
Academic Editor: Mogens Steffensen

Received: 27 December 2024

Revised: 11 January 2025

Accepted: 13 January 2025

Published: 16 January 2025

Citation: Balbás, Alejandro, Beatriz

Balbás, and Raquel Balbás. 2025.

Optimal Design of Multi-Asset

Options. Risks 13: 16. https://

doi.org/10.3390/risks13010016

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Optimal Design of Multi-Asset Options
Alejandro Balbás 1,* , Beatriz Balbás 2 and Raquel Balbás 3

1 Department of Business Administration, University Carlos III of Madrid, C/Madrid, 126,
28903 Getafe, Madrid, Spain

2 Department of Economics and Business Administration, University of Alcalá, Pl. de la Victoria, 2,
28802 Alcalá de Henares, Madrid, Spain; beatriz.balbas@uah.es

3 Department of Financial and Actuarial Economics and Statistics, University Complutense of Madrid,
28223 Pozuelo de Alarcón, Madrid, Spain; raquel.balbas@ccee.ucm.es

* Correspondence: alejandro.balbas@uc3m.es

Abstract: The combination of stochastic derivative pricing models and downside risk
measures often leads to the paradox (risk, return) = (−infinity, +infinity) in a portfolio
choice problem. The construction of a portfolio of derivatives with high expected returns
and very negative downside risk (henceforth “golden strategy”) has only been studied if all
the involved derivatives have the same underlying asset. This paper also considers multi-
asset derivatives, gives practical methods to build multi-asset golden strategies for both
the expected shortfall and the expectile risk measure, and shows that the use of multi-asset
options makes the performance of the obtained golden strategy more efficient. Practical
rules are given under the Black–Scholes–Merton multi-dimensional pricing model.

Keywords: multi-asset derivative; downside risk measure; unbounded market price of risk;
golden strategy
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1. Introduction
Since monetary tail risk measures became more popular at the end of the last century,

they have been used to revisit many classical actuarial and financial topics. Particular atten-
tion has been devoted to the portfolio selection problem (Alexander et al. 2006; Stoyanov
et al. 2007; or Mansini et al. 2007, to name a few), where the classical role of the standard
deviation has been replaced by a tail risk measure. Nevertheless, theoretical approaches
have shown that the portfolio selection problem may become unbounded if one accepts
the assumptions of many arbitrage-free stochastic pricing models (Black–Scholes–Merton,
Heston, etc.) and minimizes the downside risk under a minimum expected return. The
paradoxical consequence is that one is able to create a sequence of investment strategies
composed of derivative securities whose expected return tends to +∞, whereas the down-
side risk tends to −∞. Although there are former studies, an easy-to-understand theoretical
exposition may be found in Balbás et al. (2019), where the authors present closed formulas
to create the sequences above, even in a buy-and-hold framework and only involving
European options and riskless assets. Later, Balbás et al. (2023a) provided us with methods
to build these sequences in a more general buy-and-hold framework. “More general”
means that the authors incorporated the classical frictions (market depth, bid–ask spread,
additional commissions, etc.).

All the portfolios analyzed in the papers above contain derivatives with a unique
underlying asset. An obvious Question Q arises: Can one construct more efficient sequences
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if one deals with multi-asset options? The answer to this question is the main objective
of this paper. Since organized markets rarely quote multi-asset derivatives, one has to
deal with derivatives that can be replicated by dynamically trading their underlying
assets; so, we decided to present the approach in a complete market in order to simplify
the mathematical exposition. Actually, Balbás et al. (2016) already reported empirical
results indicating that three important international stock indices (the German DAX,
the American S&P 500, and the European EURO STOXX 50) may be outperformed by
dynamically trading the corresponding index future contract. Moreover, the same paper
also provided empirical evidence indicating that by trading commodity futures (Brent
futures and Gold futures), one can outperform the three stock indices above. In both cases
(stock indexes and commodities), the future contract was analyzed under the assumptions
of the Black–Scholes–Merton model, which has encouraged us to retain this model in the
case of multi-asset derivatives.

The outline of this paper is as follows: Notations and some theoretical background are
presented in Section 2. The focus is on two tail risk measures, namely the expected shortfall
(Rockafellar and Uryasev 2000) and the expectile (Newey and Powell 1987). The expected
shortfall (or conditional value at risk) has been selected because it is very well known and
reflects the downside risk in a very intuitive manner. The expectile is not so intuitive, but it
is coherent (Artzner et al. 1999) and expectation-bounded (Rockafellar et al. 2006), and it
is also elicitable, making it an easier back-testing implementation. Though the expected
shortfall is not elicitable, practical back-testing procedures are also available due to their
close connection to the value at risk, which is elicitable. In fact, the couple (value at risk,
expected shortfall) is in some sense elicitable (see Embrechts et al. 2021 for further details).
Finally, both the expected shortfall and the expectile are very closely related (Bellini et al.
2014; Tadese and Drapeau 2020), and the divergence of the expectile to −∞ frequently
implies the expected shortfall divergence.

