected by contemporaneous and lagged order imbalances. Chordia and
Subrahmanyam (2004) further investigate the relation between order imbalance and daily
return of stocks. They find that price pressures caused by autocorrelated imbalances lead to
a positive relation between returns and lagged imbalances. However, this relation reverses
sign after controlling for the current imbalance.

Traditionally, researchers use price-volume information at a daily resolution (Jiang
et al. 2020). As the high-frequency limit order book data have become more readily avail-
able and of higher quality, they are now an important source of information. Harris and
Panchapagesan (2005) investigate the informativeness of the limit order book regarding
future price changes and whether specialists utilize this information in their trading. They
conclude that the limit order book provides insights into future price movements. Accord-
ing to Cao et al. (2009), about 78% of the information is from the best bid and ask price,
while the other higher levels offer the remaining 22%. According to Cont et al. (2014),
the influence of order book events on price changes over short time frames is primarily
due to the order flow imbalance (OFI), which is the disparity between the supply and
demand at the best bid and ask prices. Their results reveal a linear relationship between
OFI and price changes, with the slope being inversely related to market depth. Rather than
focusing on the price-volume relationship, Chan and Fong (2000) explore how the number
of trades, trade sizes, and order imbalance (initiated by buyers versus sellers) contribute to
explaining the volatility–volume relationship in a sample of NYSE and Nasdaq stocks.

1.1.2. Machine Learning Models

High-frequency limit order book datasets are inherently of a vast volume, allowing
for the deployment of machine learning and deep learning models which are successful in
discovering hidden relationship in the context of big data. Compared to the linear feature
such as order flow imbalance, this non-parametric approach of modeling can learn a non-
linear representation. Recently, the most widely used models include the long short-term
memory neural network and decision tree. Some researchers have been using raw order
book features for predicting price movement, see Sirignano and Cont (2019); Zhang et al.
(2019), while others advocate using hand-crafted features that are proven to be useful in the
literature (Easley et al. 2021; Kolm et al. 2023). The former allows various machine learning
models to extract representation that has never been discovered before, while the latter
essentially imposes regularization based on domain knowledge.

Multiple types of machine learning models have been applied to order book prediction
problems. Easley et al. (2021) use random forest. Sirignano (2019); Sirignano and Cont
(2019) apply feed-forward neural networks and compare with the vector auto-regression
model. Tashiro et al. (2019) propose to utilize market order together with limit order,
and use the convolutional neural network to predict stock price trend. Zhang et al. (2019)
propose to combine convolutional and long short-term memory neural networks, also used
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by Tsantekidis et al. (2020). Sidogi et al. (2023) propose to use a signature transformation
for dimension reduction and combine with several machine learning method. To facilitate
the training and increase information content, Ntakaris et al. (2019, 2020) conduct large-
scale feature engineering to include more than 270 technical features for the stock trend
prediction task. Huang et al. (2021) kindly provide a benchmark order book dataset for a
few thousand Chinese stocks, and apply neural network models on it. Other related works
can be found in Arroyo et al. (2024); Lucchese et al. (2024); Zhang et al. (2021).

The advancement of machine learning allows to study cross-asset impact in a non-
parametric way. Cross-asset impact refers to the fact that price impact of trading on one
asset can affect another. Easley et al. (2021) point out that “There is no market microstructure
theory of how these cross-asset effects should, or even could, occur, and there are many
plausible alternatives”. As an initial exploration, they include in the feature set for the
classification problem not only the own microstructure features of an asset but also a shared
subset of assets chosen to represent actively traded futures. Their findings indicate that a
small number of cross-market features are beneficial for the prediction of multiple output
variables, and asset own features are not always the most important ones. Sirignano and
Cont (2019) take a data enlargement approach, with aggregate samples from multiple
assets, and show that the performance of machine learning models improve. Hence,
the relationship between price change and predictive characteristics learned from one asset
can also be applied to another asset.

The rest of the paper is organized as follows: Section 1.1 provides a brief literature
review, Section 2 describes the dataset and cleaning steps. Section 3 introduces various
models used for the forecasting task. Section 4 presents the results. Section 5 concludes.

