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Abstract: The Danish fire loss dataset records commercial fire losses under three insurance coverages:
building, contents, and profits. Existing research has primarily focused on the heavy-tail behaviour
of the losses but ignored the relationship among different insurance coverages. In this paper, we
aim to model the aggregate loss for all three coverages. To study the pairwise dependence of claims
from all types of coverage, an independent model, a hierarchical model, and some copula-based
models are proposed for the frequency component. Meanwhile, we applied composite distributions
to capture the heavy-tailed severity component. It is shown that consideration of dependence for
the multi-peril frequencies (i) significantly enhances model goodness-of-fit and (ii) provides more
accurate risk measures of the aggregated losses for all types of coverage in total.

Keywords: dependence modelling; ratemaking; multi-peril insurance; heavy-tail distributions;
composite models; copulas; binomial thinning

1. Introduction

Insurance provides financial compensation to individuals or companies after a partic-
ular event occurs. Basically, the insurance business relies on the diversification effects after
the risks of the policyholders are pooled together and supported by collected premiums
from the policyholders, which are primarily determined by the expected amount of claims
from each of the policyholders. In this regard, there are two components to be considered
for effective risk management purposes: the heavy-tail behaviour of insurance claims and
the possible dependence among different insurance coverages. Heavy-tail behaviour can
affect the effectiveness of risk mitigation as the risk pooling is inherently based on the total
expected claim amounts, whereas an excessively large claim could dampen the solvency
of the insurance portfolio due to the heavy-tail behaviour. Such impacts could be more
substantial if the insurance portfolio provides multiple types of coverage and the claims
from different types of coverage are positively correlated. In this paper, we focus on a
reinsurance dataset, Danish multi-peril commercial fire loss, aiming to incorporate the
dependency among different insurance coverages and heavy-tailed losses for modelling
the monthly aggregate loss for the company.

In this regard, there have been many approaches that could handle heavy-tail be-
haviours of insurance claims. One example is the peak-over-threshold (POT) approach.
However, for a reinsurance company, it is important to consider the financial loss in the
entire range instead of focusing on the extreme cases. Additionally, a finite mixture model
can be used to handle heavy-tail behaviours, which is a linear combination of multiple
distributions such as (Hong and Martin 2018; Miljkovic and Grün 2016). A unique advan-
tage of such models is the ability to construct a multimodal distribution. Different from
finite mixture models, a composite model splices and combines random variables (usually
continuous random variables) with the consideration of continuity and differentiability
at the splicing points. It allows the fitting of different distributions with desirable distri-
butional properties on certain ranges of data, especially to accommodate the heavy-tail
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nature of the data. For example, (Cooray and Cheng 2015; Pigeon and Denuit 2011) focus
on composite lognormal–Pareto models, and (Scollnik and Sun 2012) applied composite
Weibull–Pareto models. By considering the model complexity and ability to capture the
realistic loss behaviour, we utilize composite models for the loss severities (claim amounts)
in this paper.

In addition to the heavy-tail, the dependency among risks is another unignorable
behaviour. Two different methods have been applied in this study: the hierarchical and
the copula-based modelling frameworks. With the multilevel modelling technique, the
hierarchical modelling framework bridges the relationship among different events by
sharing the belief that risks from a common environment are not independently distributed.
For instance, (Fung et al. 2023) proposed a hierarchical modelling approach that models the
number of certain climate events and the associated claim counts subsequently. Recently,
(Jeong 2024) considered a multivariate Tweedie distribution where the correlated random
effects are modelled only with their moments. An alternative way of studying dependency
is the copula method. This methodology allows to flexibly connect random variables
using a dependent structure. The authors of (Lee and Shi 2019) suggested a copula-based
collective risk model for describing various dependencies in longitudinal insurance claims
data. The authors of (Oh et al. 2021) provided a copula-based collective risk model for
microlevel multi-year claims data. The authors of (Jeong et al. 2023) considered a factor
copula model to capture dependence among claim counts from multiple lines of business.

There are existing studies in the literature that analyze the heavy-tailed behaviour of
Danish fire losses. For example, (McNeil 1997) applied the generalized Pareto distribution
for the total losses for all coverages and tested the goodness-of-fit. Additionally, (Resnick
1997) suggested some alternative methodologies to study the tail behaviour. However, there
is a lack of studies that focus on the dependency among losses under different coverages.
They are needed, from the practice perspective, in order to appropriately price and set
reserves for multi-peril insurance products. We conduct a comprehensive study to address
both issues for effective risk management purposes regarding the aggregate Danish fire
loss on a monthly basis. More specifically, under the framework of collective risk models,
we model the claim frequency from various types of insurance coverage first and then
study the aggregate loss by adding the losses from all insurance coverages and using the
composite model for loss amounts.