The main notion to create the sequences above, that is, the notion of “golden strategy”
of Balbás et al. (2019), is presented in Section 3. Roughly speaking, a golden strategy can be
sold for a price that is strictly higher than the downside risk generated by this sale. It is
also proved that the presence of golden strategies implies the absence of efficient portfolios
in a return/risk approach. Indeed, every portfolio is beaten by the involved portfolio plus
the sale of the golden strategy. Theorems 1 and 2 characterize the existence and practical
estimation of golden strategies in a complete pricing model and for arbitrary coherent and
expectation-bounded risk measures. These theorems are particularized for the expected
shortfall (Theorem 3) and the expectile (Theorem 4) in Section 4. For the expected shortfall,
one can give a closed formula providing the optimal golden strategy (if it exists), but an
alternative closed formula is not achievable for the expectile. At any rate, the lack of any
closed formula does not prevent the calculation of the optimal-expectile-linked golden
strategy by means of tractable linear programming methods (Theorem 4). It is worth
pointing out that the existence of golden strategies for the expectile implies this existence
for the expected shortfall, but the converse may fail.

The multi-dimensional Black–Scholes–Merton model (BSM) was selected in Section 5.
There are other models to price multi-asset derivatives, but BSM is good enough and
simplifies the mathematical exposition. As indicated above, the empirical evidence shows
that BSM was already adequate when dealing with derivatives with a unique underlying
asset. Theorem 5 particularizes the closed formula of Theorem 3 for BSM, and therefore,
it yields the optimal golden strategy, which is really a multi-asset derivative. This is an
indisputable answer to Question Q above: the answer is “yes”. If one deals with multi-
asset derivatives, then the optimal golden strategy is more efficient than those obtained
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by combining derivatives with a unique underlying asset. Section 6 presents the main
conclusions of this paper.

2. Preliminaries and Notation
Fix a future planning period T, a set T of trading dates such that {0, T} ⊂ T ⊂ [0, T],

a filtered probability space
(
Ω, (Ft)t∈T ,F ,P

)
composed of the set of states of nature Ω, the

filtration (Ft)t∈T yielding the arrival of information such that F0 = {∅, Ω} and F = FT ,
and the probability measure P on F . If 1 ≤ p < ∞, then Lp (Lp(F ,P), if necessary)
denotes the space of random variables y such that IE

(
|y|p

)
< ∞ endowed with the norm

∥y∥ =
(
IE
(
|y|p

))1/p, where IE(.) represents “mathematical expectation”. Similarly, L∞

(L∞(F ,P), if necessary) denotes the space of essentially bounded random variables y, and
it is endowed with the norm ∥y∥ = Ess_Sup(|y|), where Ess_Sup(.) represents “essential
supremum”. We deal with a complete financial market; that is, we consider a framework
such that every (pay-off at T, or marketed claim at T) y ∈ L2 can be replicated by means of
a self-financing strategy composed of the finitely many available assets. The pricing rule
Π : L2 −→ R yields the initial (at t = 0) price Π(y) of the marketed claim y ∈ L2, and it is
known that the absence of arbitrage implies the existence of a unique stochastic discount
factor (SDF, Duffie 1988), that is, a unique zΠ ∈ L2 such that

P(zΠ > 0) = 1 (1)

and
Π(y) = e−rTIE(zΠy) (2)

holds for every y ∈ L2, where r denotes the continuously compounded riskless rate. In
particular, e−rT = Π(1) = e−rTIE(zΠ) trivially implies that

IE(zΠ) = 1. (3)

φ : L2 −→ R is a coherent (Artzner et al. 1999) and expectation-bounded (Rockafellar
et al. 2006) risk measure; that is, φ is sub-additive (φ(y1 + y2) ≤ φ(y1) + φ(y2) if yj ∈ L2,
j = 1, 2), positively homogeneous (φ(κy) = κφ(y) if κ ≥ 0 in R and y ∈ L2), decreasing
(φ(y1) ≤ φ(y2) if yj ∈ L2, P(y1 ≥ y2) = 1), translation-invariant (φ(y +κ) = φ(y)− κ if
κ ∈ R and y ∈ L2), and mean dominating (φ(y1) ≥ −IE(y) if y ∈ L2). With general convex
analysis linked methods (Zalinescu 2002), it has been proved that the properties above
imply the norm-continuity of φ and are also equivalent to the fulfillment of

φ(y) = Max
{
−IE(zy); z ∈ ∂φ

}
, (4)

for every y ∈ L2, where

∂φ =
{

z ∈ L2;−IE(zy) ≤ φ(y) ∀y ∈ L2
}

(5)

is the sub-gradient (or sub-gradient at y = 0) of φ and satisfies{
1 ∈ ∂φ

IE(z) = 1, ∀z ∈ ∂φ.
(6)

