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Abstract: When trading in the call and put contracts of option chains, the portfolios of strikes must
be selected. The trader must also decide whether to take long or short positions at the selected strikes.
Dynamic strategies for making these decisions are discussed in this paper. On any day, the strategies
estimate the drift and volatility parameters of the future probability distribution of the price of the
underlying asset. From this distribution, the trader can further estimate the future expected profit
and expected loss that may be experienced for any portfolio of strikes of the call and put contracts.
Expected profit and expected loss are the reward and risk metrics of such portfolios. An optimal
portfolio can then be selected by making the reward as high as possible under the risk tolerance set
by the trader. Extensive back-testing applications to historical data of SPY option chains illustrate the
effectiveness of these strategies, particularly when dealing with short-term expiry options and when
acting as a seller of put and call options.

Keywords: option chains; extraction of tradeable information; dynamic option portfolios; expected
profit; expected loss; EL/EP ratio

1. Introduction

Traders in financial assets regularly need to decide when to take long or short positions
in the assets and how large the positions should be. Technical analyses provide some
guidance on such decisions. It analyzes the charts of past price movements and interprets
their patterns to arrive at possible future movements and corresponding possible trades.
The inherent assumption here is that past patterns are predictive of what will happen in
the future. This may often be questionable. Another possible approach uses statistical time
series models. This approach fits models such as autoregressive time processes to historical
price data, predicting possible future prices from the models and base trading rules on the
predicted prices. This approach also suffers from the drawback that it is backward-looking
in terms of model calibration. When past prices are the only data source involved in trading
decisions, this backward-looking drawback is present to some degree.

If options are traded with the given asset as underlying, then additional data in the
form of option prices at different strikes are available. This may help to make better trading
decisions. Possible future movements of the price of the underlying asset have important
consequences for participants in option markets. They have strong incentives to foresee
such movements. In the event that they are successful, it may be anticipated that the
option prices they set contain information relevant to future price movements. In terms of
measures, such as risk and conditional value at risk, the work reported by Barone-Adesi
et al. (2018) supports this anticipation. Here, our challenge is rather different, namely, how
to extract and exploit information from option prices to enable dynamic trading in the
portfolios of option strikes that can achieve cumulative trading profits over time while
simultaneously controlling trading risk.

The issue of extracting useful information from option price data has received some
attention in the literature, and we review it briefly here. Among the earliest papers are those
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of Ross (1976), Banz and Miller (1978), and Breeden and Litzenberger (1978). Working in the
no-arbitrage framework of the Black and Scholes (1973) formulas for option pricing, Breeden
and Litzenberger (1978) showed that the state price density of the underlying asset price
can be expressed as the second derivative of the call option price with respect to the strike
price. This result suggests an estimate of the state price density which may be helpful when
predicting price movements probabilistically. But statistical technical problems arose when
estimating the second derivate of the call option price from discretely observed call strike
prices. These problems were treated in various ways, and subsequent work produced many
proposals for this purpose. Bondarenko (2003), Ait-Sahalia and Lo (2000), Poon and Granger
(2003), and others have reviewed and extended the resulting literature. More recent reviews
and work along similar lines were conducted by Christoffersen et al. (2013), Fengler and
Hin (2015), Crisostomo and Couso (2018), and others. Particularly notable is the so-called
“recovery theorem” of Ross (2015), subsequently extended by Dillschneider and Maurer
(2019). Sanford (2022) reported successful applications of this theorem in several optimal
asset return portfolio contexts. However, the recovery theorem was also questioned from an
empirical point of view by Jackwerth and Menner (2020) as well as Zhu (2020).

As mentioned above, in this paper, we focus on trading portfolios of contracts selected
from option chains, given their option price data. As far as we know, the treatment that
follows has not been discussed before. Our treatment is extracting relevant information
from the option price data by adapting the method of consensus implied drift and volatility
estimates discussed by Venter and de Jongh (2022a). This information is used to estimate
measures of risk and reward in portfolios of contracts. Optimal portfolios are then selected
in terms of balancing their risk and reward measures. We used the expected loss (EL) and
expected profit (EP) as risk and reward metrics. This so-called EPEL approach to trading
decisions is discussed and motivated extensively by Venter and de Jongh (2022a, 2022b).

For ease of reference, we briefly review the EPEL approach. Denote the profit and
loss (P&L) of a prospective trade by the random variable X, distributed according to a
probability measure [P and let E denote the expectation under PP. If X > 0, the trade results
in a profit. Hence, the size of the profit of the trade is the positive part of X, denoted by
X =max {X, 0}. Similarly, if X < 0, the trade results in a loss, and the size of the loss
is the negative part of X, denoted by X~ = max{—X,0}. Then EX" and EX~ are the
expected profit (EP) and expected loss (EL) of the trade. They are both expressed in the
same monetary terms, which makes them directly comparable and interpretable. If a trade
has an EL that is much smaller than its EP, it is an attractive trade. If the EL and EP of a
trade satisfy the risk constraint EX~ < AEX™, then it is acceptable to a trader operating at
a risk tolerance level A. Here, A is a number between 0 and 1. If the risk constraint only
holds for A > 1, then the risk of the trade may be larger than its reward. This is typically
unattractive to a trader, hence the restriction A < 1. A trader with A just below 1 may be
described as risk-tolerant, whereas a trader with a smaller A is less risk-tolerant (or more
risk-averse). The risk constraint EX~ < AEX™ can be written in terms of the risk-to-reward
ratio in the form EX™ /EX™ < A. A trader operating at a risk tolerance level A, looks for
trades that have a risk-to-reward ratio below A.