In this study, we propose three different types of frequency models: a fully indepen-
dent model as a benchmark model, a hierarchical model, and some copula-based models
to model the frequency component. The hierarchical model and copula-based models
proposed incorporate the dependency among different coverages. Meanwhile, several
two-component composite models are implemented to model the severity component.
After conducting statistical and risk analyses, by comparing with the benchmark model,
the fully independent model, we conclude that the models with dependency structure
significantly improve model goodness-of-fit and provide more accurate risk measures of the
aggregate losses for all types of coverages in total. However, there are limitations regarding
our proposed models. Our proposed models do not consider the dependency between
the frequency and severity. In the literature, for example, (Vernic et al. 2021) proposed a
Sarmanov distribution for modelling dependence between the frequency and the average
severity of insurance claims. Additionally, there could be models other than copula ones to
model the dependence between the claim counts of different types.

The remainder of this article is organized as follows. Section 2 introduces the dataset
that motivates our research. Section 3 provides a statistical framework to model the de-
pendent claim frequency from multiple types of insurance coverage. Section 4 provides a
framework for the severity component to capture the heavy-tail behaviour of insurance
claims. Section 5 provides the estimation results from different models, associated with
their implications in risk management. Section 6 concludes this article.
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2. Data Exploration

We start with the introduction of a dataset of Danish multi-peril fire losses, which is
available in an R library, CASdataset. It was recorded by the Denmark’s Copenhagen Rein-
surance Company and contains 2167 commercial fire loss records from 1980 to 1990. Each
recorded claim includes the loss amounts of three sections: building, contents, and profits,
which are adjusted by inflation using 1985 as the base year. Below, a few rows of the data
are provided. The building, contents, and profits columns show the Danish Krone losses
in millions and the total column is the sum of the three. Table 1 shows the first 5 rows of
the dataset.

Table 1. Excerpt from the Danish Fire Dataset.

Date Building Contents Profits Total

3 January 1980 1.09809663 0.58565150 0.00000000 1.683748
4 January 1980 1.75695461 0.33674960 0.00000000 2.093704
5 January 1980 1.73258126 0.00000000 0.00000000 1.732581
7 January 1980 0.00000000 1.30537600 0.47437775 1.779754
7 January 1980 1.24450952 3.36749600 0.00000000 4.612006

We recall that we are interested in analyzing the Danish reinsurance aggregate loss
on a monthly basis. The collective risk modelling framework is utilized for each coverage
to model the total loss for a single coverage. Then, the adding-up of the losses from three
coverages is the aggregate loss we are interested in. In this regard, we aggregate the
132 months claim numbers to obtain the observations using the following notations:

• Mt: Number of reported accidents during month t = 1, . . . , 132;
• Njt: Number of claims from the jth lines of insurance during month t, where j = 1, 2, 3

represent the building, contents, and profits;
• Yjtk: kth individual loss amounts from jth line of insurance during month t for

k = 1, . . . , Njt;
• Sjt: Aggregate loss amount from the jth line of insurance during month t, which is

defined as

Sjt :=
Njt

∑
k=1

Yjtk, Njt > 0 (1)

and 0 otherwise. We use a compound risk model (CRM) to describe Sjt;
• St: Aggregate loss for all lines of insurance during month t, which is defined as

S•t := S1t + S2t + S3t. (2)

For the jth lines of insurance, j = 1 represents the damage to the building, j = 2
is the related contents, and j = 3 stands for the profit line. Since we aggregate the data
monthly, we consider whether we could assume that the claim numbers S1t, S2t, and S3t
are time-independent. Figure 1 shows the boxplots of the claim numbers in three insurance
lines for different months.

The plots show no significant seasonal effect. We also checked that claims in the current
month do not affect claims in the following month with a separate exploratory analysis
not included in this article. Therefore, it could be innocuous to assume that S1, S2, S3, and
S• are the aggregate claim random variables that we are interested in, where S1t, S2t, S3t,
and S•t are i.i.d. samples of S1, S2, S3, and S•, respectively. However, we can detect some
dependence among the claim numbers from three lines of businesses.

We calculate the Pearson correlation coefficient for any two lines of claim numbers.
The claim numbers of buildings are highly related to the contents. The Pearson coefficient is
0.876580. For the contents and profits coverage, the coefficient is 0.7454898. The relationship
between the buildings and profits is not as strong as the others, and the coefficient is



Risks 2024, 12, 97 4 of 17

0.574442. Overall, this exploratory analysis shows the necessity of modelling dependence
among the claim counts from multiple coverage.

Figure 1. Exploration of seasonal effects with the Danish reinsurance dataset.