Moreover, the norm-continuity of φ implies the weak-compactness of ∂φ in L2 and therefore
the lower semi-continuity of φ if L2 is endowed with the weak topology (see Kopp 1984; or
Zalinescu 2002 for further details about all of these concepts).
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There are many examples of risk measures satisfying the properties above
(Artzner et al. 1999; Rockafellar and Uryasev 2000; Hamada and Sherris 2003; Rockafellar
et al. 2006; Mansini et al. 2007; Ahmadi-Javid 2012; Chen and Hu 2018; etc.). Two particular
cases play an important role in this paper, namely the expected shortfall with the confi-
dence level 1 − β∗ for 0 < β∗ < 1 (φ = ES1−β∗ ), and the expectile with parameter β for
0 < β < 1/2 (φ = Eβ). Although the special focus is on ES1−β∗ , some specific aspects of
Eβ are also analyzed. The properties of both measures below may be found in Balbás et al.
(2023b), among many others. In particular, the set ∂φ of (5) becomes

∂ES1−β∗ =
{

z ∈ L2; IE(z) = 1, 0 ≤ z ≤ 1/β∗
}

(7)

and

∂Eβ
=

{
z ∈ L2; IE(z) = 1, ξ ≤ z ≤ ξ

1 − β

β
, ξ ∈ R

}
(8)

respectively. Moreover, taking expectations in (8), it is easy to see that ξ ≤ IE(z) = 1 ≤
ξ(1 − β)/β, and therefore, (8) is equivalent to

∂Eβ
=

{
z ∈ L2; IE(z) = 1, ξ ≤ z ≤ ξ

1 − β

β
, ξ ∈ [β/(1 − β), 1]

}
. (9)

Evidently, (4) becomes 
Max − IE(zy)
IE(z) = 1
z ∈ L2, 0 ≤ z ≤ 1/β∗

(10)

for ES1−β∗ and 
Max − IE(zy)
IE(z) = 1
z ∈ L2, ξ ∈ R, ξ ≤ z ≤ (ξ(1 − β))/β

(11)

for Eβ. Both (10) and (11) are linear optimization problems. According to Balbás et al.
(2023b), their duals do not reflect any duality gap and provide us with another representa-
tion of both ES1−β∗(y) and Eβ(y). The duals are

Min λ + IE(λM)/β∗

y = λm − λM − λ

λm ∈ L2, λM ∈ L2, 0 ≤ λm, 0 ≤ λM, λ ∈ R
(12)

and 
Min λ

y = λm − λM − λ

βIE(λm)− (1 − β)IE(λM) = 0
λm ∈ L2, λM ∈ L2, 0 ≤ λm, 0 ≤ λM, λ ∈ R

(13)

respectively. The complementary slackness conditions below, along with the feasibility,
characterize the optimal solutions of both (10)–(12)

zλm = (1/β∗ − z)λM = 0.

Similarly, the solutions of (11)–(13) are characterized by feasibility and the fulfillment of

(z − ξ)λm =

(
ξ

1 − β

β
− z
)

λM = 0.
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Furthermore, in both cases, one can show that a couple of primal and dual solutions satisfy{
λm = (y − IE(zy))+

λM = (IE(zy)− y)+.
(14)

Lastly, the inequality

ES1−β∗(y) ≤ Eβ(y) +
β

β∗(1 − 2β)

(
Eβ(y) + IE(y)

)
(15)

holds for every y ∈ L2, every 0 < β < 1/2, and every 0 < β∗ < 1.

3. Golden Strategies
As it has been shown in Balbás et al. (2019), among others, the absence of arbitrage is

compatible with the existence of marketed claims y ∈ L2 such that

φ(−y) < IE(zΠy). (16)

Following these authors, let us use the term “golden strategy” or “φ−golden strategy” to
refer to the strategy above. Since φ is translation-invariant,

φ(−y + IE(zΠy)) = φ(−y)− IE(zΠy) < 0,

that is, the sale of y along with the investment of the received price e−rTIE(zΠy) in a riskless
asset is a self-financing strategy leading to the pay-off −y + IE(zΠy), whose global risk is
strictly negative. Consequently, for every marketed claim u ∈ L2, one has

IE(zΠ(u − y + IE(zΠy))) = IE(zΠu),

φ(u − y + IE(zΠy)) ≤ φ(u) + φ(−y + IE(zΠy)) < φ(u)

because φ is sub-additive, and

IE(u − y + IE(zΠy)) = IE(u) + IE(−y + IE(zΠy)) > IE(u)

because φ is mean dominating, and therefore, IE(−y + IE(zΠy)) = IE(−y) + IE(zΠy) ≥
−φ(−y) + IE(zΠy) > 0. In other words, every u is outperformed by u − y + IE(zΠy)
because this second strategy has an identical price, strictly higher expected pay-off (and
thus strictly higher expected return), and strictly lower risk. −y + IE(zΠy) allows us to beat
every position. Lastly, since φ is positively homogeneous and mean dominating,

lim
κ→+∞

φ(κ(−y + IE(zΠy))) = lim
κ→+∞

κφ((−y + IE(zΠy)))− ∞

lim
κ→+∞

IE(κ(−y + IE(zΠy))) ≥ − lim
κ→+∞

φ(κ(−y + IE(zΠy))) = +∞,

that is, if −y + IE(zΠy) is repeated over and over, with no limit, then one can construct a
sequence of self-financing strategies whose risk tends to −∞, whereas its expected pay-off
tends to +∞. Henceforth, let us focus on the existence of y satisfying (16).