2. Data and Variables
2.1. Data and Preprocessing

The data used in this study consist of a ahigh-frequency options limit order book
obtained from the Wind Database. The dataset includes two types of equity exchange
traded fund (ETF) options; they are options on 50 ETF (code: 510050) and on 300 ETF
(Shanghai Stock Exchange, code: 510300), respectively1. In the Chinese market, they are
among the most liquid equity options. These two option limit order book data provide a
valuable source for understanding market price formation. Our data cover a time period of
24 months, from January 2020 to December 2021. Each sample in the dataset represents
an instantaneous snapshot of multiple levels of limit order book information of an option.
Figure 1 illustrates such a sample. It shows the bid price, bid size, ask price, and ask size of
five levels, resulting in a total of 20 features.

Figure 1. A sample of the order book. The ‘Asks’ side represents sell orders, while the ‘Bids’ side
represents buy orders. ‘Size’ indicates the number of options available for sale/purchase at a given
price, and ‘Price’ represents the order’s buying or selling price. The best bid and ask refer to the
highest bid and lowest ask prices, respectively.

To enhance the quality of the high-frequency order book data, we implement several
filters. First, we remove samples that have a best ask price lower than the best bid price,
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which are caused by instantaneous market fluctuation. Additionally, we eliminate samples
with a trading volume of zero (Cao and Han 2013), which are typically generated by
changes at deeper levels of the order book. These changes do not correspond to actual
buy and sell orders and thus have a relatively mild impact on the mid-price movement.
Including these samples may lead to model instability. Lastly, we exclude data for options
that have not yet expired by the end of the time period covered by our dataset. In the end,
we retain approximately 150 million samples for subsequent analysis and modeling.

Improper partitioning of the dataset may lead to information leakage issues, especially
by violating the time series structure; see an example in Wang and Ruf (2022). We divide
the dataset into three non-overlapping time periods to maintain the temporal order of the
data, with training, validation, and test sets spanning 16, 4, and 4 months. The sizes of the
datasets are shown in Table 1. The model is first trained on the training set to learn the
mapping from the feature of the data to the target value. During training, the validation
set is used to assess the model’s performance and determine the optimal parameters.
The validation set also helps prevent the model from overfitting to the training data, thus
enhancing its generalization ability. The test set is used for the final evaluation of the
model’s performance.

Table 1. Dataset partition and size.

Set Time Length Time Range No. of Options Sample Size (10 K)

Training 16 2020.01–2021.04 2096 11,533
Validation 4 2021.05–2021.8 572 2906

Test 4 2021.9–2021.12 379 1994

Table 2 lists the data descriptive statistics, after cleaning. Since the entire dataset is too
large, with about 150 samples, only a random batch of data samples (32,768 samples) is
selected here for brevity. The overall data distribution is similar. The dataset has twenty
variables. It is convenient to include lagged features in deep learning models, hence the
total number of features for such models may add up to hundreds.

Table 2. Descriptive statistics of variables. There are twenty variables in total, being five levels of ask
price, bid price, ask size and bid size. Here, only a random batch of samples (32,768 samples) is used
to calculate descriptive statistics The overall distribution is similar.

Mean Std Min 25% 50% 75% Max

askprice1 0.099 0.109 0.000 0.027 0.068 0.134 1.426
askprice2 0.099 0.109 0.000 0.027 0.068 0.134 1.428
askprice3 0.100 0.109 0.000 0.028 0.068 0.134 1.430
askprice4 0.100 0.109 0.000 0.028 0.068 0.134 1.433
askprice5 0.100 0.109 0.000 0.028 0.069 0.135 1.434
bidprice1 0.099 0.108 0.000 0.027 0.068 0.133 1.424
bidprice2 0.098 0.108 0.000 0.027 0.068 0.133 1.423
bidprice3 0.098 0.108 0.000 0.027 0.067 0.133 1.421
bidprice4 0.098 0.108 0.000 0.027 0.067 0.133 1.420
bidprice5 0.098 0.107 0.000 0.027 0.067 0.132 1.418
asksize1 31.222 75.964 1.000 9.000 15.000 32.000 3674.000
asksize2 37.760 69.594 0.000 10.000 20.000 43.000 2816.000
asksize3 37.631 67.262 0.000 10.000 20.000 41.000 2421.000
asksize4 35.498 68.580 0.000 10.000 20.000 40.000 3920.000
asksize5 33.144 63.252 0.000 10.000 20.000 37.000 4521.000
bidsize1 32.778 89.341 0.000 9.000 15.000 34.000 4885.000
bidsize2 41.880 110.408 0.000 10.000 20.000 45.000 10,580.000
bidsize3 41.233 103.241 0.000 10.000 20.000 43.000 9136.000
bidsize4 38.526 85.076 0.000 10.000 20.000 40.000 4577.000
bidsize5 36.176 73.618 0.000 10.000 20.000 39.000 2747.000
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2.2. Variable