The remainder of this paper is organized as follows. Section 2 introduces the notation
used here. It contains the detailed expressions and relations required for this application of
the EPEL methodology. It also shows that decisions on optimal call and/or put portfolios
can be formulated and solved via mixed integer linear programming (MILP). This solution
depends on the drift and volatility parameters of the geometric Brownian motion model
GBM(u, o) used to model the price movement of the underlying asset. Section 3 deals with
the estimation of these parameters using option price data, thus constituting the information
extraction aspect mentioned above. Section 4 gives an extensive illustration of the EPEL
methodology based on back-testing using historical data of SPY option chains over the
period January 2022 to June 2023. Section 5 concludes the paper with an interpretation
of the results and a listing of open research opportunities. The major contribution of our
paper is that the use of the EPEL methodology enables effective option trading.
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2. Selecting Long or Short Call or Put Option Portfolios

Consider an asset and assume that a chain of call and put options trade with the asset
as an underlying instrument. Denote the price of the asset at the end of some day ¢ by S;

and the strikes of these options by {K;, i = 1,..., I}. Further, let {(C,;, Ca,i>/ i=1,...,1)

denote the call bid and ask option prices at the strikes, and let {(P bir P,”-) ,i=1,..., 1}
denote the put bid and ask prices. Also, assume the option chain will expire at the end of 1
subsequent days.

The portfolios of options covered in this paper consist of numbers of contracts at the
different strikes in which long and/or short positions in the calls and/or puts are taken.
A short position at a given strike is taken by selling contracts at the bid price and a long
position by buying contracts at the ask price at that strike. Denote the short-call (SC) sub-
portfolio positions with {N,;, i =1,..., I}, so that N ; is the number of call contracts sold
(or shorted) at the i-th strike. Similarly denote the long-call (LC) sub-portfolio positions
with {N .ir 1 =1,..., 1}, the short-put (SP) sub-portfolio positions with {M pirt=1,..., 1}
and the long-put (LP) sub-portfolio positions with {M ,;, i = 1,..., I}. In this section, we
discuss the EPEL method used to select these portfolio positions.

Assume that the option portfolio positions taken on day t are kept unchanged up
to expiry on day t + h. On that day, the asset price is S;j, and when the i-th call expires,
this gives the owner a cash flow of max(0, S;,; — K;) per long call. Discounting back to
the buying time at the rate » and subtracting the buying cost, the nett P&L per long call
contracts at the buying time is max(0, S;,j, — K;) e — C, ;. Similarly, the nett P&L per
short call is —max (0, S;,; — K;) e~ + Cp ;- Hence, summing over all strikes, the P&L of
the SC sub-portfolio is given as follows:

Xsc=—-Y. 1, [Nb,i{max(of Sin — Ki)e ™ — Cb,iH 1)

and the P&L of the LC sub-portfolio is

Xie=Y 11 {Na,i{max(of Spon—Ki)e ™" — Ca,iH )

Analogously the P&L-s of the SP and LP sub-portfolios are

Xop = =1y [My{max(0, K; = Sya)e™ — Py } | ©)
and
Xip = ¥ b [Mai{ max(0,K; = Spap)e ™™ — Py }] @

Adding these four P&L-s, the total portfolio P&L is
Z = Xsc + Xic + Xsp + Xip (5)

Some constraints on the portfolio position variables must be taken into account. Denote

the available volumes of the call contracts at the bid and ask prices by {(V,;, Va,l-) 1=

1,..., I} and those of the put contracts by {(W bir Wa,i), i = 1,..., I}. The position
numbers will be integers that must be at least 0 and at most equal to the volumes available,
ie., fori =1,..., I we used the constraints

0<Npi < V3i, 0SNG < Vi, 0 < My < Wpj, 0< My < W, (6)

We assume that the trader has a capital budget of the amount A to trade with and
portions of this budget may be used for the sub-portfolios. For the SC sub-portfolio, the
trader receives the amount Z{Zl Ny iCy,; when shorting the relevant contracts. This is an
exposure that may be lost eventually, should not be too large, and must form part of
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the overall budget. The capital outlay to buy the contracts of the LC sub-portfolio is
Yl | N,;C,;, and this, too, forms part of the overall capital budget. Similarly, for the SP
and LP sub-portfolios, the budget constraints can be written as

Y 1{NyCpi+ NuiCaji + My Py + Ma,ipa,i} <A 7)

The EPEL approach entails choosing the position variables to maximize the expected
total P&L (EP&L) of the portfolio, subject to the requirement that the EL/EP ratio is below
a specified risk tolerance level A. This amounts to

Maximizing the EZ subject to EZ~ < AEZT, 8)

as well as the subject to the constraints (6) and (7).
To calculate the expectations here, we use the GBM(y, 0)-model for the asset price’s
movement. Under this model, we can write

Seen = Sein(U) = Siexp( (1 = o?/2)h+ o Vi) 9)

where the random variable U is N (0, 1)-distributed. This expression can be substituted
into (1)—(4) to express the P&L as functions of U, and then (5) can be expressed as

Z(U) = Xsc(U) + Xpc(U) + Xsp(U) + Xpp(U). (10)