It is known that the losses in property insurance are mostly heavy-tailed, whereby the
given data is not exceptional. In this regard, (McNeil 1997; Resnick 1997) worked on the
extreme value analyses using this dataset, where they applied the peak-over-threshold and
estimated the parameters to implement generalized Pareto distributions. In each business
line, we observe several data points that have relatively large losses. In Table 2, for all
business lines, the averages of the observed losses are higher than the corresponding
third quarters.

Table 2. Summary of loss amount for three business lines.

Source Min. 1st Qu. Median Mean 3rd Qu. Max.

Building 0.02319 0.96618 1.32013 1.98668 1.97860 152.41321
Contents 0.00083 0.29000 0.57570 1.70178 1.44648 132.01320

Profits 0.00408 0.10011 0.26619 0.85180 0.67929 61.93265

3. Dependence Modelling for Multivariate Claim Frequencies

To model possible dependence among the claim frequencies from the three types of
coverage, we consider three types of models: a fully independent model (Section 3.1),
a binomial thinning model (Section 3.2), and copula-based models (Section 3.3). The in-
dependent model is used as a benchmark model for comparison. Other models consider
the dependence among the claim numbers in different lines. The binomial thinning model
utilizes a hierarchical framework to model such a dependence. However, it only allows
fixed dependency structures between any two margins. Copula-based models are used to
construct the joint distribution flexibly.
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3.1. Benchmark Model: Independent Frequency Model

The fully independent frequency model assumes independent relationships among the
margins of the frequencies (and, subsequently, severities) from multiple types of coverage.

We recall that the claim numbers data are over-dispersed. To capture this behaviour,
we model the number of building, content, and profit claims as well as the number of
reported accidents using negative binomial random variables, N1, N2, N3, and M, respec-
tively, instead of using the Poisson distribution that implicitly assumes equi-dispersion.
Negative binomial also performs better than Poisson in terms of in-sample goodness-of-fit
measures such as AIC, BIC, and the log-likelihood in our dataset. For all j = 1, 2, 3, we
assume Nj ∼ NB(λj, rj) and M ∼ NB(λ, r) with the following parameterization:

fNj(Nj = nj) =
Γ(rj + nj)

Γ(rj)Γ(nj + 1)

(
λj

rj + λj

)nj
(

rj

rj + λj

)rj

, (3)

fM(M = m) =
Γ(r + m)!

Γ(r)Γ(m + 1)

(
λ

r + λ

)m( r
r + λ

)r
, (4)

where r and rj are the size parameters of the negative binomial distributions. Instead
of using the probability as the second parameter, we use λj and λ, which stand for the
means of the random variables Nj and M. The likelihood function of the negative binomial
parameters is given by:

L(θ|D) =
132

∏
t=1

fN1,N2,N3,M(N1t, N2t, N3t, Mt; θ)

ind.
=

132

∏
t=1

fM(M; r, λ) · fN1(N1t; r1, λ1) · fN2(N2t; r2, λ2) · fN3(N3t; r3, λ3) (5)

=
132

∏
t=1


[

Γ(r + mt)

Γ(mt + 1)Γ(r)
λmt

(r + λ)r+mt

]
·

3

∏
j=1

 Γ(rj + njt)

Γ(njt + 1)Γ(ri)

λ
njt
j

(rj + λj)
rj+njt

,

where θ is a vector of all the parameters for the negative binomial distributions for the
reported accident numbers and the claim numbers from each coverage. We let D denote
the available data.

3.2. Binomial Thinning Model

To investigate the possible dependence of the frequencies of this dataset, we note that
the claim numbers (Nj, j = 1, 2, 3) cannot be larger than the number of accidents reported
(M), by definition. In this case, one can consider the binomial distribution as a natural fit
for the Nj given M, while Njs are conditionally independent given M.

More specifically, we use the negative binomial distribution to model M due to ob-
served over-dispersion, namely M ∼ NB(λ, r). We also set Nj|M = m ∼ BN (m, λj/λ) for
the three sources of claim numbers so that the joint distribution of (M, N1, N2, N3) can be
expressed as:

fN1,N2,N3,M(n1, n2, n3, m)

= fN1|M(n1|M = m) · fN2|M(n2|M = m) · fN3|M(n3|M = m) · fM(m) (6)

=
3

∏
j=1

(m
nj

)λ
nj
j (λ − λj)

m−nj

λm

 ·
[

Γ(r + m)

Γ(m + 1)Γ(r)

(
λ

r + λ

)m( r
r + λ

)r]
.