We consider the information from the five levels of the order book, comprising a total
of 20 features, as the state of the order book. Define the state of the order book of an option
at time t as

LOBt =
(

pa
1(t), va

1(t), pb
1(t), vb

1(t), . . . , pa
5(t), va

5(t), pb
5(t), vb

5(t)
)
∈ R20,

where pa
i , pb

i , va
i , and vb

i represents the ask price, bid price, ask size, and bid size at level
i of the order book, respectively. To take into account the temporal correlation in asset
price movements, we construct lagged time series for each sample. The lag order p is a
hyper-parameter to be tuned. Hence, each sample Xi is given by

Xi =
(
LOBt−p+1, LOBt−p+2, . . . , LOBt

)
.

This time series is the actual input feature of each sample i.

2.3. Label Construction

The mid price is given by the average of the best bid price and the best ask price,
mt =

1
2

(
pa

1(t) + pb
1(t)

)
. Our target variable is the direction of the next movement of the

mid-price. There exist various ways of defining such a variable in the literature. By doing
so, one actually introduces two hyper-parameters that require tuning which could make
the performance dependent on these quantities, sometimes to a large extent. To avoid
introducing extra hyper-parameters, we adopt a straight-forward definition in this paper.
Define the difference between mid-prices of two consecutive orders as dt+1 := mt+1 − mt.
When dt+1 > 0, we classify it as an uptrend in the next moment’s mid-price. When
dt+1 = 0, the mid-price remains unchanged, and when dt+1 < 0, it is a downtrend. When
constructing labels, we convert these three categories into one-hot coding as the outputs.

In some works such as Sirignano and Cont (2019), researchers eliminate samples
where the mid-price remains unchanged when cleaning data. This approach simplifies the
prediction problem from a three-class to a binary classification problem. The fact that the
majority of changes in the high-frequency order book appear in the higher levels and thus
do not lead to actual mid-price changes makes the movement direction highly imbalanced.
It is difficult for deep learning models to perform well in such an imbalanced dataset.
Removing the unchanging mid-price part can effectively avoid this issue. However, this
approach has a critical drawback: the prediction is thus conditional on a change happening.
In other words, this model is only applicable when the agent knows how to predict that
there will be a change in the subsequent orders. Bouchaud et al. (2018) also point out that
changes in the order books’ shape also affect prices in addition to actual trades. Indeed,
we will see that our dataset is well balanced in terms of the three labels, ruling out the
necessity of removing stationary samples.

To obtain a better feeling of the dataset, Figure 2 shows the price trend of an option
(code ‘1000191’) on 5 January 2020. We see that the direction of the price movement changes
frequently, and the duration of each direction also varies. The update time distances
of option order book information are rather irregular, from a fraction of a second to
several seconds.

Figure 3 shows histograms of proportions for each of the three label categories across
all option contracts. The left graph represents the distribution for downtrends, the middle
for unchanged prices, and the right for uptrends. We calculate the overall number of
downward, stationary, and upward movements as percentages of all samples, and show
these quantities in the bottom of each panel of Figure 3. The downtrends and uptrends
account for 39.95% and 36.62% of the total sample, while the stationary samples account
for 26.43%. According to the above statistics and analysis, there is no evident imbalance in
the data.