Theorem 1. Suppose that zΠ /∈ ∂φ. Then, the following hold:
(a) There are golden strategies y such that y ≥ a for every a ∈ R. In particular, for a = 0,

one has that the prohibition of short-sales does not impede the existence of golden strategies.
(b) There are golden strategies y such that y ≤ a for every a ∈ R.
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Proof. (a) Suppose for a few moments that a = 0, and consider the optimization problem{
Min φ(−y)− IE(zΠy)
y ≥ 0,

(17)

with y ∈ L2 being the decision variable. As Balbás et al. (2016) performed for quite similar
optimization problems, if (17) is bounded, then one can prove that the dual of (17) does not
generate any duality gap and becomes{

Max 0
Λ = z − zΠ, z ∈ ∂φ, Λ ≥ 0,

(18)

with (z, Λ) ∈ L2 × L2 being the decision variable. Taking expectations in the constraint
of (18), one has IE(Λ) = 0 (see (3) and (6)), and therefore, Λ ≥ 0 leads to Λ = 0 and z = zΠ.
This equality is unfeasible because zΠ /∈ ∂φ, and therefore, the feasible set of (18) becomes
void. Accordingly, (17) becomes unbounded.

Consider now a general a ∈ R. Take y ∈ L2 such that φ(−y)− IE(zΠy) < 0 and y ≥ 0.
Hence (recall that φ is translation-invariant and see (3)),

φ(−(y + a))− IE(zΠ(y + a)) = φ(−y)− IE(zΠy) < 0.

(b) is similar to (a) if the constraint y ≥ 0 of (17) is replaced with y ≤ 0.

Suppose that zΠ /∈ ∂φ. Then, the proof of Theorem 1 implies that (17) is unbounded,
as it remains unbounded if the constraint y ≥ 0 is removed or replaced by y ≥ a or y ≤ a.
It could also be replaced by b ≤ y ≤ c, but the change in variable

y′ =
y − a
b − a

replaces b ≤ y ≤ c with 0 ≤ y′ ≤ 1. In other words, 0 ≤ y ≤ 1 is as general as the most
general constraint if one looks for self-financing essentially bounded marketed claims with
non-positive risk.

Theorem 2. (a) Problem {
Min φ(−y)− IE(zΠy)
0 ≤ y ≤ 1

(19)

is bounded and solvable, its optimal value is negative or zero, and it is strictly negative if and only
if zΠ /∈ ∂φ, in which case the solution of (19) is a golden strategy. If zΠ ∈ ∂φ, then there are no
golden strategies, and the optimal value of (19) vanishes.

(b) Problem {
Min IE(ΛM)

Λm − ΛM = z − zΠ, z ∈ ∂φ, Λm ≥ 0, ΛM ≥ 0,
(20)

is the dual of (19), with (z, Λm, ΛM) ∈ L2 × L2 × L2 being the decision variable. It is feasible
and solvable, and the optimal values of both (19) and (20) have identical absolute values and
opposite signs.

(c) If zΠ /∈ ∂φ and
(
z̃, Λ̃m, Λ̃M

)
solves (20), then P(zΠ > z̃) > 0 and P(z̃ > zΠ) > 0.
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(d) If ỹ is (19)-feasible and
(
z̃, Λ̃m, Λ̃M

)
is (20)-feasible, then they solve the corresponding

problem if and only if 
ỹΛ̃m = 0
(ỹ − 1)Λ̃M = 0
IE(z̃ỹ) ≥ IE(zỹ) ∀z ∈ ∂φ.

(21)

(e) The solutions ỹ and
(
z̃, Λ̃m, Λ̃M

)
of (19) and (20) satisfy



Λ̃m = (z̃ − zΠ)+

Λ̃M = (zΠ − z̃)+

z̃ > zΠ =⇒ ỹ = 0
z̃ < zΠ =⇒ ỹ = 1
0 < ỹ < 1 =⇒ z̃ = zΠ,

(22)

where the three implications hold for ω ∈ Ω out of a P−null set.