We note that the marginal distributions of Nj is a negative binomial random variable
with size parameter r and mean λj, as shown below:
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fNj(nj) =
∞

∑
m=nj

[
fNj(nj|M = m) · fM(m)

]

=
∞

∑
m=nj

[
Γ(r + m)

Γ(m + 1)Γ(r)

(
λ

r + λ

)m( r
r + λ

)r]
·

(m
nj

)λ
nj
j (m − λj)

λ−nj

λm


=

Γ(r + nj)

Γ(nj + 1)Γ(r)

∞

∑
m=nj

(
r + m − 1

m − nj

)(
λ − λj

λ

)m−nj(λj

λ

)nj( λ

λ + r

)m( r
λ + r

)r
(7)

=
Γ(r + nj)

Γ(nj + 1)Γ(r)

(
λj

λj + r

)nj
(

r
λj + r

)r ∞

∑
m=nj

(
r + m − 1

m − nj

)
(λj + r)nj+r(λ − λj)

m−nj

(λ + r)m+r

=
Γ(r + nj)

Γ(nj + 1)Γ(r)

(
λj

λj + r

)nj
(

r
λj + r

)r

, nj = 0, 1, · · · .

One can write the last step directly from the previous step because we recognize that the
part behind the summation is a probability mass function of a negative binomial. Another
way to show that the marginal distribution of Nj is negative binomial is to use either
probability generating or characteristic functions.

Compared with the independent model, this binomial thinning considers the de-
pendency among three lines of business. However, a very obvious drawback is the un-
changeable dependent structure, as the dependent relationship is tied to the marginal
distributions.

3.3. Copula-Based Frequency Model

To overcome the drawback of the binomial thinning model, one can use copulas, which
were originally defined by (Sklar 1959), where the joint distribution of N1, ..., Nk (denoted
by H) can be written as a combination of a copula C and the corresponding marginal
distributions F1, . . . , Fk as follows:

H(n1, . . . , nk) = P(N1 ≤ n1, . . . , Nk ≤ nk) = C(F1(n1), . . . , Fk(nk)). (8)

As we consider the frequencies from three types of insurance coverage, one can write
the joint probability of the claim frequencies via a copula C as follows:

P(N1 = n1, N2 = n2, N3 = n3) =

C(F1(n1), F2(n2), F3(n3))− C(F1(n1 − 1), F2(n2), F3(n3))−
C(F1(n1), F2(n2 − 1), F3(n3))− C(F1(n1), F2(n2), F3(n3 − 1))+ (9)

C(F1(n1 − 1), F2(n2 − 1), F3(n3)) + C(F1(n1 − 1), F2(n2), F3(n3 − 1))+

C(F1(n1), F2(n2 − 1), F3(n3 − 1))− C(F1(n1 − 1), F2(n2 − 1), F3(n3 − 1)).

To maintain consistency in our analysis, we again assume the same marginal distribu-
tions of Nj, which means that Nj ∼ NB(λj, ri) for i = 1, 2, 3. Regarding the copula families,
we use the following three-dimensional copulas:

• Gaussian:

C(u1, u2, u3) = Φ3|Σ

(
Φ−1(u1), Φ−1(u2), Φ−1(u3)

)
(10)

where Φ3|Σ is the joint distribution function of the trivariate normal distribution
with mean 0 and the (exchangeable) covariance matrix Σ = σJ3 J′3 + (1 − σ)I3 with
J3 = (1, 1, 1)′, I3 is an identity matrix of size 3 for σ ∈ (−1, 1), and Φ−1 is the quantile
function of a standard normal random variable. It is implicitly assumed all pairwise
correlations in the correlation matrix are the same, which means that the Gaussian
copula has an exchangeable structure.
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• Gumbel:

C(u1, u2, u3) = exp
[
−(−(log u1)

σG − (log u2)
σG − (log u3)

σG )1/σG
]
, (11)

where σG ≥ 1 is the parameter of the Gumbel copula. A larger σG value indicates that
any pairwise marginals are more positively related.

• Joe:

C(u1, u2, u3) = 1 − (1 − [1 − (1 − u1)
σJ ][1 − (1 − u2)

σJ ][1 − (1 − u3)
σJ ])1/σJ , (12)

where σJ ≥ 1 is the parameter the Joe copula. Similar to the Gumbel copula, a larger
σJ constructs stronger positive dependency between any pairwise marginals.

4. Composite Models for Heavy-Tailed Severities

Several positive continuous distributions can be used to study the claim amounts
distribution. While some distributions such as gamma and lognormal are good candidates
for modelling the low-cost range, they might not be able to capture the heavy-tail behaviour.
In this regard, we consider some two-component composite models to model both the body
and tail parts in a balanced way.