Risks 2024, 12, 93 7 of 17

Figure 2. Option price trend and direction of change chart. This chart displays the price trend of the
option with the code ‘10001919’ on 5 January 2020. The x-axis represents the sequence of trades for
the option throughout the day, and the y-axis indicates the price. The curve represents the actual price
path of the option. The blue shaded area in the graph indicates that the price remains unchanged in
the next moment, light blue signifies a price increase, and yellow represents a price decrease.

(a) Downtrend (36.95%) (b) Stationary (26.43%) (c) Uptrend (36.62%)
Figure 3. Histogram of the proportions of the three types of labels. The panel (a) graph accounts for
downtrends, (b) for being stationary, and (c) for uptrends. In each graph, the x-axis represents the
proportion of the corresponding labels for each option relative to the total number of samples for that
option. The y-axis then shows the percentage of such options relative to the total number of options.
For instance, if 3% of options have 40% of their next moment’s price movements as downtrends, then
this is reflected by the bar (40%, 3%) on the left panel.

3. Models and Evaluation Metrics

In this section, we introduce various machine learning and deep learning models that
will be used later for the prediction task. They include decision tree, random forest, logistic
regression and long-short term neural networks.

3.1. Long Short-Term Memory Model

As the implementation of this model is well established and the relevant literature
is readily accessible, we will only provide a brief description here; for a more detailed
introduction, readers can refer to Goodfellow et al. (2016). LSTM models are composed of
numerous units, each consisting of a cell, an input gate, an output gate, and a forget gate.
The expressions for these components are given by the following formulas:

ft = sigmoid(W f xt + U f ht−1 + b f ),

it = sigmoid(Wixt + Uiht−1 + bi),

ot = sigmoid(Woxt + Uoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc),

ht = ot ◦ tanh(ct).

In these formulas, xt represents the input vector to the unit, ht the cell state, ft the
activation vector of the forget gate, it the activation vector of the input gate, ot the activation
vector of the output gate, and ct the hidden state vector. The activation functions for the
input, output, and forget gates are sigmoid function, which monotonically map inputs
to interval (0, 1). The symbol ◦ denotes element-wise multiplication. Information in the
LSTM model is stored in the cell state h and hidden state c, where the former represents
short-term memory and the latter long-term memory in the model.
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Figure 4 shows the input data and LSTM structure. The left side of the figure illus-
trates the input data, where each sample is composed of the current state of the order
book and multiple past states. The right panel shows the LSTM structure. Our network
consists of three LSTM layers with 40 nodes, and two fully connected layers with 50 nodes.
Before entering the LSTM layers, we apply batch normalization to adjust the mean and
variance of each batch, a technique that accelerates neural network training and enhances
model generalization.

We use cross-entropy as the loss function and Adam optimizer to train the neural
network. To improve the performance, we tune hyper-parameters based on the model’s
performance on the validation set. The range and optimal values of hyper-parameters are
listed in Table 3. The optimal values are chosen such that deviating from these values on
either side leads to worse performance on the validation set. Due to the computational
constraints, we choose a relatively larger batch size to speed up model training. The model
in this paper is implemented using Pytorch and runs on an NVIDIA RTX4090 GPU. Each
training of LSTM with twenty lagged features takes roughly 48 h.

Table 3. Hyper-parameters of LSTM.

Parameter Lag Order Learning Rate Batch Size Epoch Hidden States

Optimal value 50 10−3 216 56 40
Tuning range 0–50 10−2–10−4 28–216 50–60 20–50

Figure 4. Input data and LSTM neural network structure. The (left panel) displays the state of the
limit order book at a specific moment and its preceding 10 moments. Each graph’s horizontal axis
represents the volume of orders waiting to be traded, and the vertical axis shows different levels
of buy and sell prices. The (right panel) shows the LSTM structure used in our experiments. BN
represents the batch normalization layer, and the three LSTM labels indicate the three layers of LSTM.
The number 20 indicates that the input data comprise twenty features, and 40 represents the size
of the hidden states in the LSTM model. The dense layer is a fully connected layer. The output
activation function is softmax.