Proof. The Alaoglu theorem (Luenberger 1969) implies that the set 0 ≤ y ≤ 1 is weakly
compact in L2. Thus, the existence of the solution of (19) follows from the lower semi-
continuity of φ for the weak topology of L2. Furthermore, since y = 0 is (19)-feasible, the
optimal value can never be strictly positive. One can proceed as in Balbás et al. (2016) in
order to prove that (20) is the dual problem of (19), and similar arguments show that (21)
characterizes the solutions of (19) and (20). Take a solution

(
z̃, Λ̃m, Λ̃M

)
of (20) whose

existence is guaranteed by the usual primal–dual relationships (Luenberger 1969), suppose
that zΠ /∈ ∂φ, and let us prove both P(zΠ > z̃) > 0 and P(z̃ > zΠ) > 0. If z̃ ≤ zΠ, then
IE(z̃) = IE(zΠ) = 1 (see (3) and (6)) leads to z̃ = zΠ, which is a contradiction because z̃ ∈ ∂φ

and zΠ /∈ ∂φ. The proof of P(z̃ > zΠ) > 0 is analogous. Take again a solution
(
z̃, Λ̃m, Λ̃M

)
of (20). If there are no golden strategies, then ỹ = 0 is an obvious solution of (19), so Λ̃m =

z̃− zΠ and Λ̃M = 0 must be satisfied by the solution of (20) due to (21). Taking expectations,
IE
(
Λ̃m
)
= IE(z̃)− IE(zΠ) = 1 − 1 = 0 (see (3) and (6)), so Λ̃m ≥ 0 leads to Λ̃m = 0. The

constraints of (20) imply that 0 = z̃ − zΠ, that is, zΠ ∈ ∂φ. Conversely, if zΠ ∈ ∂φ, then one
can take

(
z̃, Λ̃m, Λ̃M

)
= (zΠ, 0, 0), so ỹ = 0 solves (19), and there are no golden strategies.

The constraints Λm − ΛM = z − zΠ, Λm ≥ 0, and ΛM ≥ 0 of (20) easily imply that the
minimum of IE(ΛM) must satisfy Λ̃m = (z̃ − zΠ)+ and Λ̃M = (zΠ − z̃)+. Finally, the rest of
the conditions in (22) trivially follow from Λ̃m = (z̃ − zΠ)+, Λ̃M = (zΠ − z̃)+, and (21).

4. Focusing on the Expected Shortfall and the Expectile
As already said, ES1−β∗ and Eβ are two important examples of risk measures satisfying

the imposed conditions. Let us focus on them. Henceforth, I1A : Ω −→ R will denote
the usual indicator for every measurable set A ∈ F , that is, I1A(ω) = 1 if ω ∈ A and
I1A(ω) = 0 otherwise. Moreover, similar notation will apply if (Ω,F ,P) is replaced by
another probability space.

Theorem 3. Consider 0 < β∗ < 1 and ρ = ES1−β∗ .
(a) There exist ES1−β∗−golden strategies if and only if the inequality ∥zΠ∥∞ = Ess_Sup(zΠ) >

1/β∗ holds.
(b) There is a linear dual problem of (20) (bidual of (19)) given by

Max IE(zΠy1)− IE(y2)/β∗ + y3

y2 ≥ y1 + y3

y1 ≤ 1
y1 ≥ 0, y2 ≥ 0,

(23)
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(y1, y2, y3) ∈ L2 × L2 ×R being the decision variable. (23) is solvable, and there is no duality gap
between (20) and (23).

(c) If (ỹ1, ỹ2, ỹ3) solves (23), then ỹ = ỹ1 solves (19).
(d) If ∥zΠ∥∞ > 1/β∗, then ỹ = I1zΠ>1/β∗ solves (19) and is an ES1−β∗−golden strategy.

Proof. (a) This is an obvious consequence of (7) and Theorem 2a.
(b) Bearing in mind (4) and (7), Problem (20) becomes the linear problem

Min IE(ΛM)

Λm − ΛM = z − zΠ

z ≤ 1/β∗

IE(z) = 1
z ≥ 0, Λm ≥ 0, ΛM ≥ 0.

(24)

Thus, according to the duality methods of Anderson and Nash (1987), (24) is the dual
of (24). Although (23) is bounded, neither its solvability nor the absence of a duality
gap with (24) are guaranteed. Nevertheless, both properties will be proved if one finds
a (24)-feasible element and a (23)-feasible one that make the objectives of both problems
identical. Consider a solution ỹ of (19) and a solution

(
z̃, (z̃ − zΠ)+, (zΠ − z̃)+

)
of (24)

(recall Theorem 2 and (22)). Consider also Problems ((10)↿ −ỹ) and ((12)↿ −ỹ), that is,
Problems (10) and (12) once y has been replaced by −ỹ. The third condition in (21) shows
that z̃ solves ((10)↿ −ỹ). Finally, consider a solution

(
λ̃, λ̃m, λ̃M

)
of ((12)↿ −ỹ), and take

(ỹ1, ỹ2, ỹ3) =
(
ỹ, λ̃M,−λ̃

)
(25)

It is sufficient to verify the second constraint of (23) in order to show that (25) is (23)-feasible,
since the rest of the restrictions trivially follow from the restrictions of (19) and ((12)↿ −ỹ).
One has that

ỹ1 + ỹ3 = −λ̃ + ỹ = λ̃M − λ̃m ≤ λ̃M = ỹ2.