In this notation, we wish to maximize EZ(U) subject to EZ(U)~ < AEZ(U)™. The
integrands of these expectations must be multiplied by the unit of normal density and
integrated to meet the expectations involved in (8). This turns out to be quite complicated,
and the optimization problem becomes highly multi-dimensional and non-linear. Here,
the discretization of the normal distribution enables great simplification, turning the entire
optimization problem into a mixed integer linear programming (MILP) problem. The
discretization of Venter and de Jongh (2022a) will be used. In essence this is a much-
simplified version of the approach detailed in Taboga (2016). For ease of reference, it is
summarized in Appendix A of this paper. The discretization amounts to replacing the
continuous unit normal distribution for U by a uniform discrete distribution over a set of
mass points {uy, d =1,...,D}, which is chosen such that the discrete distribution closely
approximates a unit of normal distribution. To apply it, let

Sd :Stexp[<y—(72/2)h+(7\/ﬁud} ford=1,...,D. (11)
Substituting into (10) gives

zq = Z(ug) =Xsc(ug) + Xpe(ug) + Xsp(ug) + Xep(ug)

= Xsc,d + Xrcd + Xspd + XLpa (12)
where
Xscd = —Y 1-1 {Nb,i{max(of sq—Ki)e ™ — Cb,iH
XL =Y i1 [Na,i{max(ol sq—Ki)e ™ — Ca,iH
Xspg = —Y i_1 [Mb,i{max(o, K —sg)e” " — Pb,iH
XLpd =Y i1 [Ma,i{max(ol K —sq)e ™" — Pa,i}] (13)
Define

zj = max(0, z;) and z; = max(0, —z4) so that z; =z} —z; (14)
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Then, the discrete version of problem (8) is as follows:
SV R ol : Ly - Iy 4
maximize 52 4—124 subject to BZdzlzd < /\52 d=124 - (15)
The sets of variables of interest at this stage are the position variables

{(N bir Ngi» My, Mﬂ,i), i = 1,..., I} and the positive and negative parts of the over-

all P&L { (z1, z;) ,d=1,..., D}. They are linearly related by (13) and (14) and linearly
constrained by (6) and (7). The objective function in (15) is also linear, implying that the
discrete approximation turns the optimization problem into a MILP problem.

In addition to the considerations above, the trader may wish to have control over
the number of strikes within each sub-portfolio to which capital is allocated and under-
take this in an optimal way. To enable such control, four sets of new {0, 1} variables,

{(J scisJic,isJspis ] ij), i=1,..., I} can be introduced, taking the value 0 if nothing is to
be allocated at the relevant strike and 1 otherwise. Then, it is required that

Np,iCpi < AJsc,is NaiCai < AlLc,is

. 16
MyiPy; < Alsp,i, MyiPyi < Alrp,i, fori=1,..., 1 16)

and if the constraints are added,
Y1 Jsci < Numse, ©!_ Jrci < Numyc, (17)

1
Y1 Jspi < Numgpand Yj_; Jip; <Numpp,

then the number of strikes in the sub-portfolios can be limited to prespecified values
Numsc, NMmLc, Numsp and NumLp. For example, if Numsc = NMTHLC = Numsp =
Numpp = 1, then capital should be allocated to at most one strike in each sub-portfolio.
Note that these additional constraints on the number of strikes are all linear so that the
MILP solution method can still be used.

The trader may also be interested in the EP and EL of individual trades at each possible
strike in the sub-portfolios. Taking all position variables as 0, except for N}, ; which is taken

as one, Z becomes equal to Xgc; = {Cb,i —max(0, S, — Kl-)e_rh}. For this individual SC
trade at the i-th strike only, the EP and EL are given by

—rh +
EPSC,i = E{Cb,i — max(O, St+h — K,»)e } and

_ (18)

ELSC,i = E{Cb,i - max(O, Stin— Ki)e_’h} .
The ratio ELgc ;/ EPgc ; serves as a metric of the quality of this individual trade. Using the
discrete normal approximation, the expressions in (18) can be approximated by

+
EPSC,i = %ZdDzl {Cb,i — max(O, Sq — Ki)E_rh} and (19)
ELsc; = %25)21 {Cb/i —max(0,s4 — Ki)e_rh}i respectively.

This is similar for LC, SP, and LP individual trades.

This completes the description of the EPEL method applied to options trading portfolio
selection, except for one aspect, namely that s; in (11) depends on the (unknown) values of
the parameters y and ¢ in the GBM(, 0)-model for the price process of the underlying
asset. The calculations above can only be carried out once suitable estimates of these
parameters are obtained. This is where the extraction of information from the option prices
comes in, and we attend to this in the next section.
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3. Estimating the Drift and Volatility Parameters

Here, we describe the estimation of the parameters of the GBM(, o)-model needed
for s; in (12). This is conducted by an adaptation of the method of consensus-implied
estimates discussed by Venter and de Jongh (2022a).

