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Abstract: In this paper, we introduce the concept of statistical arbitrage through the definition of a
mean-reverting trading strategy that captures persistent anomalies in long-run relationships among
assets. We model the statistical arbitrage proceeding in three steps: (1) to identify mispricings in the
chosen market, (2) to test mean-reverting statistical arbitrage, and (3) to develop statistical arbitrage
trading strategies. We empirically investigate the existence of statistical arbitrage opportunities in
crude oil markets. In particular, we focus on long-term pricing relationships between the West Texas
Intermediate crude oil futures and a so-called statistical portfolio, composed by other two crude oils,
Brent and Dubai. Firstly, the cointegration regression is used to track the persistent pricing equilibrium
between the West Texas Intermediate crude oil price and the statistical portfolio value, and to identify
mispricings between the two. Secondly, we verify that mispricing dynamics revert back to equilibrium
with a predictable behaviour, and we exploit this stylized fact by applying the trading rules commonly
used in equity markets to the crude oil market. The trading performance is then measured by three
specific profit indicators on out-of-sample data.

Keywords: statistical arbitrage; trading strategy; commodity markets

1. Introduction

For years, both academics and professionals have aimed at identifying and exploiting
arbitrage opportunities that arise in financial markets. For this scope, they have developed
even more sophisticated trading strategies. The Morgan Stanley trading group addressed
by the quant Nunzio Tartaglia was the first to develop an automated trading strategy in
the 1980s. This strategy was called ‘Pairs Trading’. It consists of observing short-term
mispricings in two similar securities and understanding trading signals by using graphical
analysis of trends and their reversion. In Pairs trading, the assets are selected on the basis
of intuition, economic fundamentals, long-term correlations, or simply past experience.
By the end of the last millennium, the growing demand for models that could properly
capture arbitrage opportunities had led to the development of the so-called statistical
arbitrage strategies. Roughly speaking, a statistical arbitrage is a trading strategy that
generates profit in the long run by pricing inefficiencies identified through mathematical
and statistical models.

In this paper, we have focused on the specific area of mean-reverting statistical
arbitrage. This means that we considered an arbitrage portfolio strategy which is associated
with a mean-reverting process. Our purpose has been twofold. Firstly, we introduced
the concept of statistical arbitrage over a finite time horizon through the definition of a
trading strategy that captures persistent anomalies in long-run relationships among asset
prices. Secondly, we applied our definitions to a portfolio composed of three related crude
oils, namely the West Texas Intermediate, Brent, and Dubai oils. Indeed, we empirically
investigated statistical arbitrage opportunities that arise when this portfolio is trading
according to basic trading rules on the time window 2005–2017.

We have chosen to analyse the crude oil markets because their dynamics play a central
role in the worldwide economy since oil price movements substantially affect the most
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macroeconomic activity, especially after the 1970s crises (see Barsky and Kilian (2004);
Kilian (2009)).

Although in the literature there exist papers that deal with the empirical investigation
of statistical arbitrage in several financial markets, to the best of our knowledge and to
date, there is no published paper that focuses on modelling statistical arbitrage strategies
in crude oil markets.

This paper proceeds as follows. In Section 2 we review the literature. In Section 3.1, we
define the mean-reverting statistical arbitrage strategy. Section 3.2 deals with the procedure
used to implement the statistical arbitrage strategy by using market data. Section 4 discusses
the empirical application on crude oil markets, In particular, Section 4.1.1 contains the
description of the dataset used for the two case studies: weekly trading and daily trading.
We first implement the statistical arbitrage strategy by using weekly data. In Section 4.1.2,
we carry out statistical analyses of time series in order to build statistical arbitrage strategies
and, in Section 4.1.3, we verify that strategy dynamics are mean-reverting. In Section 4.1.4,
we outline the trading rules used and we discuss their performance in Section 4.1.5. In
Section 4.1.6, we test the statistical arbitrage strategies through an out-of-sample analysis. In
Section 4.2, we extend our analyses to daily data. We discuss the use of the mean-reverting
statistical arbitrage strategy in comparison with other trading strategies in crude oil markets
in Section 5, and Section 6 concludes.

2. Literature Review

The term statistical arbitrage appeared for the first time in the 1990s and it has remained
widely employed by traders ever since. The crisis of 2000 affected market dynamics, and
many mathematical models built by using statistical arbitrage methods have failed in
generating good performances. According to Pole (2007), in 2006, researchers developed
new and advanced algorithms that guaranteed more accurate and profitable statistical
arbitrage trading strategies.

In 1999, Burgess (1999) defined a statistical arbitrage as a generalization of the traditional
zero-risk or pure arbitrage. In the latter case, a trader constructs fair-price relationships
between two assets that have identical cash-flows and any deviation from that relationship
consists of a pure arbitrage opportunity. According to Burgess (1999), zero-risk opportunities
have not been able to exist in the market due to several uncertainty factors, related, for
example, to future dividend rates or price market volatility during the short time trading.
On the contrary, Burgess (1999) stated that the so-called statistical arbitrage opportunities
originate from security mispricings whose dynamics fluctuate around an equilibrium level.
Thus, through suitable strategies, he exploited small but consistent similarities in asset
price dynamics for gaining.

Bondarenko (2003) distinguished between the pure arbitrage opportunity and the
statistical arbitrage opportunity. The first one is defined as a zero-cost trading strategy that
prevents any possibility of losses. Instead, the statistical arbitrage opportunity has been
described as a zero-cost trading strategy that guarantees a positive expected payoff and a
non-negative conditional expected payoff in each state of the economy. This means that the
strategy value can be negative in some elementary states, as long as the average payoff in
each final state is non-negative.