Hence, the solvability of (23) and the absence of duality gap trivially follow from{
IE(zΠỹ1)− IE(ỹ2)/β∗ + ỹ3 = IE(zΠỹ)− IE

(
λ̃M
)
/β∗ − λ̃

= IE(zΠỹ)− φ(−ỹ) = IE
(
(zΠ − z̃)+

)
,

where the second and third equalities are implied by the absence of duality gap between
the pairs ((10)↿ −ỹ)–((12)↿ −ỹ) and (19)–(24).

(c) Take the solutions
(

z̃, (z̃ − zΠ)+, (zΠ − z̃)+
)

of (24) and (ỹ1, ỹ2, ỹ3) of (23), and
let us prove that ỹ = ỹ1 satisfies (21). The complementary slackness conditions of linear
programming (Anderson and Nash 1987) become

z̃(ỹ2 − (ỹ1 + ỹ3)) = 0
(z̃ − zΠ)+ỹ1 = 0
(zΠ − z̃)+(1 − ỹ1) = 0
ỹ2(1/β∗ − z̃) = 0.

(26)

The second equality of (26) implies the first one of (21), whereas the third equality of (26)
implies the second one of (21). The first and fourth equalities of (26) lead to{

IE(z̃ỹ2) = IE(z̃(ỹ + ỹ3))

IE(z̃ỹ2) = IE(ỹ2)/β∗
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i.e., (recall (6)), IE(z̃ỹ) = IE(z̃ỹ2)− ỹ3 = IE(ỹ2)/β∗ − ỹ3. It only remains to see that

IE(zỹ) ≤ IE(ỹ2)/β∗ − ỹ3 (27)

for every z ∈ ∂ES1−β∗ . Indeed, if ỹ4 = ỹ2 − (ỹ + ỹ3), then (ỹ4, ỹ2,−ỹ3) is ((12)↿ −ỹ)-feasible,
and therefore, (27) holds because z is ((10)↿ −ỹ)-feasible.

(d) According to Theorem 2, it is sufficient to show that ỹ = I1zΠ>1/β∗ solves (19).

Thus, according to (c), it is sufficient to show that
(
I1zΠ>1/β∗ , I1zΠ>1/β∗ , 0

)
solves (23). Thus,

it is enough to find z̃ ∈ ∂ES1−β∗ such that
(
I1zΠ>1/β∗ , 0, 0

)
and

(
z̃, (z̃ − zΠ)+, (zΠ − z̃)+

)
satisfy (26). First of all, let us show that γ = P(zΠ > 1/β∗) < β∗. Indeed, γ ≥ β∗ would
lead to a contradiction with (3)

IE(zΠ) =
∫
Ω

zΠ(ω)P(dω) ≥
∫

zΠ>1/β∗

zΠ(ω)P(dω) >
γ

β∗ ≥ 1.

For α ∈ R, α ≥ 0, consider

zα(ω) =

{
1/β∗, i f zΠ(ω) > 1/β∗

Min{zΠ(ω) + α, 1/β∗}, otherwise.

Obviously, 0 ≤ zα ≤ 1/β∗, so zα ∈ ∂ES1−β∗ if IE(zα) = 1 (recall (7)). The Dominated

Convergence Theorem obviously implies that [0, ∞) ∋ α −→ zα ∈ L1 is continuous and
therefore so is [0, ∞) ∋ α −→ IE(zα) ∈ R. Furthermore,

IE(z0) =
∫

zΠ≤1/β∗

zΠ(ω)P(dω) +
γ

β∗ < IE(zΠ) = 1

and IE
(

z1/β∗

)
= 1/β∗ > 1, so the Bolzano Theorem implies the existence of α ∈ (0, 1/β∗)

such that IE(zα) = 1 and zα ∈ ∂ES1−β∗ . Take z̃ = zα and notice that
(

z̃, (z̃ − zΠ)+, (zΠ − z̃)+
)

and
(
I1zΠ>1/β∗ , I1zΠ>1/β∗ , 0

)
obviously satisfy (26).

Corollary 1. If ρ = ES1−β∗ and zΠ is not essentially bounded, then ỹ = I1zΠ>1/β∗ solves (19)
and is an ES1−β∗−golden strategy.

Proof. ∥zΠ∥ = +∞ obviously implies ∥zΠ∥∞ > 1/β∗.

Remark 1. Notice that, under the conditions of Theorem 3 or Corollary 4, the digital (or binary)
option ỹ = I1zΠ>1/β∗ is an optimal ES1−β∗−golden strategy. This finding improves that of Balbás
et al. (2016). Indeed, these authors did not deal with golden strategies but with capital requirements.
Consequently, they did not find the optimal solution I1zΠ>1/β∗ but a more complex sub-optimal
one. Nevertheless, though they dealt with a sub-optimal golden strategies with a single underlying
asset, they reported empirical evidence illustrating that their strategy was able to outperform very
important international stock indices. Accordingly, it is natural to assume that I1zΠ>1/β∗ will also
outperform the involved indices because I1zΠ>1/β∗ maximizes the difference between the received
price for its sale and the risk that this sale provokes.