The discounted cash flow at time t of the call contract at the i-th strike is max{0,

e (S — Ki) } Under the GBM(p, o)-model for the asset price, the expectation of this

cash flow is given by Equation (6.2) by Venter and de Jongh (2022a). Adjusted to the
notation here and using (9), this becomes

Ci(y,a): e—rh /b""J (Ste(ﬂ_gZ/Z)h-Hr\/ﬁu _ Ki)go(u)du

s Ui

= 8l 1= @ (b — Vi) | — Kie (D) (20)

with b; = {log(K;/ S¢) — (u—c?/2)h } /ov/h. Similarly, the discounted cash flow at time ¢
of the put contract at the i-th strike is max{0, e~ (K; — St+h)} and under the GBM(p, 0)-
model, the expectation of this cash flow is

b;
Pi(‘lzl,(f)z efrh/ (Ki _ Ste(yng/Z)hﬂT\/ﬁu) (P(M)du

_ _ste<w>Tq>(bi _ aﬁ) + Kie T (b;) (1)

Venter and de Jongh’s (2022a) estimates are composed of # and o which are chosen to
minimize the weighted sum of squared differences over strikes between the “observed”
prices and their expected counterparts under the GBM(u, ) —model. However, for both
calls and puts, we had two “observed” prices, namely the bid and ask prices. We took a
combination of the bid and ask prices to compare against the expected counterparts. The
matching criterion was then given by

SSD(u,0,1) = L qwi{ [1Coi + (1 = 1)Cai = Cilp, @) "+ [Py + (1= )Py - Pi(,“/a)]z} (22)

where 77 is the combination parameter. Then, this criterion was minimized over the three pa-
rameters i, 0, 17. The resulting estimates of y and ¢ were denoted by fi; and &7, respectively.
A suitable choice for the weights w; at the different strikes in (22) is

wj = exp(—f|K; — 5t|)/2}:1exp(_f|1<j = St) (23)

where f > 0 is a tuning constant. This places more weight on the strikes near to the money
(i.e., near to the current price of the underlying asset). The tuning constant can be chosen
to control the extent of the weight concentration near the money. Other possible weight
choices may be the trade volumes or open interests at the strikes, normalized to a sum of
one. Thus, the differences at the strikes with high volume-wise market attention count
more than those at strikes with lower attention, a reasonable consideration to apply. For any
possible choice of weights, the minimization problem to obtain fi; and &; can be handled
using a non-linear programming solver.

These estimates constitute the information on price drift and volatility extracted from
the option data. As noted previously, to the extent that the option market participants are
forward-looking in their price settings, these estimates may be assumed to be relevant to
subsequent price movements, at least in the near future. Under this assumption, we can
substitute fi; and ¢ into Equation (11) and then solve the MILP problems to obtain explicit
predictions and judgments of the optimal portfolio position variables. In the next sections,
we explore the effectiveness of this trading method by back-testing, using empirical option
price data.
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4. Empirical Illustration When Trading SPY Option Chains

In this section, we illustrate the EPEL option trading strategy explained above. Back-
testing is performed, using historical SPY option chain data obtained from the CBOE data
shop (see CBOE (2023)). These data cover the period from 3 January 22 to 30 June 23. For
each trading day and all active option chains, it contains the daily strikes together with the
bid-ask prices and volumes of contracts at the strikes, both for calls and for puts at 15:45
pm and at the end of the trading day.

The detailed back-testing results are presented in an extensive Excel file, linked as SPY
Results Aug 24. This file provides Supplementary Material to this paper. It contains fifteen
spreadsheets showing the important stages and findings of this back-testing study. Extracts
from these spreadsheets are incorporated and discussed in this section of the paper.

Sheet 1: 4 January 22 Cons Ests. As stated above, we anticipate that information
extracted from past option data will only be useful for near-term trading. Therefore, the
back-testing will focus on options with one day to expiry, i.e., with 1 = 1. In view of this
very short term, we take the interest rate as r = 0. Until further notice, we will work with
end-of-day (EOD) data. The first sheet is entitled ‘4 January 22 Cons Ests’. It serves to
illustrate the option data used and the consensus estimation step to obtain fi, and &, for day
2, as explained above in Section 3. We chose 4 January 22 since this is the first trading day
with an option chain expiring one day forward. The illustration uses normalized weights
as in (23) above with the tuning constant f = 0.5. Under these weights, strikes outside the
range from 460 to 500 play an insignificant role, and the data of such strikes are effectively
dropped. Column A shows the strikes used, and columns B to E show the corresponding
closing bid-ask call and put option prices. The weights are in column F. With these data,
the non-linear programming solver NLPQN in PROC IML of SAS delivers the minimizing
consensus values of fi; = —0.00038 and ¢, = 0.00638 and the combination parameter
estimate 7 = 0.5. The latter implies that we are effectively working with mid-bid-ask prices,
as shown in columns G and I. Columns H and ] show the corresponding fitted expected call
and put prices from Equations (20) and (21). Clearly, observed and fitted prices agree well.
The drift and volatility parameter estimates can be used as inputs into the EPEL formulas
and calculations for 4 January 22.

Sheet 2: 4 January 22 EPEL metrics. This sheet provides an illustration of the individ-
ual trades at each possible strike, as discussed at the end of Section 2. It has four blocks,
each showing the EP, EL, and the EL/EP ratio estimated by the equations in (19). For
example, if the trader contemplates selling one call contract at strike 474 with a price of 3.60,
the expected profit (EP) would be 1.13, and the expected loss (EL) would be 1.10; the EL/EP
ratio is 0.98, which would mean that the trader operates at a high-risk tolerance level with
this trade. In contrast to this, there is the possible trade of selling one put contract at strike
472 with a price of 0.13. It has an EP of 0.13, EL of 0.04, and a ratio of 0.33; therefore, the
trader will be operating at a low-risk tolerance level. Thus, this possible trade on its own
does appear attractive.