A two-component composite model combines the body part of a light-tailed distribu-
tion with the tail part of a heavy-tailed distribution. Different from mixture distributions,
there is no overlap between the supports of these components. By denoting the light-tailed
and heavy-tailed densities/distribution functions as g1(Y)/G1(Y) and g2(Y)/G2(Y), re-
spectively, one can write the density of a composite random variable with two components
as follows:

gcomp(y) =


1

1 + ϕ

g1(y)
G1(u)

y < u;

ϕ

1 + ϕ

g2(y)
1 − G2(u)

y ≥ u,
(13)

where ϕ is the weight parameter, and u is the threshold to separate the two components.
The cumulative distribution function of a composite model can be expressed as follows:

Gcomp(y) =


1

1 + ϕ

G1(y)
G1(u)

y < u;

1
1 + ϕ

+
ϕ

1 + ϕ

G2(y)
1 − G2(u)

y ≥ u.
(14)

Regarding the estimation scheme, one can use the maximum likelihood estimation
to find the optimal parameters for the body and tail distributions. We note that the
threshold u and weight parameter ϕ are not estimated but determined to guarantee the
continuity and differentiability of the composite distribution at the threshold with the
following constraints:

1. Continuity:

lim
y→u−

gcomp(y) = lim
y→u+

gcomp(y) =⇒ ϕ =
limy→u−

g1(y)
G1(u)

limy→u+
g2(y)

1−G2(u)

=
g1(u)(1 − G2(u))

g2(u)G1(u)
; (15)

2. Differentiability:

1
1 + ϕ

lim
y→u−

d
dy

g1(y)
G1(u)

=
ϕ

1 + ϕ
lim

y→u+

d
dy

g2(y)
1 − G2(u)

=⇒ d
du

ln
(

g1(u)
g2(u)

)
= 0. (16)

For example, assume that Y1 and Y2 follow gamma and inverse gamma distributions,
that is Y1 ∼ G(α1, θ1) and Y2 ∼ IG(α2, θ2) with the following density functions:
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g1(y1) =
(y1/θ1)

α1 e−y1/θ1

y1Γ(α1)
, y1 ≥ 0, (17)

g2(y2) =
(θ2/y2)

α2 e−θ2/y2

y2Γ(α2)
, y2 ≥ 0. (18)

With Equations (15) and (16), one can find the threshold and weight parameters as functions
of the distribution parameters as follows:

0 =
d

du

[
ln

g1(u)
g2(u)

]

=
d

du

ln
(u/θ1)

α1 e−u/θ1

uΓ(α1)

(θ2/u)α2 e−θ2/u

uΓ(α2)


=

d
du

[
α1 ln u − u

θ1
+ α2 ln u +

θ2

u

]
= (α1 + α2)u − u2

θ1
− θ2 =⇒

u =
α1 + α2 +

√
(α1 + α2)2 − 4 θ2

θ1

2/θ1
(19)

ϕ =
g1(u)(1 − G2(u))

g2(u)G1(u)
. (20)

Other composite models considered are listed in Table 3 with corresponding equations to
determine the threshold values u. We note that the weight parameter ϕ is given by (15).

Table 3. Threshold values u for various composite models (G: gamma, E : exponential, IG: Inverse-
gamma, LN : lognormal, and Pa: Pareto).

Name Head Dist. Tail Dist. u

G and IG (x/θ1)α1 e−x/θ1

xΓ(α1)
(θ2/x)α2 e−θ2/x

xΓ(α2) u =
α1+α2+

√
(α1+α2)2−4 θ2

θ1
2/θ1

G and LN (x/θ1)α1 e−x/θ1

xΓ(α1)
exp

{
− (ln x−µ2)

2

2σ2
2

}
xσ2

√
2π

0 = α1 − u
θ1
+ ln x−u

σ2
2

G and Pa (x/θ1)α1 e−x/θ1

xΓ(α1)
α2θ

α2
2

(x+θ2)α2+1 u =
α1+α2− θ2

θ1
+
√
(α1+α2

θ2
θ1
)2+4 θ2

θ1
(α1−1)

2/θ1

E and IG e−x/θ1
θ1

(θ2/x)α2 e−θ2/x

xΓ(α2) u =
α2+1+

√
(α2+1)2−4 θ2

θ1
2/θ1

E and LN e−x/θ1
θ1

exp
{
− (ln x−µ2)

2

2σ2
2

}
xσ2

√
2π

0 = − 1
θ1
+ 1

u +
ln u−µ2

uσ2
2

E and Pa e−x/θ1
θ1

α2θ
α2
2

(x+θ2)α2+1
u = (α2 + 1)θ1 − θ2

5. Empirical Analysis and Implications for Risk Management
5.1. Estimation Results

The logic of estimating the parameters using the benchmark model is straightforward,
so that one can directly maximize the joint log-likelihood with a numerical routine, for
example, the optim function in R. Table 4 shows the estimated values for the binomial
thinning model and the benchmark, independent frequency model. The point estimates
of λ, λ1, λ2, and λ3 under the two models are similar. Additionally, the standard errors
of the mean parameters are smaller compared with the standard errors of dispersion
parameters, r, r1, r2, and r3. It is observed that there is a significant level of improvement
in the log-likelihood by incorporating dependence via the common factor. We note that
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the improvements in AIC and BIC are even greater with the dependence modelling as the
binomial thinning model is more parsimonious than the independent model.