Things are a little bit different for expectiles. Indeed, let us show that Eβ−golden strategies
also exist under the absence of strictly positive lower bounds of zΠ. Accordingly, a general simple
expression such as ỹ = I1zΠ>1/β∗ cannot be given for the expectile risk measure.

Theorem 4. Consider 0 < β < 1/2 and ρ = Eβ.
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(a) If ∥zΠ∥∞ > (1− β)/β or Ess_In f (zΠ) < β/(1− β), then there are Eβ−golden strategies.
(b) Problem (20) becomes the linear problem



Min IE(ΛM)

Λm − ΛM = z − zΠ

ξ ≤ z ≤ ξ
1 − β

β

IE(z) = 1
z ∈ L2, Λm ≥ 0, ΛM ≥ 0, ξ ∈ R,

(28)

with (ξ, z, Λm, ΛM) ∈ R× L2 × L2 × L2 being the decision variable. Consider the optimization
problem 

Max IE(zΠy1) + y4

−y1 = y2 − y3 + y4

βIE(y2) = (1 − β)IE(y3)

y1 ≤ 1
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ∈ R

(29)

with (y1, y2, y3, y4) ∈ L2 × L2 × L2 ×R being the decision variable. (29) is the linear dual of (28)
(or the bidual of (19)), it is bounded and solvable, and its optimal value equals the optimal value
of (20) and (28).

(c) If (ỹ1, ỹ2, ỹ3, ỹ4) solves (29), then ỹ = ỹ1 solves (19). If (ỹ1, ỹ2, ỹ3, ỹ4) solves (29), then
ỹ = ỹ1 is a Eβ−golden strategy if and only if IE(zΠỹ1) + ỹ4 > 0.

Proof. (a) If ∥zΠ∥∞ > (1 − β)/β or Ess_In f (zΠ) < β/(1 − β), then zΠ /∈ ∂Eβ
due to (9),

and Theorem 2a applies.
(b) Bearing in mind (4) and (8), Problem (20) becomes the linear problem (28), whose

linear dual is (29) (Anderson and Nash 1987). As in Theorem 3b, consider a solution ỹ
of (19) and a solution

(
ξ̃, z̃, (z̃ − zΠ)+, (zΠ − z̃)+

)
of (28), and one must find a (29)-feasible

element (ỹ1, ỹ2, ỹ3, ỹ4) such that IE
(
(zΠ − z̃)+

)
= IE(zΠỹ1) + ỹ4. With similar notations

as in the proof of Theorem 3, the third condition in (21) shows that
(
ξ̃, z̃
)

solves ((11)−ỹ).
Finally, consider a solution

(
λ̃, λ̃m, λ̃M

)
of ((13)↿ −ỹ), and take ỹ1 = ỹ, ỹ2 = λ̃m, ỹ3 = λ̃M,

and ỹ4 = −λ̃. The constraints of (19) and ((13)−ỹ) show that (ỹ1, ỹ2, ỹ3, ỹ4) is (29)-feasible.
Moreover, since λ̃ is the optimal value of (29),

IE(zΠỹ1) + ỹ4 = IE(zΠỹ)− λ̃ = IE(zΠỹ)− Eβ(−ỹ) = IE
(
(zΠ − z̃)+

)
,

where the last equality is implied by Theorem 2.
(c) Take the solutions

(
z̃, (z̃ − zΠ)+, (zΠ − z̃)+

)
of (28) and (ỹ1, ỹ2, ỹ3, ỹ4) of (29), and

let us prove that ỹ = ỹ1 satisfies (21). The complementary slackness conditions of linear
programming become 

ỹ1(z̃ − zΠ)+ = 0
(1 − ỹ1)(zΠ − z̃)+ = 0
ỹ2
(
z̃ − ξ̃

)
= 0

ỹ3

(
ξ̃

1 − β

β
− z̃
)
= 0.

(30)

The first and second equalities of (30) and (21) coincide. Besides, for z ∈ ∂Eβ
, the first and

second constraints of (29) lead to (recall (6))

IE(zỹ1) = −IE(zỹ2) + IE(zỹ3)− ỹ4 = IE(z(ỹ3 − ỹ2))− ỹ4.
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Take ξ > 0 such that (ξ, z) satisfy the conditions of (9). Since y2 ≥ 0 and y3 ≥ 0,

 IE(zỹ3) ≤ ξ
1 − β

β
IE(ỹ3)

IE(zỹ2) ≥ ξIE(ỹ2).

Hence,

IE(z(ỹ3 − ỹ2)) ≤ ξ

(
1 − β

β
IE(ỹ3)− IE(ỹ2)

)
= 0

due to the second constraint of (29). Besides, if z = z̃, the third and fourth conditions in (30),
along with the second constraint of (29), lead to

IE(z̃(ỹ3 − ỹ2)) = ξ̃
1 − β

β
IE(ỹ3)− ξ̃IE(ỹ2) = 0.