Hogan et al. (2004) and Jarrow et al. (2005) described statistical arbitrage as a trading
opportunity which generates profits in the long run without taking risks. In their opinion,
it is a natural development of the trading strategies utilized to analyse empirical market
anomalies in the existing literature. Indeed, Jensen (1978) argued that arbitrage opportunities
are not compatible with an efficient market, but tests of market efficiency should refer to an
equilibrium model. On the contrary, statistical arbitrage existence rejects market efficiency
without appealing to the joint hypothesis of an equilibrium model.

Among others, statistical arbitrage approaches based on quantitative methods have
been proposed by many authors, like Burgess (1999), Vidyamurthy (2004), Elliot et al.
(2005), Do et al. (2006), Bertram (2009), Cummins and Bucca (2012), Lin and Tan (2023),
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Vergara and Werner (2024), and Horikawa and Nakagawa (2024). Their studies have aimed
at identifying arbitrage opportunities in stock markets.

When we deal with commodity markets, we refer to crude oil price dynamics, such
as, for example, in Kristoufek and Vosvrda (2014), who analysed long-run dependence
phenomena for prices empirically. More recently, we mention Cerqueti et al. (2019),
Nakajima (2019) and Cerqueti and Fanelli (2021), who investigated long-run equilibria
and statistical arbitrages in commodity markets, and additional literature, such as He et al.
(2023), Poutre et al. (2023), and Zhang et al. (2024).

3. Research Methods
3.1. Statistical Arbitrage Modelling

Let (Ω,F , (Ft)t≥0,P) be the filtered probability space, where T is a finite time horizon.
F = FT is the σ-algebra at time T. All statements and definitions are understood to be
valid until T. Furthermore, we assume there are a finite number of trading dates, indexed
by t = 0, 1, . . . , T. Trading strategies are at the basis of the notion of statistical arbitrage.
They are formulated using only available information, such as rules based on historical
data, company size, earning announcements, market versus book values, sales growth, or
macroeconomic conditions.

We consider N assets1 whose prices at time t are the row vector [v1
t , . . . , vN

t ] and
an additional asset whose value is Zt. We define a portfolio of N + 1 assets as a N + 1-
dimensional row vector [h0, h1, . . . , hN ] and each hi, i = 0, . . . , N, represents the weight of
the i-th constituent asset in the portfolio that is bought at time t = 0 and held until time T.
In particular, h0 is the weight of the additional asset Zt. The coefficients hi, i = 0, . . . , N,
can be either positive or negative, so that we may have, respectively, both long or short
positions in the assets. The value process of the N + 1-asset portfolio is (Xt)t≥0, defined as

Xt = h0Zt +
N

∑
i=1

hivi
t, t ≥ 0. (1)

Definition 1. The portfolio process (Xt)t≥0 generates statistical arbitrage if there exists a time T
such that the following conditions are satisfied:

1. X0 = 0,
2. E[XT |F0] ≥ 0,
3. The variance Var[XT |Ft] decreases monotonically through time2.

where E[·|F0] is the expected value under the objective probability measure P and Var[·|Ft] is the
variance, conditional to the information available at time t.
Then, the portfolio (Xt)t≥0 is called the statistical arbitrage strategy3.

Remark 1. The statistical arbitrage strategy of Definition 1 satisfies three conditions: 1. It is a
zero-initial-cost strategy; 2. the expected payoff at the trading day T as seen at time 0 is positive;
and 3. the strategy reduces its variance over time by adjusting magnitude of its long and short
positions. Condition 3. is essential to generate statistical arbitrage4.

Remark 2. In the literature, statistical arbitrage is opposed to pure arbitrage (see for example
Bondarenko (2003)). Given the portfolio with process (Xt)t≥0, pure arbitrage has X0 = 0, and
there exists a time T such that XT ≥ 0 with probability 1 and XT > 0 with positive probability.
This means that a pure arbitrage portfolio is basically a deterministic money making machine that
exploits mispricings on the market. On the contrary, in statistical arbitrage, the mispricings on the
market are based on the expected value of the assets, that is, the mispricing of price relationships are
true in expectation, in the long run. Cerqueti et al. (2019) and Cerqueti and Fanelli (2021) develop
and apply some methodologies for analysing long-run equilibrium among commodities.
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Let (Zt)t≥0 be the price process of a particular asset, called a target asset. We consider
the portfolio vector h = [h1, . . . , hN ], which consists of the N assets of prices vector vt =
[v1

t , . . . , vN
t ] and such that the portfolio value is

Vt = hvt =
N

∑
i=1

hivi
t, t ≥ 0. (2)

Definition 2. The portfolio h is a statistical portfolio for the target asset, (Zt)t≥0 if the following
fair-price relationship holds:

E[Zt|Fs] = E[Vt|Fs], 0 ≤ s ≤ t, (3)

where E[·|Fs] is the expected value under the objective probability measure P conditional to the
information available at time s, Fs, and Vt is the portfolio value in Equation (2).

Equation (3) gives a long-run equilibrium relationship between the target asset and
the portfolio h.

The definition of the mispricing portfolio at a generic time t follows

Definition 3. The mispricing portfolio is a trading strategy, (Mt)t≥0, which has mean-reverting
dynamics described by the following equation:

dMt = α(Θ − Mt)dt + σdWt, M0 = 0, (4)

where α > 0 is the speed of mean reversion, Θ > 0 is the long-run mean, σ is the return volatility
and (Wt)t≥0 is a Brownian motion.

Definition 3 implies that Mt is normally distributed and the conditional mean and
variance between any two instants s and t, 0 ≤ s < t, given Ms, are

E[Mt|Fs] = Θ + (Ms − Θ)e−α(t−s), Var[Mt|Fs] =
σ2

2α

(
1 − e−2α(t−s)

)
, (5)

where we again consider the conditional expected value and variance.
In the following proposition, we link the concept of the mispricing portfolio to

statistical arbitrage.