3.2. Benchmark Models

In this section, we introduce benchmark models to provide a baseline for predicting
mid-price movements. These models are typically simpler than the stacked LSTM model,
with fewer parameters and less complexity. They also fit more rapidly, without the need for
lengthy gradient descent methods, parallel computing frameworks, or specialized hardware
such as GPUs. The benchmark models used in this paper include the decision tree, random
forest, and multiclass logistic regression. All the three models can be implemented with the
scikit-learn package in Python.
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3.2.1. Decision Tree and Random Forest

Decision tree models have more straightforward decision rules and are thus considered
‘white-box’. Figure 5a shows a schematic plot of decision tree on a three-class classification
problem. A decision tree recursively partitions the input space into regions based on feature
values and fits a simple model on each region. A partition corresponds to a decision node.
In a node m, representing a region Rm with Nm observations, let

p̂mk =
1

Nm
∑

xi∈Rm

I(yi = k),

be the proportion of class k observations in node m. Then, the observations are classified
to the majority class. Classification trees are optimized by minimizing the Gini index.
For more details on decision trees, we refer to Hastie et al. (2008).

Decision tree are prone to overfitting. Their size depends on the preset tree depth.
Excessive depth can lead to overly fine segmentation of the observation space, resulting in
poor performance on test data. One regularization approach is to train multiple decision
trees to form a random forest. In the prediction phase, the majority voting method is used
to determine the forest’s output label, i.e., the most common label among the base decision
trees. In this paper, we set the number of trees to be 100.

(a) Decision tree (b) Multinomial logistic regression
Figure 5. Decision tree and logistic regression. The panel (a) panel shows the structure of a simple
three-level decision tree model. Yellow circles represent internal nodes, i.e., splitting rules. Blue
rectangles are leaf nodes, representing model outcomes. The panel (b) shows the classification results
of the multinomial logistic regression model. Each colour of the markers represents a category. Each
line corresponds to a decision boundary.

3.2.2. Multinomial Logistic Regression

The third model is multinomial logistic regression. It calculates the probability of each
input sample belonging to each category using a linear function and softmax function, then
selects the category with the highest probability as the prediction result.

The model has the form

log
P(y = k|x)
P(y = K|x) = βT

k x

for each class k = 1, . . . , K. The model is specified in terms of K − 1 log-odds, hence
summing up to one. Logistic regression models are usually fit by maximum likelihood.
Again, we refer to Hastie et al. (2008) for an introduction. Figure 5b shows a schematic plot
of the logistic regression.
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3.3. Evaluation Metrics

The most commonly used criterion of model selection for a classification task is
accuracy. It measures the ratio of samples whose predicted labels match the true ones,
expressed as

N

∑
i=1

1(ŷi = yi)/N,

where yi and ŷi represent the true and predicted labels of the i-th sample, respectively, N
denotes the total number of samples, and 1 denotes the indicator function. Easley et al.
(2021) have used this criterion to select a model as well as to determine feature importance.
The higher the accuracy, the better the model identifies correct labels.

While accuracy is the criterion for model selection, we also report precision, recall,
and the F1 score to better understand performance. Let TP denotes true positive samples,
FP false positive, FN false negative, and TN true negative. Then, precision is defined as
the percentage of true positive among all predicted positive samples, and recall is the
percentage of true positive among all actual positive samples:

precision =
TP

TP + FP
, recall =

TP
TP + FN

.

The F1 score can be interpreted as a harmonic mean of the precision and recall, given by

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
.

Although these three metrics were originally designed for binary classification prob-
lems, we can independently calculate these metrics for each label category and then use the
macro average to compute the three final metrics. We shall see below that these measures
choose the same model as the accuracy criterion. Last, we evaluate using the confusion
matrix to reveal the performance for each individual class. For an introduction to these
metrics, refer to Goodfellow et al. (2016).

4. Results

In this section, we present our empirical results in three parts. Section 4.1 discusses
the various model performance on a dataset that includes both types of options. Section 4.2
investigates the universal ability of predictive models that are trained on one asset but
applied on another asset. Using a linear approximation method, Section 4.3 intends to
unveil the predictive power of deep neural networks by investigating the importance of
features and their financial meaning.