Sheet 3: P&L-s Lam one. Moving on to the portfolio back-testing process itself,
calculations for the consensus drift and volatility parameter estimates were performed
every day, and the results were applied in the EPEL portfolio context, as explained in
Section 2. We started by assuming that the trader was risk-tolerant and set A = 1. Also,
until further notice, we assumed that the trader selected at most one contract per sub-
portfolio on each trading day. In terms of the parameters in Section 2, this meant that
Numgc = Numpc = Numgp = Numpp = 1. Sheet 3 provides back-testing results under
these trading assumptions. Columns A and B show the dates and numbers of the trading
days. Column C shows the closing price of SPY on the days, and column D shows the
number of days to expiry for the option chain with the nearest time to expiry. Columns E
to H show the realized P&L-s for each of the sub-portfolios when executing the EPEL rules,
and column I show their sum. Trading reflected by non-zero entries occur only on days
where expiry is only one day away. Moreover, no trading in some sub-portfolios may occur
on a trading day (see, e.g., E8 and H8). Columns K to O show the accumulated P&L over
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days. Graphs of the cumulative P&L-s over time are displayed in the sheet; we return to
them below.

Sheet 4: Trades Lam one. More details on the portfolio trades are shown in Sheet
4. For example, on the second day, the entries in the long calls columns I, J, and K show
that 956 call contracts were bought at strike 480 and at the price of 0.28 per contract. This
entailed a capital allocation of 267.68 for that trade. The close price of SPY on the next
trading day (5 January 22, column C5) was 468.38. Since this was below the strike of 480,
the long call expired worthlessly, and the trade yielded a loss of the capital employed, i.e.,
the P&L of this trade was —267.68. This is the entry shown in the “P&L-s Lam one” sheet
for 4 January 22 in column F3. As another example, in the “Trades Lam one” sheet, the
entries in columns Q, R, and S for 4 January 22 show that 31 put contracts at strike 479 were
bought at the price of 2.20 each. This entailed a capital allocation of 68.20 for that trade.
As shown above, the close price of SPY on the next trading day was 468.38, which is 10.62
below the strike of 479. Hence, this trade delivered a profit of 31 x (10.62 — 2.20) = 261.02.
This is the entry in column H3 of the sheet “P&L-s Lam one”. This is similar to the other
trades recorded in the sheet “Trades Lam one”.

Another short put trade that produced a very poor result was on 17 May 22, day
number 94. Columns M, N, O, and P show that 609 contracts at strike 401 were sold at the
price of 0.47 each. The next day, SPY closed at 391.86, which was 9.14 below the strike of
401. Consequently, that trade delivered a loss of 609 x (9.14 — 0.47) = 5280.03. We will
return to this trade again when discussing Sheet 9 below.

Note that for the sake of simplicity, the P&L-s of trades are recorded against the day
when the trade was executed, although the actual money flow may occur only at the end of
the next day. Since the interest rate is taken as zero, this convention makes no difference to
the results reported here.

Returning to the sheet “P&L-s Lam one”, its graphs are extracted in Figure 1 below.
The top panel shows the graph for the total portfolio cumulative P&L-s over time, and the
bottom panel shows the graphs of the four sub-portfolio cumulative P&L-s. Over the first
seven months of this period, the portfolio total did not show a definite trend, but after that,
the EPEL rules performed very well in terms of producing a steadily growing cumulative
total P&L. Relatively large drawdowns occurred (e.g., at the start of trading and also on
17 May 22, which is the trade referred to above) but apart from these, the total P&L grew
quite consistently over time. From the bottom panel, it is evident that the short-put (SP)
sub-portfolio was the major contributor to this performance. The two long sub-portfolios
performed rather poorly.

Sheet 5: Realized Stats Lam one. This sheet tables and compares empirical versions
of the EPEL trade metrics. The calculations are performed for the P&L-s produced over
time in the back-testing process rather than from daily GBM assumptions—hence the term
“Realized Stats”. This table is repeated here as Table 1 below. The second and third lines of
the table show the numbers of trades that resulted in profit and loss, respectively. The fourth
and fifth lines express these frequencies in percentage terms and may be interpreted as the
empirical estimates of the probabilities of profitable and losing trades, respectively. In these
frequency terms, the two short sub-portfolios outperformed the two long sub-portfolios
substantially. Lines six and seven show the average sizes of the profit and loss events. In
contrast to the frequency terms, in size terms, the two long sub-portfolios performed better
than the two short ones. The size and frequency terms are combined into one metric by
taking their products; the results are shown in lines nine and ten, and their ratios are in
line 11. These metrics may be thought of as empirical realized estimates of the EP, EL, and
EL/EP ratio of the EPEL method. The results confirm again that the SP sub-portfolio was
best, with the realized risk-to-reward ratio quite low at 0.36, followed by SC (0.52), LC
(0.89), and LP (1.41). These numerical findings are in line with the impression conveyed by
the graphs in the bottom panel of Figure 1. The last two lines of Table 1 show the average
P&L per trade and the average size of the capital involved per trade over the period. Here,
the SP sub-portfolio delivered the remarkable result of producing about 122 units of profit
per trade, involving only 194 units of capital outlay.
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Figure 1. Cumulative P&L-s from back-testing with end-of-day data and with a risk tolerance level
A = 1. (a) Graph of the total portfolio cumulative P&L-s over time and (b) graphs of the cumulative

P&L-s of the four sub-portfolios.

Table 1. Trade statistics of sub-portfolios compared.