Proposition 1. The mispricing portfolio (Mt)t≥0 whose dynamics are given by Formula (4) is a
statistical arbitrage strategy. Indeed, all conditions in Definition 1 are fulfilled:

1. M0 = 0,
2. E[MT |F0] = Θ

(
1 − e−αT) > 0,

3. ∂
∂t Var[MT |Ft] = −σ2e−2α(T−t) ≤ 0.

Proposition 2. The portfolio given by a long position on the target asset and a short position on
the statistical portfolio and whose process follows the mean-reverting dynamics (4) is a mispricing
portfolio (Mt)t≥0.

Therefore, given the target asset (Zt)t≥0 and the statistical portfolio (Vt)t≥0, consisting
of N assets and obtained according to Formula (3), the mispricing portfolio (Mt)t≥0 is a
N + 1-dimensional vector ĥ= [1,−h1, . . . ,−hN ], such that

Mt = Zt − Vt = Zt −
N

∑
i=1

hivi
t, t ≥ 0. (6)

Remark 3. Formula (6) is equivalent to Formula (7), where h0 = 1 and hi, i = 1, . . . , N, are negative.



Risks 2024, 12, 106 5 of 19

An example of statistical arbitrage occurs when a commodity intermarket spread is
trading. Intermarket spreads involve the simultaneous purchase and sale of different but
related commodities that have a reasonably stable relationship to each other. Opportunities
for intermarket spreads occur when commodities being traded are substitutes for each
other or there are some other relationships that cause prices to be correlated. For example,
random disturbances in supply and demand in cash and futures markets can cause futures
prices to diverge and give rise to intermarket spread opportunities. A classical example of
intermarket spreads in commodity futures markets is the crack spread. The crack spread is
the difference between the futures price of crude oil and an appropriate combination of
futures prices of two petroleum products, that is the heating oil and gasoline. The portfolio
consisting of a long position on three crude oil futures contracts and short positions on
two gasoline futures contracts and one heating oil futures contract is a statistical arbitrage
portfolio with the following time t value:

Xt = 3Zt − 2v1
t − v2

t , t ≥ 0, (7)

where Xt is the portfolio value; and Zt, v1
t , and v2

t , respectively, are the futures prices of
crude oil, gasoline, and heating oil. The dynamics of (Xt)t≥0 are shown in Figure 1.

0

5
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15

20

25

30

35

Crack Spread

Figure 1. Crack spread dynamics.

A crack spread position (buy crude oil and sell gasoline and heating oil) would be
assumed when refined product prices are high relative to crude oil prices and are expected
to fall. Because refineries purchase crude oil and sell refined products in relatively fixed
proportions, the prices of crude oil, heating oil, and gasoline tend to move in a parallel
fashion. When prices of refined products rise substantially above crude prices, there exists
an incentive to purchase crude oil and sell refined products. This would cause the price
spread between crude and refined products to narrow. When prices of refined products
fall relative to the price of crude oil, the incentive is to purchase less crude oil and run the
refinery at less than the full capacity. This would cause the price spread between crude
and refined products to rise. Other examples of statistical arbitrage portfolios are the
spark spread and the frac spread. The first one mimics financially the generation costs
of electricity for a specific facility and involves the simultaneous purchase of natural gas
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futures and the sale of electric futures. The second one is the difference between the price
of gas liquids and natural gas.

3.2. Implementation of the Statistical Arbitrage Strategy

In this Section, we build the mispricing portfolio with dynamics described by Equation (6)
by using crude oil market data. First of all, we describe the procedure that we have to follow
in order to properly obtain a statistical arbitrage strategy according to Section 3.1.

Firstly, in order to build the mispricing portfolio (6), we need first to choose a target
asset, then to identify N assets such that condition (3) holds. These N assets are selected
on the basis of a subjective analysis of investors, based on information coming from price
behaviour, market rumours, asset physical or financial characteristics, etc. Usually, the
target asset and the N assets have common characteristics, such as similar physical or
financial characteristics, the same reference market, or they are assets whose prices are
affected by the same external factors. However, the technique adopted to obtain the weights
of the statistical portfolio h = [h1, . . . , hN ] of Definition 2 is the cointegration regression.
The concept of cointegration has a financial meaning; indeed, it represents a long-term
relationship among assets. On one hand, the cointegration approach allows us to obtain the
coefficients of the constituent asset prices vi

t, i = 1, . . . , N, in order to form a portfolio (6).
On the other hand, it allows us to verify that the chosen constituent assets are appropriate
in the sense that their prices are positive correlated with the target asset price; namely, they
share the same common trend, long-run equilibrium (3). The coefficients hi, i = 1, . . . , N,
in (2) are elements of the cointegration vector. They are estimated by regressing a set of
historical prices vi

t, i = 1, . . . , N, over historical target asset prices, such that

h = arg min ∑
t

(
Zt −

N

∑
i=1

hivi
t

)2

. (8)

It is important to state that the coefficients of the linear cointegration are stable over time,
in particular in the long period. However, parameter stability is difficult to discover
empirically if the used dataset is large. Some authors in the literature, such as Gregory
and Hansen (1996), demonstrate that there exists cointegration even if there are structural
breaks in time series. Therefore, the Quandt likelihood ratio (henceforth QLR) test of
Stock and Watson (2003) is used to verify that coefficients hi, i = 1, . . . , N, are stable in the
long period. The QLR F-statistics test the hypothesis that the intercept and coefficients in
Formula (8) are constant against the alternative of break in the central 70% of the sample.