4.1. Baseline Experiment Results

In the first experiment, we use the entire dataset that includes both the options on
50 ETF and on 300 ETF. It is split into training, validation, and test sets with the lengths of
each being 16, 4, and 4 months. The sizes of each dataset are given in Table 1.

We compare several benchmark models that include the decision tree, random forest,
multinomial logistic regression, against the LSTM models. Since the benchmark models
cannot inherently deal with the time series structure, we do not feed time-lagged features for
them. The LSTM model instead is intentionally designed to utilize long-term information;
hence, we compare the same LSTM model with lagged features of different steps. To fairly
compare benchmark models with the LSTM, we also evaluate the LSTM(1) model that is
trained without lagged features.

Table 4 shows the out-of-sample comparison results of the LSTM model with 1, 5, 10,
20, and 50 time steps against other methods with one time step. We roughly arrange the
models in ascending order of performance. Since the three types of labels are roughly evenly
distributed, a simplistic model would achieve 36% accuracy by predicting all samples to
be upward, according to the label distribution in Figure 3. Hence, all the models tested
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here have exceeded this simplistic approach and demonstrated their abilities to predict
the movement direction of the option limit order book to different extents. The LSTM
models have slightly better results with increasing time order of the samples. We can see
that the LSTM(50) model outperforms all other models in terms of all metrics. Figure 6a
displays the LSTM(50) loss on the training and validation sets as we train for 60 epochs,
and Figure 6b shows the accuracy on these sets. As the training reaches the end, the model
loss stabilizes and the accuracy peaks, leading us to retain this optimal model. Since the
training of LSTM (50) takes about 48 h, and the performance in terms of accuracy is not
much higher than LSTM(20), we decide to choose the latter for efficiency. Among the three
benchmark models, the multinomial logistic regression achieves 51.59% accuracy, about
two percent worse than the LSTM(1) model. This shows that the non-linear transformation
in the LSTM cell helps improve the prediction ability.

(a) LSTM model loss chart (b) LSTM model accuracy chart
Figure 6. Loss function and accuracy.

Table 4. Predictive performance of various models on out-of-sample (test set) for all options. The de-
cision tree, random forest, logistic regression, and LSTM(1) models have used one time step feature
to predict the incoming moment, while LSTM(5), LSTM(10), LSTM(20) and LSTM(50) use the past
five, ten, twenty, and fifty lagged time steps.

Model Accuracy Precision Recall F1

Decision tree 42.38% 42.41% 42.38% 42.35%
Random forest 50.53% 50.90% 50.53% 50.61%
Logistic regression 51.59% 52.02% 51.59% 51.68%
LSTM(1) 53.36% 51.12% 50.73% 50.75%
LSTM(5) 53.26% 51.17% 50.77% 50.80%
LSTM(10) 53.31% 51.07% 50.75% 50.79%
LSTM(20) 53.45% 50.97% 50.70% 50.68%
LSTM(50) 53.47% 52.55% 51.91% 52.07%

To further explore our conclusions, we present the confusion matrix of the predic-
tion of the LSTM(50) model on all samples of the test set in the left panel of Figure 7.
From the figure, it is evident that 50% or more of the actual price movement directions
were correctly predicted.

Apart from the overall performance, we further investigate whether the optimal model
can predict well for each option in the test set, shown in the right panel of Figure 7. We
can see that the accuracy distribution has a mean well above 50%. Even in the worst case,
the model can still predict about 40% for an individual option, indicating that the model
performs consistently across options in the test data without extreme high or low outliers.
Hence, we have confidence that the LSTM (50) model does not predict awfully in extreme
market scenarios.
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Figure 7. LSTM(50) model confusion matrix (left) and accuracy distribution of individual options
(right). For the left panel, the vertical axis represent the actual direction distribution of price changes,
and the horizontal axis shows the predicted direction by the model. The right panel plots the
histogram of the prediction accuracy of the model on each individual option.