Realized Trading Stats SC LC SP LP Total
Number of profit events 176 34 211 49 120
Number of loss events 24 180 4 99 95
% profit events 88.00 15.89 98.14 33.11 55.81
% loss events 12.00 84.11 1.86 66.89 44.19
Ave profit size per profit event 88.39 1236.19 193.06 200.20 594.17
Ave loss size per loss event 334.98 206.79 3622.54 139.48 386.60
Ave profit size per trade day 77.80 196.42 189.47 66.31 331.64
Ave loss size per trade day 40.22 173.94 67.41 93.32 170.84
Realized Risk to Reward ratio 0.52 0.89 0.36 1.41 0.52
Ave PL per trade 37.59 22.47 122.07 —27.02 160.80
Ave Capital used per trade 137.81 206.68 194.10 177.48 650.18
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Sheets 6-8: P&L-s Lam half, quart, eighth. Thus, far back-testing was performed
when trading under the maximal risk tolerance level A = 1. Next, we look at lower risk
tolerance specifications, namely A = 0.5, 0.25 and 0.125. The results are given in the sheets
entitled “P&L-s Lam half”, “P&L-s Lam quart”, and “P&L-s Lam eighth”. Their layouts
and contents are like those of “P&L-s Lam one”. Moving from sheet to sheet, it can be
noted that as A becomes smaller, the EPEL rules deliver cumulative P&L results, and the
graphs become less noisy, especially over the early part of the period and for the SC and
SP sub-portfolios. Moreover, they tend to succeed in avoiding larger drawdowns while
retaining their overall growth tendency. Thus, it is evident that smaller choices of A produce
risk-reduced trading without seriously affecting the desirable P&L growth performance
over time. Figure 2 illustrates the favorable results for the chosen A = 0.125.
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Figure 2. Cumulative P&L from back-testing with end-of-day data and with the risk tolerance
level A = 0.125. (a) Graph for the total portfolio cumulative P&L over time and (b) graphs for the
cumulative P&L-s of the four sub-portfolios.

Sheet 9: Trades Lam eighth. It is particularly interesting to look at the trades on 17 May
2022, which are referred to when discussing Sheet 4 above. Recall that with the choice A =1,
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a large drawdown of 5134.53 occurred, mostly due to the loss of 5280.04 from the SP trade
(see day 94 of “P&L-s Lam one”). Then, with the choice A = 0.125, the drawdown size
was only 238.94, with 153.57 coming from the SP trade (see day 94 of “P&L-s Lam eighth”).
Sheet 9 shows more details of this trade. Columns M, N, O, and P show that 1706 contracts
at strike 392 were sold at the price of 0.05 each. The next day, SPY closed at 391.86, which
was only 0.14 below the strike of 392. Consequently, the trade delivered a small loss of
1706 x (0.14 — 0.05) = 153.54. Thus, with the choice A = 0.125, the EPEL algorithm avoided
the large drawdown experienced under the choice A = 1. Column Z of “Trades Lam eighth”
shows that the prespecified EL/EP ratio of 0.125 was binding in the optimization solution.
Compare this to the corresponding value of 0.4696 found during the optimization solution
with the A = 1 specification (day 94 of “Trades Lam one” column Z). In that case, the trader
operated with a high-risk tolerance and thought that achieving an EL/EP ratio of 0.4696 was
attractive. The result was that the large draw-down that was actually experienced was not
anticipated. The strike selected to trade in was too close to the money and led to a large loss.
The upshot is that trading at a low-risk tolerance setting helps to avoid such large, though
infrequent, losses.

Sheet 10: P&L-s 1545 data. Up to this point, we used the end-of-day (EOD) prices
and volumes to find optimal EPEL allocations and assumed that the trader could execute
simultaneously at closing time. From a practical point of view, this is a rather unrealistic
assumption. Next, we will base the EPEL metrics on the 15:45 pm data of option prices and
volumes to select the trades to be performed at EOD. Those trades will then be conducted
at EOD prices and at the smallest of the optimal 15:45 volumes and the EOD volumes. Such
assumptions may be more realistic from a practical point of view. The best results reported
so far were obtained with the risk tolerance parameter A = 0.125, and we continue with
this choice here. Moreover, trading in the two long sub-portfolios did not improve the total
portfolio results, and we reported only for trading in the two short sub-portfolios, SC and
SP. We still assumed that the trader might select at most one strike from each of these two
sub-portfolios. Sheet 10 shows the results. Figure 3 is extracted from this sheet. Its top
panel plots the cumulative P&L-s of the two short sub-portfolios, together with that of their
total. The SP sub-portfolio performed much better than the SC sub-portfolio, although
the latter did make consistent contributions. The bottom panel of Figure 3 compares the
total portfolio P&L based on the 15:45 data with that based only on the EOD data. This
suggests that using 15:45 data entails some loss of benefit since lower overall growth is
obtained—Ilikely due to making decisions somewhat earlier than what was experienced on
the next trading day.
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Figure 3. Cont.
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Figure 3. Cumulative P&L from back-testing with 15:45 and EOD data and with a risk tolerance level
of A = 0.125. (a) Graph of the cumulative P&L-s of SC and SP sub-portfolios together with their total
based on 15:45 data, and (b) graphs of the cumulative total portfolio P&L-s based on the 15:45 data
compared to that based on the end of day data.