Table 4. Parameter estimates for the binomial thinning and independent frequency models.

Binomial Thinning Model Independent Frequency Model
Estimates CI Lower (95%) CI Upper (95%) Std.Err Estimates CI Lower (95%) CI Upper (95%) Std.Err

λ1 15.08 14.24 15.91 0.43 15.08 14.21 15.95 0.44
r1 - - - - 20.74 8.96 32.52 6.01
λ2 12.72 11.97 13.47 0.2 12.72 11.92 13.52 0.41
r2 - - - - 17.59 7.55 27.64 5.12
λ3 4.67 4.27 5.07 0.20 4.67 4.11 5.22 0.28
r3 - - - - 3.62 1.94 5.30 0.86
λ 16.42 15.53 17.30 0.45 16.42 15.53 17.30 0.45
r 25.32 10.03 40.62 7.80 25.24 10.05 40.43 7.75

logL −1183.47 −1516.57
AIC 2382.94 3043.14
BIC 2406.00 3057.56

As mentioned in the previous section, the joint distribution of a copula-based model
combines marginal distributions with a copula function. Here, we use the inference by
margin (IFM) method, so that the marginal distributions in the independent model are
considered as given, while only the copula part is additionally estimated. Table 5 shows the
estimated copula parameters and the log-likelihood values of each of the copula models.
We note that the parameter estimated with the Gaussian copula model implies positive
relationships among the three lines. By comparing the log-likelihood, the Gaussian copula
outperforms the others.

Table 5. The estimates and log-likelihood of copula models.

Gaussian Copula Gumbel Copula Joe Copula

Est. parameter 0.70452 1.83147 2.17170
logL −1015.953 −1021.079 −1033.461

For the severity components, we use several composite models. For the body part
(modelled with a light-tailed distribution), we consider the gamma and exponential distribu-
tions. For the tail part (modelled with a heavy-tailed distribution), we use inverse-gamma,
Pareto, and lognormal distributions. In the following Tables 6–8, the model selection criteria
for various composite models are demonstrated, fitted with the building/content/profit
severity data, respectively.

Table 6. Log-likelihoods of composite models for building severity.

G and IG G and Pa G and LN E and IG E and Pa E and LN
logL −2800.93 −2771.15 −2771.14 −3181.33 −3220.69 −3220.72
AIC 5609.87 5550.30 5550.29 6368.65 6447.37 6447.43
BIC 5632.25 5572.68 5572.67 6385.44 6464.16 6464.22

Table 7. Log-likelihoods of composite models for content severity.

G and IG G and Pa G and LN E and IG E and Pa E and LN
logL −2187.88 −2039.52 −2037.59 −2102.97 −2102.81 −2102.16
AIC 4383.77 4087.04 4083.18 4211.95 4211.61 4210.32
BIC 4405.47 4108.74 4104.88 4228.23 4227.89 4226.60
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Table 8. Log-likelihoods of composite models for profit severity.

G and IG G and Pa G and LN E and IG E and Pa E and LN
logL −309.19 −297.19 −427.81 −305.93 −304.53 −304.48
AIC 626.38 602.39 863.62 617.86 615.06 614.97
BIC 644.07 620.08 881.31 631.13 628.33 628.24

In the case of building losses, the gamma and lognormal (G and LN ) and gamma
and Pareto (G and Pa) distributions are shown to have the best goodness-of-fit. Likewise,
we find that gamma and lognormal (G and LN ) is the best for modelling contents losses,
and gamma and Pareto (G and Pa) fits the profits losses well. Table 9 shows the point
estimates of three composite distributions’ parameters, given the best combinations for
each coverage, along with the splicing points distribution and the corresponding weight
parameter values based on the parameter estimates. We note that some transformation is
required to make the weight parameter meaningful. For example, in the case of building
losses, we can interpret 1

1+ϕ = 0.2433 as the proportion of Y that is from the body part,

of the gamma distribution. On the other hand, ϕ
1+ϕ = 0.7567 of Y is from the tail part, of

the lognormal distribution. Specifically, a larger weight parameter value indicates that the
composite model is more heavy-tailed, and vice versa. The splicing point parameter, u,
indicates the change of distribution components. For the building coverage, the splicing
parameter is 2.08943, which means that the building losses greater than 2.08943 million
Danish Krone are modelled by a lognormal distribution. Additionally, we observe that the
losses from the profit line are more heavy-tailed compared with the losses from the other
two lines.