Secondly, statistical tests are used to verify the mean reversion of mispricing portfolio
dynamics. We analyse the autocorrelations across time steps, and apply the augmented
Dickey–Fuller (ADF) test to search for unit roots and to study time series stationarity.
However, a theoretical problem about the low power of classical Dickey–Fuller tests (see
Dickey and Fuller (1979)) to clearly identify the stationarity and so that the predictability of
a price process is well known in the econometrics field. Therefore, we use the more robust
test of variance ratio (see Cochrane (1988) and Lo and MacKinlay (1988), among others), in
order to verify if the dynamics of the mispricing portfolio deviate from the random walk
behaviour. If we calculate the variance ratio over consecutive time periods τ > 0, we obtain
the variance ratio function. Its analysis allows us to find out a mean-reverting nature of the
mispricing portfolio. The variance ratio statistic is defined as the normalized ratio of the
long-term variance calculated over a period τ to single-period variance. Values of variance
ratio bigger than one for any τ suggest that the historical prices are positively serially
correlated and the mispricing portfolio has a trending behaviour. On the contrary, values
of variance ratio less than one for any τ suggest that the historical prices are negatively
serially correlated and the mispricing portfolio has a mean-reverting behaviour.

Finally, appropriate trading rules may be developed in order to take advantage of the
mean-reverting behaviour and to open or close positions to profit.
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4. Empirical Application on Crude Oil Markets and Results

In this Section, we aim to apply the theory discussed in Sections 3.1 and 3.2 to real
market data. Although many statistical arbitrage opportunities have been empirically
identified in stock markets, commodity markets can be explored. Some forms of arbitrage
may be identified in these markets, as reviewed by Fanelli (2015). In this article, we focus
on crude oils traded on different markets, because as we have already pointed out in the
Introduction, crude oil market dynamics play a central role in the worldwide economy
since oil price movements substantially affect most macroeconomic activity, especially after
the 1970s crises. A great deal of the recent literature discusses the efficiency of crude oil
markets and research focuses on the dynamics of the three major crude oil prices: the West
Texas Intermediate, Brent, and Dubai (see, for example, Wilkinson et al. (2004), Wlazlowski
et al. (2011), Scarpa et al. (2015), and Kilian (2016)).

We show that their prices are related each others and we build a mispricing portfolio by
assuming a long position on the West Texas Intermediate crude oil futures and a short position
on the statistical portfolio composed by futures on Brent and Dubai crude oils. Furthermore,
we develop three basic trading strategies that rely on the mean-reverting behaviour of the
mispricing portfolio, and we measure their profitability through performance indicators.
Finally, we carry out a backtest of the strategies on out-of-sample data.

4.1. Weekly Trading
4.1.1. Description of the Data

We consider three crude oils. The three largest crude benchmarks in the world are the
West Texas Intermediate (henceforth WTI), Brent, and Dubai crude oils. The first two are the
most important global crude benchmarks for the light and sweet crude. Instead, Dubai is the
most important benchmark for the sour and heavy crude. WTI crude oil is traded on the New
York Mercantile Exchange and was launched in March 1983. Nowadays, it is the most liquid
futures contract in crude oil markets. The WTI is deliverable to Cushing, Oklahoma, which is
accessible to the spot market via pipeline. Brent crude oil, which is traded on the Intercontinental
Exchange, was launched in July 1989. Dubai crude oil is quoted by Platt’s.

The dataset consists of weekly futures prices for the first month, spanning from
25 October 2000 to 19 October 2009, resulting in 461 observations. All time series were
downloaded from Thomson Reuters Datastream/Eikon.

4.1.2. Time-Series Analysis

We choose the WTI crude oil as the target commodity and we consider the statistical
portfolio (3) composed by Brent and Dubai crude oils, according to Definition 2. Therefore, the
weight vector h is obtained by applying the cointegration regression according to (8). The results
of the cointegration regression on the 461 observations are summarized in Table 1. Furthermore,
the ADF test statistic for residuals is −3.75029 with a p-value of 0.04869, and this implies that a
cointegration relationship is evidenced. Consequently, mispricing portfolio value time series are
obtained through Formula (6) and the values are plotted in Figure 2.

In Figure 2, we observe that up to the end of 2006, the mispricing (in USD) fluctuates
in the range [−2, 2]. This is due to the fact that most of the time, WTI was higher than the
Brent crude oil price, and the three crude oil prices behave in the same way. The exception
is in June 2001, when a weakened US economy and an increased non-OPEC production
put downward pressure on WTI prices with respect to Brent oil, and made markets more
volatile. Since 2006 and even more so in 2007, the gap switched and the Brent oil price
was higher than the WTI crude oil price, in which the peak came in February 2009 with an
average gap of 4.23 USD/barrel. There could be some macroeconomic changes affecting
this spread and recent years, such as the changes in EUR/USD. This evidence caused more
volatility in crude oil markets, which is reflected in a wider mispricing oscillation.

Then, the QLR test is applied to check whether the long-run relationship between
WTI, Brent, and Dubai crude oils is stable. In particular, here, QLR F-statistics tests the
hypothesis that the intercept and coefficients in equation
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Zt = c − h1v1
t − h2v2

t ,

(see Table 1) are constant against the alternative of the break in the central 70% of the
sample. The obtained critical value F is 61.2695, which means that the null hypothesis
that these coefficients are stable is rejected at the 1% significance level. Therefore, there
is a structural break in the sample. The breakpoint data were taken on 14 February 2005.
We consequently divide our data in two subset:, one for the pre-breakpoint dates and
the other for the post-breakpoint dates, leaving the data of 2008 to 2009 to test the model
by an out-of-sample analysis. We estimate the mispricing coefficients by OLS regression.
Tables 2 and 3 provide the details of the regression estimates obtained for each subsample.

Table 1. Cointegration regression for crude oils.