Sheet 11: Info duration. The underlying surmise of this back-testing study is that the
option traders are forward-looking in their price settings, allowing us to extract estimates
of the drift and volatility parameters that are useful for finding favorable future trades. The
results reported so far bear out that this may be a successful strategy, but one may wonder
how long such extracted information stays useful. Sheet 11 contains some results in this
direction. A simple approach to shed light on the duration question is to replace the most
recent drift and volatility estimates with earlier estimates and see how much difference
this makes to the P&L performance. Sheet 11 uses the same settings as Sheet 10 above but
focuses on the short put (SP) sub-portfolio only. It reports the cumulative P&L-s under
four time-lagged choices of the drift and volatility estimates, namely 0, 1, 2, and 3 days,
respectively. Figure 4 is extracted from this sheet and shows the results.
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Figure 4. Cumulative short-put P&L from back-testing with 15:45 data, with the risk tolerance level
A =0.125 and lags at 0, 1, 2, or 3 days for the drift and volatility estimates.
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The blue curve represents the P&L growth when there is no time lag, as in the bottom
panel of Figure 3. The other curves use the time-lagged drift and volatility estimates in
their calculations; they still show growth over time but tend to fall prey to occasionally
large drawdowns, marring their performance. The clear conclusion is that the use of the
most recent option data yields the best option trading performance.

Sheet 12: P&L-s data 3 positions. Thus far, we have constrained the trader to select
at most one position per sub-portfolio per day. Typically, only a small portion of the total
trading capital was used under this constraint. If the performance was good under this
constraint, then we could anticipate that it would be even better if more than one position
per sub-portfolio was allowed since there might be favorable strikes to select near those
that produced good results. Sheet 12 reports the results in this direction. Here, the assumed
set-up is similar to Sheet 10; we traded in the two short portfolios but allowed positions for
three strikes at most for each portfolio. Figure 5 compares the total P&L performance in
this case with that under the single position constraint.
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-5,000 “ananl

20-Dec-21 9-Apr-22 28-Jul-22 15-Nov-22 5-Mar-23 23-Jun-23
Date
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Figure 5. Cumulative P&L from back-testing with 15:45 data, with the risk tolerance level A = 0.125
and 1 or 3 maximal position numbers per short sub-portfolio.

As anticipated, there was much to be gained by trading on a larger scale than with
single positions only. The average capital per trade used here was 294.03 (column R line 15),
with an average P&L per trade of 213.45 (column R line 14). This was more than double the
results when trading with the single position constraint, namely 138.46 and 84.60 (sheet 9,
column R lines 15 and 14). Moreover, with a total trading capital available of 1000, there
was scope to increase the number of positions allowed substantially.

Sheet 13: Skew BM. Above, we used the GBM model for the price movements of
the underlying asset. The applicability of the GBM has been questioned widely in the
literature, and many distributional modifications have been proposed. A recent example
is the paper by Zhu and He (2017), who reviewed this literature and discussed the skew
Brownian motion (SBM) as an alternative model to use in option pricing. This model can
be incorporated very easily into the context of our paper, as described in Appendix B.

We implemented the SBM model in the back-testing process. It turns out that the
consensus estimates of the skewness parameter of the SBM are practically always very close
to zero, implying that the SBM model stays close to the GBM model. Sheet 13 supplies
numerical results in this regard. The consequence is that the P&L performance of the EPEL
trading approach does not change appreciably under this skew BM model. This is clearly
demonstrated in Figure 6, which compares the P&L performance under the SBM model with
that obtained under the GBM model for the settings of Sheet 8. The apparent robustness of
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the GBM model in our context may be due to the daily updating and re-estimation of its
parameters using the newest option price data.
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Figure 6. Comparison of cumulative P&L-s under the skew BM and GBM models for the price
movement of the underlying asset.

Sheet 14: Costs. For the sake of simplicity, back-testing usually starts with the zero
trading costs assumption. If one cannot find profitable algorithms when the cost is zero, one
would also not find profitable algorithms when the cost is not zero. The illustrative results
above were obtained in this spirit. This led to favorable results such as those discussed for
Sheets 8 and 9. We continued with that setting but assumed that the trader faces non-zero
proportional trading costs at each buy and sell trade. We extended the formulas in Section 3
to accommodate this cost assumption. Sheet 14 shows the cumulative P&L-s over time for
two cost levels, namely 20 and 100 basis points. Figure 7 exhibits a graph of the results.
As one would anticipate, non-zero costs slow down the P&L growth over time, but not
severely, even under the very high 100 basis points assumption.
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Figure 7. Comparison of cumulative P&L-s under zero and non-zero proportional costs assumptions.
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Sheet 15: Discretization. In all the results above, D = 201 mass points were used for
the discretization of the normal distribution. We found that increasing this number did not
lead to a much different P&L performance. This is illustrated in Sheet 15. The same setting
as in Sheet 14 was used, and the cumulative P&L-s were calculated both with D = 201 and
D = 501 for the number of mass points. The latter set of calculations involved handling
much larger matrices in the MILP optimization program and thus required much more
computer time. Figure 8 exhibits a graph of the results. Clearly, the greater computational
effort is not worthwhile.
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Figure 8. Comparison of cumulative P&L-s resulting from increasing the number of mass points of
the discretized normal distribution.

5. Conclusions

This paper deals with extracting information from option chain data and using it to
trade algorithmically in option chains. The information extracted consists of daily estimates
of the drift and volatility of the price of the asset underlying the option chain. These
are used, in turn, to estimate the expected profit and loss of the possible long and short
portfolios of call and put options at various strikes and with one day to expiry. Optimal
portfolios are then estimated in terms of balancing expected profit and expected loss and
satisfying relevant constraints. This methodology was extensively back-tested using SPY
option chain data. Some important conclusions and interpretations of the results obtained
from this EPEL study are given as follows.