Table 9. Parameter estimates for the severity components.

Building: G and LN Contents: G and LN Profits: G and Pa

Head Dist. α1 = 3.71085 α1 = 1.98766 α1 = 1.55072
θ1 = 0.37198 θ1 = 0.21591 θ1 = 0.10144

Tail Dist. µ2 = −331.88884 µ2 = −1.34871 α2 = 1.41237
σ2 = 13.20987 σ2 = 1.69228 θ2 = 0.37195

u 2.08943 0.47466 0.11282
ϕ 0.32151 1.34244 2.92302

5.2. Empirical Findings for Risk Management

In the insurance industry, estimating the risk level for a product or portfolio is critical
for determining appropriate levels of the premium and reserve. We recall that Sj and S•
mean that the random variable stands for the aggregate loss amount from the jth line and
the aggregate loss for all lines of insurance, as defined by (1) and (2). It is also straightfor-
ward to see that E[S•] = ∑3

j=1 E[Sj] due to the additivity of expectation. However, such
a property generally does not hold for other types of risk measures, so it is important to
properly analyze the risk level of total claims S•, rather than summing up the risk level of
S1, S2, and S3. For our risk analysis, we use the following well-known risk measures:

1. Value at Risk (VaR) – VaRα(Y) = min{y ∈ R : FY(y) ≥ α}, α ∈ [0, 1];
2. Tail Value at Risk (TVaR) – TVaRα(Y) = E[Y|Y ≥ VaRα(Y)], α ∈ [0, 1];
3. Proportional Hazard (PH) Risk Measure (Wang 1995)–PHα(X) =

∫ ∞
0 (1− F(y))1/α dy,

α ≥ 1.
4. Dual Power (DP) Risk Measure–DPβ(X) =

∫ ∞
0 1 − (F(y))β dy, β ≥ 1.
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While TVaR is not a coherent risk measure unless the underlying distribution is
continuous, it is innocuous to assume that the TVaR of S1, S2, S3, and S• are coherent, as we
mainly focus on the tail part, where the claim amounts are for sure strictly positive and
the underlying distributions are continuous. We also note that (Wang 1994) showed that
the integration of the transformed distribution is coherent when the transformation is a
concave function, so that PH and DP are both coherent.

For comparison of the calculated risk measures under each of the models, we apply
a Monte Carlo simulation to numerically evaluate the values of risk measures. More
specifically, we simulated 100,000 data points, number of accidents M, the claim numbers
for three business lines N1, N2, and N3, and, subsequently, the claim amounts S1, S2, and S3
under each of the model specifications with the estimated parameters shown in Section 5.1.

The simulation for the independent model is straightforward. Because of the indepen-
dence, we apply random generations for the negative binomial distributions to simulate
claim numbers N1, N2, and N3 for all business lines. Unlike the independent one, the
binomial thinning model requires the simulation of the reported number of accidents
M. After that, a binomial random generation with size parameters corresponding to the
reported claim numbers is applied to get the claim numbers N1, N2, and N3 for three lines
of business. The logic for the copula models is similar. We first generate trivariate uniform
random numbers from the copula functions. With the generated uniform random numbers,
we get the claim numbers N1, N2, and N3 using the inverse of the marginal distributions.
Once the claim frequencies N1, N2, and N3 were generated, the severity components are
generated, subsequently. For example, if N1 is given, then uniform random numbers are
generated N1 times and they are converted to the individual severities via the inverse
distribution (or quantile) function of the composite distribution function for building losses.
Lastly, these values are summed up as S1.

Figures 2–4 show the scatterplots of the combinations of building, content, and profit
claims for observed and simulated frequency data. Based on the plots of observed data,
there are apparent positive relationships among the marginal frequencies. As we expected,
however, the independent model cannot capture such dependent behaviours. In the case
of the other models, the binomial thinning model shows a substantial linear relationship
between the building and contents claim numbers, which is the most similar to the observed.
In the case of Figure 3, however, the Joe copula best captures the relationship between the
building and profit frequencies.

Lastly, Table 10 shows the approximated risk measures under different models. The in-
dependent model reproduces relatively smaller values of VaR and TVaR for the aggregated
claims S• = S1 + S2 + S3, whereas the calculated risk measure values for each coverage,
S1, S2, and S3 are more or less the same, regardless of the chosen model. This is quite natural
as, regardless of the (assumed) dependence structure, the marginal distributions for N1, N2,
and N3 (and, subsequently, S1, S2, and S3) are the same. As a result, the TVaR for S• under
the independent model is severely underestimated compared to the observed (or empirical)
TVaR, while the other dependent models are able to reproduce the empirical TVaR for S•
with less deviations. It implies that it is required to consider possible dependence among
different types of insurance coverage for an effective enterprise risk management purpose.
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(a) Observed (b) Independent

(c) Binomial thinning (d) Gaussian copula

(e) Gumbel copula (f) Joe copula

Figure 2. Observed and simulated building vs. contents claims.
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(a) Observed (b) Independent

(c) Binomial thinning (d) Gaussian copula

(e) Gumbel copula (f) Joe copula

Figure 3. Observed and simulated building vs. profits claims.