Coefficient Estimate Std. Error t-Statistic Prob.

c 1.61763 0.19417 8.33071 0.00
h1 1.19378 0.04061 9.39531 0.00
h2 −0.21702 0.04222 −5.13930 0.00

R2 0.99515
Adjusted R2 0.995131

S.E. of regression 1.832739
Akaike info crit 4.055987

Schwarz crit 4.082885
F-statistic 47.012000

Prob (F-stat) 0.000000
Durbin-Watson stat 0.256805

RMSE 0.030600
MAE 0.022500

Note: We consider that equation Zt = c − h1v1
t − h2v2

t . Zt is the price of the WTI futures, whereas v1
t is the price

of the Brent futures and v2
t is the price of the Dubai futures. h1 and h2 are the weights of v1

t and v2
t in the statistical

portfolio. c is the constant of regression (source: Fanelli (2020)).

-6

-4

-2

0

2

4

6

8

Mispricing

Figure 2. Crude oil mispricing portfolio.

Comparing Table 2 and Table 3, we observe that there is a change in Dubai position
in the mispricing portfolio after February 2005. Indeed, before the structural break, the
mispricing portfolio consists of a long position on the target commodity WTI crude oil and
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short positions on Brent and Dubai oils. Instead, after the break, the long position on WTI
crude oil is balanced by a short position on Brent oil and a long position on Dubai oil.

Table 2. Pre-breakpoint regression results.

Coefficient Estimate Std. Error t-Statistic Prob.

c −2.22903 0.403895 −5.519 0.0000
h1 0.975588 0.0398486 24.482 <0.0000
h2 0.184552 0.0518756 3.558 0.0000

R2 0.982
Adjusted R2 0.982

Durbin–Watson stat 0.251
Akaike info crit 622.284

Schwarz crit 632.410
RMSE 0.030
MAE 0.022
RMSE 0.041
MAE 0.030

Note: The dataset spans from 25 October 2000 to 14 February 2005. We consider equation Zt = c − h1v1
t − h2v2

t .
Zt is the price of the WTI futures, whereas v1

t is the price of the Brent futures and v2
t is the price of the Dubai

futures. h1 and h2 are the weights of v1
t and v2

t in the statistical portfolio. c is the constant of regression.

Table 3. Post-breakpoint regression results.

Coefficient Estimate Std. Error t-Statistic Prob.

c −1.07760 0.992658 −1.086 0.27943
h1 1.31559 0.102020 12.895 0.0000
h2 −0.317238 0.102883 −3.083 0.00244

R2 0.982
Adjusted R2 0.972

Durbin–Watson stat 0.972
Akaike info crit 605.086

Schwarz crit 614,138
RMSE 0.049
MAE 0.0310

Note: The dataset spans from 14 February 2005 to 31 December 2007. We consider that the equation Zt = c− h1v1
t − h2v2

t .
Zt is the price of the WTI futures, whereas v1

t is the price of the Brent futures and v2
t is the price of the Dubai futures. h1

and h2 are the weights of v1
t and v2

t in the statistical portfolio. c is the constant of regression.

By applying the Johansen (1991) test, we verify that the cointegration relation holds
also in the presence of a structural break. The results of the test are shown in Tables 4 and 5.

Table 4. Pre-breakpoint Johansen test.

Rank Eigenvalue Trace Test Lmax Test

0 0.073294 28.206 [0.0766] 16.366 [0.2123]
1 0.052025 11.840 [0.1666] 11.487 [0.1324]
2 0.001640 0.353 [0.5524] 0.35307 [0.5524]

Table 5. Post-breakpoint Johansen test.

Rank Eigenvalue Trace Test Lmax Test

0 0.17463 37.851 [0.0042] 28.789 [0.0024]
1 0.058590 9.0619 [0.3664] 9.0565 [0.2880]
2 3.59 × 10−5 0.005388 [0.9415] 0.005388 [0.9415]
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4.1.3. Mean-Reversion Analysis

In this subsection, we analyse the mispricing portfolio time series obtained in the previous
subsection, in order to find predictable components and verify the mean-reverting behaviour.

The autocorrelation function of the mispricing time series is used to examine the
short-term effects. As we can see from Figure 3, an autocorrelation coefficient with a value
different from zero means that a mispricing value is related to the past value, and hence,
the presence of a predictable component is expected.
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Figure 3. Mispricing autocorrelation function (ACF) and partial autocorrelation Function (PACF).

If we look at the results for unit root tests shown in Table 1, we verify the stationarity
of the time series. The stationarity is asserted by the value −3.75 of the ADF statistic test,
even if acceptable but high value of the p-value 0.04869 could mean an absence of mean
reversion. Therefore, we calculate variance ratio statistics according to different time lags
and we plot them in Figure 4. The variance ratio function assumes values lower than one,
and it is also a decreasing function. We can conclude that the mispricing dynamics follow a
mean-reverting behaviour, confirming the existence of predictable components.
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4.1.4. Trading Rules Implementation

In this subsection, we aim at investigating suitable trading rules that identify trading
signals for opening and closing positions in the mispricing portfolio. We review three basic
trading rules described in Burgess (1999) and we test them on our commodity data.

The adopted trading rules rely implicitly on the mean-reverting behaviour of the
mispricing time series. In fact, if, in the long run, the mispricing reduces as prices change, a
trader, who has previously opened a position in the mispricing portfolio, can realize profits.
The trader should only optimize the trade-off between transaction costs and trading gains.

These trading rules define the sign and the magnitude of the mispricing portfolio
components ĥ in Formula (6). Although in the following, we will define three trading rules as
functions of the time, we do not need to verify that they fulfill the statistical arbitrage conditions
of Definition 1 because the rule functions acquire the mean-reverting characteristics of the
mispricing portfolio, and they can be considered strategies along the same line of Proposition 1.
Hereafter, we will use indifferently the terms “trading rule” and “trading strategy”.