Back-testing dynamic trading requires assumptions tailored to the available data. This
may cause inherent limitations on the general validity of the results. Nevertheless, the
results reported strongly suggest that option traders can profit substantially from executing
a short put option portfolio daily that has a low risk-to-reward ratio in terms of expected
loss and profit metrics. That this is a reasonable finding can be explained as follows. In
principle, selling an option delivers an immediate premium income to the seller. In the case
of selling a put option, if strikes are selected so that the price of the underlying asset stays
above them up to expiry, then the seller can retain the full premium as profit and have no
loss-producing obligations. To make this outcome likely, the strikes selected must be far
below the money at execution time. But the strikes selected must also not be so far below
that the premium is very small. The EPEL methodology succeeds well in balancing these
two conflicting requirements, resulting in the consistent accumulation of profit over time.

Similar arguments can be made for short-call option portfolios. If the strikes are
selected such that the price of the underlying asset stays below them up to expiry, then the
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seller will also retain the full premium as profit. Again, the strikes should not be selected so
far above the money at execution that the premium is very small. The back-testing results
also confirm that the EPEL methodology succeeds in this regard, but not to the same extent
as with short put trading. This difference between the two short portfolios may be due
to an asymmetry between reasons for trading in put and call options. To be able to sell a
put option. a willing buyer of the put is needed; such a buyer may wish to hedge against
a perceived threat to an existing investment in the underlying asset. To be able to sell a
call option, a willing buyer of the call is also needed, but now the buyer likely perceives
an opportunity to participate in a possible price rise of the underlying asset. Acting on a
perceived threat is quite different from acting on a perceived opportunity, implying that
the market of buyers of put options is likely larger than the market of buyers of call options.
This difference is clearly visible in the different P&L performances of the two short options
portfolios found in the back-testing study. It is also in line with the so-called prospect
theory of Kahneman and Tversky (1979) and Kahneman et al. (1982).

The two long portfolios performed poorly overall. Perhaps the overriding factor here
is the very short time to expiry. While this works in the favor of the seller who has short
puts and calls, the opposite applies to the buyer who takes long positions.

The work reported in this paper can be extended in many directions. Much trading in
the options market is performed using compound option structures. Some examples are
straddles, bull and put spreads, and many more combinations of puts and calls at different
strikes, together with positions in the underlying asset. Optimal dynamic portfolios of such
option structures would benefit traders greatly. There is an open opportunity to apply the
EPEL methodology to calculate such structured option portfolios.
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Appendix A. Discretization of the Normal Distribution

In certain contexts, it may be useful to approximate a continuous probability distri-
bution by a discrete distribution. There are many studies in the literature on this issue.
Chakraborty et al. (2021) dealt with this issue via the notion of “principal points”, which
has attracted much interest but is more general than what is required for our purposes here.
Below, we present a simplified version of the work of Drezner and Zerom (2016), which we
found effective in the context of our paper.

Let U be a standard normally distributed random variable and denote its density
and distribution functions by ¢ (1) and ®(u), respectively. With D a positive integer and
d =0,1,...,D define g; = ® 1(d/D), so that g4 is the quantile of the unit normal
distribution probability d/D. Hence, g0 = —c0 and qp = oco. Within the d-th interval,
(94-1,94) formed by the successive quantiles, defined as follows:

9d
wa = B{Ulgar < U <as} = [ uglw)du = D{glga) - plaa)}
d—1
Then, the uniform discrete distribution over the mass points {u;, d =1,...,D} ap-

proximates the continuous unit normal distribution. Figure A1 demonstrates the accuracy
of the approximation by comparing the two cumulative distribution functions for the
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choice D = 201. An odd number choice ensures that 0 is a mass point. The two curves are
already almost graphically indistinguishable at this choice, and the approximation becomes
better with increasing D. This discretization can be applied to reduce the calculation of
the expectation of a complicated function of U to the calculation of a simple sum via the
approximation

EG(U) = 5 Y P4 Gluy)
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Figure A1. Comparison of the normal and uniform discrete distribution functions for D = 201.

Appendix B. Skew Brownian Motion

The skew Brownian motion is essentially based on the skew-normal distribution of
Azzalini (1985). This distribution has the following density function:

Y(u) = 2¢(u)®(an)

where « is a parameter that determines the extent of the skewness (and other features)
of the distribution. If & = 0, then it reverts to the standard normal distribution. If « > 0
(« < 0), then it puts more weight on the right (left) tail of the normal distribution.

In the context of our paper, assume that U in (9) and elsewhere above, has this
distribution. Under this skew-normal distribution, the expectation of the discounted cash
flow in (20) may be expressed as

Ci(p,o,0) = Zefrh/oo (Ste(?‘*gz/z)hﬂf\/ﬁ“ — K;)®(au)p(u)du

i

Replacing the continuous unit normal distribution in this expression with its approxi-
mating discrete distribution gives the following:

ze—rh
Ci(po,0) = TZE:J(W > b;)(sq — Ki) @ (auy)

This sum is easy to program and work with. Similarly, the expectation of the dis-
counted cash flow in (21) may be approximated by

zefrh
Pi(p,o,0) = TZdD:lI(ud < b)) (K —5) @ (auey)

Using these expressions in the analog of the criterion (22) yields consensus estimates
of the four parameters y, o, «, 7.
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Analogous adaptations in (13) are required. For example, the first expression is replaced
by xgcq = —22{:1 [Nb,i{max(o, 54— K;)e ™ — Cb/i}d)(ocud)} and the others are modified
similarly. Then the EPEL methodology proceeds as before. We implemented this gener-

alization of the GBM model in the back-testing process and commented on the results in
Section 4.
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