Risks 2024, 12, 97 14 of 17

(a) Observed (b) Independent

(c) Binomial thinning (d) Joe copula

(e) Joe copula (f) Joe copula

Figure 4. Observed and simulated contents vs. profits claims.
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Table 10. Values of risk measures under different models.

Measure Model Building (S1) Content (S2) Profit (S3) Aggregate (S•)

VaR0.90

Observations 43.36753 37.61073 8.927676 84.95829
Independent 45.83948 40.13501 8.853674 82.54968

Bin. Thin. 45.55415 39.81174 8.330259 87.44851
Gaussian 46.00964 39.93148 8.925007 88.03041
Gumbel 45.94382 40.4155 8.80955 88.64008

Joe 46.00862 40.25366 8.792391 88.37843

TVaR0.90

Observations 67.63288 61.7309 17.34992 130.9614
Independent 62.29311 64.19727 21.77994 114.7784

Bin. Thin. 62.18439 63.46745 22.57028 122.2398
Gaussian 62.57564 63.71817 24.13904 123.6911
Gumbel 62.72085 64.09827 24.19948 124.4939

Joe 63.20349 63.48082 22.36632 122.8164

TVaR0.95

Observations 88.59588 82.65819 24.1481 171.8545
Independent 75.19079 82.92127 32.76977 140.1614

Bin. Thin. 75.28895 82.01287 34.9973 149.5173
Gaussian 75.53303 82.18786 37.40043 151.7549
Gumbel 75.80739 82.24379 37.66422 152.5675

Joe 76.64548 81.35734 34.09076 149.5723

PH2

Observations 51.93275 42.81760 11.31421 93.62481
Independent 54.19547 56.37977 28.35901 102.4392

Bin. Thin. 58.84183 56.89981 40.01965 114.9348
Gaussian 53.31081 50.2014 63.63473 134.7637
Gumbel 53.52596 49.71846 55.63991 126.7038

Joe 60.19573 47.35576 38.58851 111.7715

DP3

Observations 43.22733 35.96571 8.24774 82.29961
Independent 41.57237 35.75419 9.25285 76.3109

Bin. Thin. 41.50927 35.52621 9.46211 79.59646
Gaussian 41.69046 35.60265 9.98022 80.09476
Gumbel 41.69769 35.82457 9.98923 80.20223

Joe 41.82949 35.57191 9.42534 79.60271

6. Conclusions and Discussions

In conclusion, we bridged the connection among different coverages by considering
the loss amounts incurred under different coverages due to a fire accident and taking into
account the heavy-tail behaviour. From the insurance aspect, we assessed several risk
measures, which can be interpreted differently. For example, the Value at Risk with α can
be interpreted as the assets that should be reserved to reduce the bankruptcy possibility
to 1 − α. By comparing with the fully independent model, we found that both depen-
dent modelling frameworks performed better from both statistical and insurance aspects.
Specifically, the binomial thinning model captured the behaviour of the observed claim
numbers better than the independent model from the calculated model evaluation criterion.
All binomial thinning and copula-based models provided more reasonable and consistent
risk measures.

Additionally, we presented two modelling frameworks to capture the dependency:
binomial thinning and copula-based. Although, from the approximate risk measures results,
we could not conclude which is the best, we could still observe the flexibility of copula-
based models. The binomial thinning model suggested a certain dependent structure.
However, by implying different copula functions, we may capture the dependence based
on different joint distributions.

There are some concerns and limitations of the current research. Firstly, while we
used copulas with discrete random variables, (Genest and Nešlehová 2007) discussed the
limitations of applying copula with discrete random variables. Thus, we shall carefully
interpret the results relative to the dependent measures because of the lack of uniqueness
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of the copula functions. However, it is still effective when the discrete random variables’
probability mass is spread widely enough on their support. Secondly, we also implicitly
assumed that the frequency and severity components are independent, whereas some
existing literature show the presence of dependence among the frequency and severity
components, including, but not limited to, (Jeong and Valdez 2020) and (Vernic et al. 2021).

For future research, (Geenens 2020) proposed a method of incorporating dependency
for discrete random variables by using an idea similar to the copula method. Based on and
further improving it, we can provide more rigorous analyses for the dependent multivariate
discrete data. Additionally, one can also study the dependency between the frequency
and severity components on top of the dependence among the claims from multiple types
of coverage.
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