The characteristics of the three adopted trading rules are summarized in Table 6. For
each strategy, we give a short description.

Table 6. Trading strategies.

Name Symbol Description

The mispricing is traded according to the investor risk
profile. Very risky and aggressive positions can be taken.Plain vanilla strategy Sk

t

The mispricing is traded according to a prudential
consideration of the investor risk profile.Moving-average strategy Sh

t

The mispricing is traded according to the investor risk
profile and by considering the transaction costs.Smooth strategy SO

t

We recall that we suppose a finite number of trading dates, t = 1, . . . , T. Let Sk
t be the

plain vanilla strategy, which is the basic trading rule at date t that depends on the sign and
the level of the mispricing at the previous time and on the value of a sensitivity parameter
k ∈ R according to the following formula:

Sk
t = −sign(Mt−1)|Mt−1|k. (9)

The mispricing portfolio must be sold when Sk
t is negative and bought when it is

positive. An example of a trading rule as a function of the time is displayed in Figure 5.
The holding magnitude varies as a function of the size of the previous mispricing

through the sensitivity parameter k. We implement this rule according to different values of
k on the mispricing time series. We can summarize our results as follows. When k = 0, we
have a step function, meaning that the entire holding is always invested in the mispricing
portfolio. If k > 0, the size of portfolio increases as the magnitude of the mispricing
enlarges, and in particular, a k > 1 corresponds to more aggressive strategies.

In order to reduce the investor risk attitude in mispricing trading, we use the moving-
average strategy Sh

t , defined as follows:

Sh
t =

1
h

h

∑
j=1

Sk
t−j, (10)

where h > 0 is the moving average parameter. Furthermore, any transaction, made
according to any trading strategy, implies some costs and, obviously, every operator wants
to optimize the trade-off between costs and gains from the exploitation of trading signals.
In order to carry this out, we consider the following smooth strategy:
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SO
t = (1 − O)Sk

t + OSO
t−1, (11)

where O ≥ 0 is a smoothing parameter. By increasing the values of h and O, on one hand,
the number of transactions comes down so that the transaction costs decrease; on the
other hand, the accuracy of the smoothed trading signal diminishes. This behaviour is
illustrated in Figure 6, where we compare the three trading strategies (9), (10), and (11) as
functions of the time, assuming K = 0.33, h = 5, and O = 0.8. From the figure, we deduce
that strategy function (9) changes more frequently with respect to function (10) and has
a larger amplitude compared with function (11). Function (11) has a very smooth trend
in comparison with the other functions, meaning that, ceteris paribus, by adopting this
strategy, the number of transactions reduces.
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Figure 5. Trading rule example: the red line represents the trading rule in Equation (9) with parameter
K = 0.33; it gives signals for trading the mispricing given by the blue line.
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Figure 6. Trading signal comparison: the blue line represents the dynamics of the trading rule in
Equation (9) with parameter K = 0.33; the red line describes the dynamics of the trading rule in
Equation (10) with parameters K = 0.33 and h = 5; the green line represents the dynamics of the
trading rule in Equation (11) with parameters K = 0.33, h = 5, and O = 0.8.
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4.1.5. Performance Analysis

In order to evaluate the performance of the trading rules defined in Section 4.1.4, we
define and estimate the following performance indicators.

The first indicator Rt is the mark-to-market profit and loss, which evaluates the return
obtained over a generic trading time period [t − 1, t] by applying any trading rule. Let us
consider, for example the rule (9); the mark-to-market profit and loss at time t is computed
by the following formula:

Rt = Sk
t

∆Mt

Zt + Vh
t
− c
∣∣∣∆Sk

t

∣∣∣, (12)

where ∆Mt = Mt − Mt−1, ∆Sk
t = Sk

t − Sk
t−1, c is the percentage transaction costs and

Zt + Vh
t is the sum of the mispricing portfolio components. Then, we can substitute Sk

t with
the other trading strategies (10) and (11) in order to obtain the return of those strategies.

A strategy profitability indicator is the cumulative mark-to-market profit and loss, ρt,
which represents the total return or cumulative profit of a strategy from the inception t = 0
to the generic trading date t. It is computed as the cumulative sum of the Rs, s = 0, . . . , t:

ρt =
t

∑
s=0

Rs. (13)

We can use the indicator ρt to compare the performances of strategy (9) according to
different values of k.

A performance indicator that takes into account not only the level of profit, but also
the level of strategy risk, measured by the variability of profits, is the Sharpe Ratio. The
Sharpe Ratio calculated at date t is Πt. As in the traditional sense, it measures the profit per
unit of risk. In this context of the statistical arbitrage, it is calculated as the ratio between
the annualized mean profitability of the strategy and its annualized standard deviation of
the profits:

Πt =
1
t ∑t

s=1 Rs√
1
t ∑t

s=1

[
(Rs − 1

t ∑t
s=1 Rs

]2
(14)

Figure 7 shows the cumulative profit functions for k = 0, 0.5, 1 and confirms that the
value k = 1 ensures the greater profit.
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Figure 7. Total return function comparison: three cumulative profit functions given by Formula (13)
are shown according to different values of parameter k of the strategy in Equation (9).
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Using the performance indicators described above, we compare the trading strategies
according to certain parameters and we investigate the most efficient one. We apply the
strategy SO

t , Equation (11), on our mispricing data, letting k vary between 0 and 1 and O
vary between 0 and 0.75. We calculate the values of ρt at the last observation for each k
and represent them in Figure 8. From the figure, we can deduce that the optimal strategy
ensuring the maximum profit is when k = 1 and O = 0.5 and assuming a cost percentage
equal to 0.25%. We use this optimal rule to test the effectiveness of our statistical arbitrage
strategy by an out-of-sample analysis as described in the following subsection.
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Figure 8. Optimal trading strategy: the surface represents the total return, given by Formula (13),
of the strategy in Equation (11); the parameter k varies between 0 and 1 and the parameter O varies
between 0 and 0.75; transaction cost percentage is 0.25%.