4.2. Cross-Asset Performance

Deep learning models tend to perform better when more data are collected for training.
This inspires researchers to look for a universal property, which means that a predictive
model trained on one asset can be applied on another asset. For instance, Sirignano and
Cont (2019) find that a model trained on a large pool of stocks can outperform stock-specific
models with high confidence, even when the pool of stocks exhibit great heterogeneity. If
such universality exists, one can first train a predictive model on a large number of assets
for which data are rich, and then apply to a specific asset for which the data are scarce. This
kind of transfer learning methodology could be useful for markets in which new stocks or
assets are issued often.

To test this universality, we divide the option data based on different underlying
assets. We use the 50 ETF options for training and validation, and the 300 ETF options for
out-of-sample prediction. Again, we split according to the time series order for different
underlying assets. The summary of partition is given in Table 5.

Table 5. Dataset division for options with different underlyings.

Set Underlying Asset Time Range Number of Options Samples (10 K)

Training 50 ETF 2020.01–2021.04 752 5464
Validation 50 ETF 2021.05–2021.08 214 1423
Test 300 ETF 2021.09–2021.12 92 781

The model performance is shown in Table 6. We ignore the other LSTM models except
the LSTM(20) for simplicity as well as efficiency. We can see that the LSTM(20) model still
performs the best on the test set, with an accuracy of 52.72%. Note that all models perform
slightly worse than using all data. For the LSTM(20), its decrease is about one percent,
similar to the decision tree and random forest. The multiclass logistic regression model
has the smallest decrease in accuracy. An explanation for this is that the logistic regression
model is the simplest among all, thus showing less variance. We can conclude that there
exists a universality in the option limit order book, providing evidence for promoting the
transfer learning methodology.
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Table 6. Cross-asset predictive performance. See the caption of Table 4 for an explanation. We ignore
the LSTM model of other number of lagged features except 20, for the sake of simplicity.

Metric Accuracy Precision Recall F1

Decision tree 41.78% 41.81% 41.78% 41.75%
Random forest 49.65% 49.91% 49.65% 49.63%
Logistic regression 51.11% 51.32% 51.11% 51.12%
LSTM(20) 52.72% 51.43% 51.28% 51.33%

4.3. Feature Importance

So far, we have compared the deep neural networks with white-box models such as
decision trees in terms of performance, and show that the more complicated models are
advantageous. However, this comparison does not investigate the complicated models
themselves, i.e., we do not know how the complicated model makes the decision. If we can
understand the relationship between the input components and model predictions, we can
compare these relationships with our domain knowledge to decide whether we can accept
or reject the predictions. This insight is also important in finance research.

To calculate the importance of features, we apply the LIME (Local Interpretable Model-
agnostic Explanations2) proposed by Ribeiro et al. (2016) to explain complex models that
are typically hard to interpret, such as deep neural networks. The implementation process
is as follows. First, we select a sample and generate a set of “similar” data points around
this sample. Then, we feed these newly generated data points into the original model
to observe how the model predictions change with slight variations in the input. Next,
LIME fits a simple, locally approximate, and highly interpretable model, such as linear
regressions, using these similar samples and their corresponding outputs from the original
model. Finally, this simple model reveals the importance of different features of the sample
to the prediction.

Figure 8 shows the importance of twenty features for a sample, displaying how the
LSTM reacts to the given inputs. In the figure, a blue bar indicates a positive influence of the
feature on the corresponding class, while a orange bar means a negative effect. The length
of the bars represents the magnitude of influence. One can see that the low-level features,
such as the first and second level sizes and prices, have more influence on the prediction,
while the rest are minor. This observation aligns well with our common understanding on
the market microstructure, making the predictions more credible. Although we have only
shown the explanation for a particular sample, this observation holds as more samples are
tested, which is not presented here for brevity.

Figure 8. The importance of each feature for the LSTM model. The feature importance is calculated for
each label class independently, hence there are three panels. The blue bars mean that the features have
positive effects on the corresponding label, and the orange bars mean negative effects. The predicted
label is stationary.
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4.4. A Trading Simulation

Having demonstrated the predictive performance of various models, we aim to test
their practicability in terms of economic terms. In this subsection, we use a trading strategy
based on predictions of the best performing model, the LSTM model. The number of
feature time lags is 50.