4.1.6. Out-of-Sample Analysis

In order to carry out a backtest of the strategy, we apply the optimal strategy (11) with
parameters k = 1, O = 0.5, and c = 0.25% to weekly out-of-sample data spanning from
7 January 2008 to 23 December 2010, so that we increase our dataset with the data of the
year 2010. On the contrary, we consider the time series spanning from 25 October 2000 to
31 December 2007 as in-sample data, and we use them to estimate the parameters of the
mispricing in Section 4.1.2. We compare the yearly performances of the in-sample data
with those of the out-of-sample data. The trading performances are measured using the
total return and the annual Sharpe ratio, and calculating the percentage of profitable weeks
as the percentage of periods corresponding to positive returns. The results of the in-sample
analysis are illustrated in Table 7; while those of the out-of-sample analysis are in Table 8.
We keep into consideration the structural break in 2005, so that we change the cointegration
coefficients in the mispricing estimation.

From this simple analysis, we find out that the strategy performs well in the out-of-sample
years, in line with the results obtained on in-sample data. The anomalous value of 2009 total
return is mainly due to some macroeconomic events already evidenced in Figure 2.

We could state that an optimal strategy may be developed and updated daily, taking
into consideration the three indices of performance (total return, Sharpe ratio, and profitable
periods), so that any trading decision would be taken in line with the specific risk profile of
the investor.
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Table 7. In-sample performance.

Year 2001 2002 2003 2004

Total return 7.72% 5.16% 4.57% 2.93%
Sharpe ratio 1.70 1.43 1.14 0.99

Profitable weeks 39.39% 51.92% 44.23% 46.15%

Year 2005 2006 2007

Total return 2.14% 4.20% 13.53%
Sharpe ratio 0.91 0.87 0.85

Profitable weeks 30.77% 53.85% 50.94%
Note: We apply the optimal strategy in Equation (11) with parameters k = 1, O = 0.6, and c = 0.25% to weekly
in-sample data spanning from 25 October 2000 to 31 December 2007. We calculate yearly performance indicators.

Table 8. Out-of-sample performance.

Year 2008 2009 2010

Total return 4.97% 30.26% 4.90%
Sharpe ratio 0.85 0.69 0.80

Profitable weeks 42.31% 57.14% 50.00%
Note: We apply the optimal strategy in Equation (11) with parameters k = 1, O = 0.6, and c = 0.25% to weekly
out-of-sample data spanning from 7 January 2008 to 23 December 2010. We calculate yearly performance indicators.

4.2. Daily Trading

In this section, we use daily one-month futures prices and the dataset spans from 1
January 2010 to 10 April 2017. Each futures contract is traded until the close of business
on the third business day prior the 25th calendar day of the month presiding the delivery
month, and it is assumed that the investor will roll over the front month pair contracts
on the first day of the trading month. We use data from 1 January 2010 to 31 December
2014 for the in-sample analysis, and we leave data from 1 January 2015 to 10 April 2017
for out-of-sample analysis. We implement the statistical arbitrage strategy according to
Section 3.2 and we briefly show the results below.

By using observations 1 January 2010–25 April 2017, the cointegration analysis gives
the following results:

1. WTI, Brent, and Dubai time series are first-order integrated;
2. We apply the cointegration regression. We consider that the equation Zt = c + h1v1

t +

h2v2
t . Zt is the price of the WTI futures, whereas v1

t is the price of the Brent futures
and v2

t is the price of the Dubai futures. h1 and h2 are the weights of v1
t and v2

t in
the statistical portfolio. c is the constant of regression. The regression coefficients are
in Table 9.

Table 9. Cointegration regression results.

Coefficient Std. Error t-Statistic Prob.

c 23.8809 1.16787 20.45 8.31 × 10−81

h1 −0.0401021 0.0808145 −0.4962 0.6198
h2 0.730442 0.0892876 8.181 6.65 × 10−16

3. The residuals from regression are stationary.

The linear cointegration assumes coefficient stability in the long-run equilibrium
between oil prices. By applying the QLR test, we find that the break occurs on 1 June 2011.
This structural break in 2011 can be attributed to several important events that impacted
crude oils prices. The storage and pipeline capacity constraints at Cushing, Oklahoma, an
oil trade hub and the delivery location for NYMEX crude oil futures contracts, resulted
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in a downward pressure on WTI price. The following events put upward pressure on the
price of Brent: the Tunisian revolution in December 2010, the increased weight of Brent and
decreased weight of WTI in Standard and Poor’s GSCI commodity index in January 2011,
the Libyan crisis in February 2011, and the Fukushima-Daiichi nuclear disaster in Japan in
March 2011. On the contrary, the upsurge in U.S. oil production put downward pressure on
the price of WTI. The Dubai price is strongly correlated to the Brent price, in fact, although
Dubai remains overwhelmingly the most important Asia crude marker, Brent remains a
default alternative in Asia.

We verify the mean reverting behaviour of the mispricing portfolio Mt = Zt − (c +
h1v1

t + h2v2
t ), obtained by the cointegration analysis above, according to Section 4.1.3. Then,

according to Formula (11), we apply the following optimal strategy:

SO
t = (1 − O)Sh

t + OSO
t−1, (15)

where Sh
t is the strategy (10), and k = 1, h = 6, O = 0.5, and c = 0.25%.

In Tables 10 and 11, we show the yearly performances, respectively, of the in-sample
data and the out-of-sample data. The trading performances are measured using the total
return, the annual Sharpe ratio, and calculating the percentage profitable weeks as the
percentage of periods corresponding to positive returns, as in Section 4.1. We keep into
consideration the structural break in 2011, so that we change the cointegration coefficients
in the mispricing portfolio.

Table 10. In-sample performance.

Year 2010 2011 2012 2013

Total return 14.27% 28.22% 17.07% 26.36%
Shape ratio 1.45 2.13 1.20 0.99

Profitable weeks 42.18% 43.2% 45.83% 46.36%
Note: We apply the optimal strategy in Equation (15) with parameters k = 1, h = 6, O = 0.5, and c = 0.25% to
in-sample data spanning from 1 January 2010 to 31 December 2014. We calculate yearly performance indicators.

Table 11. Out-of-sample performance.

Year 2014 2015

Total Return 20.34% 13.84%
Shape Ratio 0.86 0.86

Profitable weeks 47.50% 46.36%
We apply the optimal strategy in Equation (15) with parameters k = 1, h = 6, O = 0.5 and c = 0.25% to
out-of-sample data spanning from 1 January 2015 to 10 April 2017. We calculate yearly performance indicators.

We can conclude that also with daily data and extending the dataset to prices of 2015,
the strategy performs well in the out-of-sample years, in line with the results obtained on
in-sample data. This evidence confirms the robustness of our analysis.

5. Discussion

It is known that there are many factors that impact crude oil prices and therefore
influence trading in the crude oil market. For example, crude oil supply and demand cause
price fluctuations, which often lead to inflationary pressures and immediate realignments
of US dollars and Forex crosses. Geopolitical events can also have a major impact on
the market, resulting in increased retail prices of gasoline due to production and supply
disruptions. Weather events affect crude oil trading, impacting supply (because of, for
example, production disruption) and refinery operations. Therefore, in order to achieve
profitable trading, traders need to have an in-depth understanding of the market and select
appropriate trading strategies.
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There are several trading techniques that can apply in crude oil markets, and the
choice of one of them depends on the knowledge, experience, and risk tolerance of the
investor. Although it may seem indifferent to use one strategy rather than another, the
mean-reverting statistical arbitrage strategy has substantial advantages over the most
common strategies. We consider the following widely used strategies:

(a) Fundamental Analysis: traders examine macroeconomic data, geopolitical events,
and supply and demand factors to choose the favourable trading strategy;

(b) Technical Analysis: traders use chart patterns and indicators to predict future price
movements and identify trading opportunities;

(c) Buy and Hold Strategy: traders carry out a long-term investment by holding onto
open positions until the desired profit is achieved;

(d) Spread Trading Strategy: traders take different positions (buy and sell) on two related
assets, and then at an appropriate time, they reverse the positions to obtain profit.

Strategies (a) and (c) require that, on the one side, traders have an in-depth knowledge
of the macroeconomic factors such as GDP growth, manufacturing data, and employment
rates that influence the crude oil markets dynamics, and on the other side, they know
how supply and demand factors influence the international oil market over long periods.
Strategy (b) requires that the trader has experience in observing price curve charts in order
to choose the right time to buy or sell an asset by using some supporting chart tools. Mean-
reverting statistical arbitrage strategies allow traders to overcome all those requirements
based on personal knowledge of the crude oil market and its dynamics.

Strategy (d) may be included among mean-reverting statistical arbitrage strategies
because it consists of modelling the divergence between two related prices (for example,
between a crude oil price and a distillate price) that can fluctuate due to changes in supply
and demand or other influences within the oil market, but that reverts to a long-run
mean. However, while with spread trading the relationship between two correlated assets
is considered and only the difference in prices is traded, the mean-reverting strategy is
based on a more complex procedure aimed at building a mispricing portfolio of three
or more correlated assets. In this way, and differently from the other cited strategies, it
is possible to have an accurate prediction of the mean-reverting portfolio dynamics and
obtain statistically predictable and expected profits through the application of specific
trading rules.

6. Conclusions

In this paper, we introduce the concept of statistical arbitrage through the definition
of a trading strategy, called mispricing portfolio. We focus on mean-reverting strategies
in order to capture persistent anomalies in the markets. Furthermore, we show how we
identify statistical arbitrages and apply trading rules adopted from equity markets.

We show the empirical evidence of statistical arbitrage in crude oil markets. We have
built the mispricing portfolio by using a cointegration regression in order to identify long-
term pricing relationships between the WTI crude oil futures and the price of a replication
portfolio composed of other two crude oils, Brent and Dubai. Finally, we apply trading
rules commonly used in equity markets to profit.

Overall, the statistical arbitrage presented in this paper and borrowed from the equity
world shows a very promising result in the commodity world and, in particular, in the
crude oil markets.

This suggests that more research is addressed in this direction, in particular about the
relationship existing between the physical market and the futures market and the role of the
convenience yield. Another interesting extension of the work is to apply mean-reverting
statistical arbitrage strategies during the COVID-19 pandemic and new armed conflicts
and analyse the results.
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Notes
1 One of the assets may represent a risk-free bond.
2 Conditional variance is a decreasing function of time t, that is, ∂

∂t Var[XT |Ft] ≤ 0.
3 The portfolio (Xt)t≥0 is also called simply “statistical arbitrage”.
4 In economic terms, Condition 3 implies that the Sharpe ratio associated to the strategy increases monotonically through time.

This is consistent with the policy adopted by hedge funds that profit by exploiting mean-reverting dynamics of a portfolio driven
by a continuously evolving Sharpe ratio (see Lo (2010)).
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