We set the number of options being traded to one. In practice, one can optimize this
quantity according to market conditions, including liquidity, limit order book depth, and
so on. This further improves the performance of any trading strategy. For simplicity, we
choose the unit size so that our strategy is not affected by the market impact issue.

Our strategy is as follows. We buy one unit of options when the model predicts that
the mid-price will increase. The option is sold when the model predicts the downtrend.
Otherwise, no action is taken. Following Zhang et al. (2019), we assume mid-trade, where
mid-prices are the execution price. This corresponds to a trading style where one enters the
trade passively and exits aggressively.

Figure 9 displays the cumulative returns of trading sixteen options individually, accord-
ing to our previously designed strategy. All the plots show positive returns. Among them,
some return curves increase steadily, while others exhibit fluctuations. Most profit curves
are not completely linear, with some experiencing accelerated profit growth or slowdowns
at specific times. To see the overall performance, Figure 10 presents the average return, max-
imal drawdown, and individual profit per trade in the three panels, respectively. The top
panel suggests that the average profit is smoothly growing with little fluctuation.The mid-
dle graph depicts the maximal drawdown rate of the strategy, with a maximum rate as
little as −0.14%. The bottom graph shows the return rate for each transaction. It indicates
that positive returns, both in frequency and magnitude, far exceed the negative ones.

Figure 9. This chart presents the cumulative returns of sixteen options traded according to our
designed strategy. Each sub-figure’s horizontal axis represents time, and the vertical axis represents
the return rate, with the title of each graph being the option code traded. For simplicity, we multiplied
all return rates by 100, meaning a value of 20 in the chart corresponds to an actual return rate of 20%.
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Figure 10. Overall cumulative return (top), maximal drawdown (middle), and individual re-
turn (bottom).

5. Conclusions and Discussion

We investigate the ability of recurrent neural networks in option price movement
prediction, and compare it with that of other classification models, leading to the following
conclusions. First, deep neural networks are superior in predictive ability compared to
other supervised machine learning methods and traditional linear classifiers. Second,
there exists a universal relationship in price formation common to all options. Third, we
confirm that the low-level features contribute more to determining the movement direction.
Our major contribution is discovering the predictability of the short-term price trend in a
derivative market, and the advantage of complex models and more features.

Given different market characteristics, this article concurs with much of the existing
literature in that the superior performance of the deep learning model in predicting short-
term price trends still holds in the Chinese option market, similar to Sirignano and Cont
(2019) for the stock market and Easley et al. (2021) for the future market. The fact that
the performance gradually improves as more lagged features are used in neural network
models also confirms the observations in Cont et al. (2023) and Nian et al. (2021). It actually
leads one to consider using dimension reduction approaches on the input feature space for
better representation to further improve prediction.

Our findings are also meaningful for practitioners, especially market makers who
regularly place orders based on their predictions. First, this article further encourages them
to deploy deep learning methods in trading. Second, the cross-asset predictability provide
a way for them to build trading strategies when new products are issued to the market and
few data are available. Last, due to the fact that performance improves as more data are
used, it encourages practitioners to use a larger amount and a greater variety of data.

This paper has a few limitations, which are left for future research. First, although our
experimental results show that deep learning algorithms perform well in predicting option
prices, to determine whether this predictability can form a truly profitable trading strategy,
more considerations should be taken, such as transaction fees, commissions, margins,
etc. To deal with these, one should consider a better label construction, or optimizing
transaction cost during model training. Second, one may consider including hand-crafted
features found meaningful in the existing literature and testing their importance.
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Notes
1 Both ETFs are intended to track two widely-used stock indices in China. SSE 50 Index is the stock index of Shanghai Stock

Exchange, representing the top 50 companies by “float-adjusted” capitalization. The CSI 300 is a broader capitalization-weighted
stock market index designed to replicate the performance of the top 300 stocks traded on the Shanghai Stock Exchange and the
Shenzhen Stock Exchange. The former has a much higher trading volume than the latter. In this paper, we only use the 300 ETF
options from the Shanghai Stock Exchange.

2 The authors have made the tool available as a python package at https://github.com/marcotcr/lime (accessed on 1 Decem-
ber 2023).
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