Finally, the solution ỹ = ỹ1 of (19) is a golden strategy if and only if the optimal objective
value of (19) (of (29)) is strictly negative (positive) owing to Theorem 2.

Remark 2. Notice that there are important differences between Theorems 3 and 4. Although
the optimal ES1−β∗−golden strategy may be computed by solving the linear problem (23), it
is actually enough to know zΠ, and one does not need to optimize any linear problem. Indeed,
though Theorems 3(a), 3(b) and 3(c) were needed because they have to be used in order to prove
Theorem 3(d), once zΠ is known I1zΠ>1/β∗ will solve (19), and it will be non-null if and only if
∥zΠ∥∞ > 1/β∗, which is the unique case leading to the existence of ES1−β∗−golden strategies.

In contrast, Theorem 4 does not provide us with any closed formula for the optimal Eβ−golden
strategy, but it will be known if one optimizes the linear problem (29). It will often be an infinite-
dimensional problem, but it is known that many continuous-time pricing models may be properly
discretized (Duffie 1988), and therefore, the solution of (29) may be properly approximated by
the solution of a finite-dimensional linear programming problem that may be solved by means
of the simplex algorithm. Alternatively, one can deal with the infinite-dimensional problem (29)
and the corresponding simplex-like algorithms of Anderson and Nash (1987). In such a case, the
third and fourth expressions (implications) of (22) make it much easier to detect an initial “basic
feasible solution” y0, since z̃ > zΠ =⇒ ỹ = 0 leads to β/(1 − β) > zΠ =⇒ y0 = 0 and
z̃ < zΠ =⇒ ỹ = 1 leads to (1 − β)/β < zΠ =⇒ y0 = 1 (recall (9)). Consequently, states of
nature satisfying β/(1 − β) > zΠ cannot belong to the initial basis of a simplex-like algorithm,
whereas states of nature satisfying (1 − β)/β < zΠ have to belong.

5. Focusing on the Black–Scholes–Merton Multi-Dimensional Model
Let us focus on the BSM multi-dimensional model as a particular relevant case. Ac-

cordingly, first of all, let us summarize the most important properties of this model, which
may be found in Contreras et al. (2016), among many others. There are alternative models
to price multi-asset derivatives (Wu et al. 2023; Zhou et al. 2024; etc.), but let us focus on
the most usual one and simplify the mathematical exposition.

5.1. Model Summary

Consider a continuously compounded riskless rate r and n risky assets, S1, . . ., Sn,
whose stochastic behavior is given by the Geometric Brownian Motions (GBM)

dSj = Sj

((
µj − γj

)
dt + σjdW∗

j

)
, (31)
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with µj being “drift”, γj being “dividend yield”, σj being “volatility” and W∗
j being a

Standard Brownian Motion (SBM), j = 1, 2, . . ., n. The (symmetric) correlation matrix of{
W∗

1 , . . ., W∗
n
}

will be denoted by

ρ =


1, ρ1,2, . . . ρ1,n

ρ2,1, 1, . . . ρ2,n

. . . . . . . . . . . .
ρn,1, ρn,2, . . . 1


and we assume that ρ is regular (and therefore positive definite) in order to prevent the
existence of redundant (replicable) securities in the set {S1, . . ., Sn}. If one fixes the time
horizon T, it is known that the explicit solution of (31) becomes

Sj(T) = Sj(0)Exp

((
µj − γj −

σ2
j

2

)
T + σj

√
TWj

)
(32)

with (W1, . . ., Wn) being a n−dimensional standard normal random variable whose correla-
tion and covariance matrix equals ρ. In order to price and hedge European derivatives with
maturity at T, notice that (32) allows us to simplify the probability space and suppose that

Ω = Rn
+ =

{
(ω1, . . ., ωn) ∈ Rn; ωj > 0, j = 1, . . ., n

}
,

where F is the Borel σ−algebra of Rn
+, and P is the probability measure induced on F by

the log-normal random variables {S1(T), . . ., Sn(T)}. Obviously,

P
(
Sj(T) ≤ ωj

)
= P

Wj ≤
log
(
ωj/Sj(0)

)
−
(

µj − γj −
σ2

j
2

)
T

σj
√

T


for j = 1, . . ., n and ωj > 0, and the joint cumulative distribution function of
{S1(T), . . ., Sn(T)} becomes

F
((

ωj
)n

j=1

)
= P

(Wj
)n

j=1 ≤

 log
(
ωj/Sj(0)

)
−
(

µj − γj −
σ2

j
2

)
T

σj
√

T


n

j=1

.

Hence, the joint density function becomes

∂nF
∂ω1. . .∂ωn

=

fρ


 log

(
ωj/Sj(0)

)
−
(

µj − γj −
σ2

j
2

)
T

σj
√

T


n

j=1

√
T
−n

∏n
j=1

(
Sj(0)
σjωj

)

where

fρ(u) =
1

√
2π

n√|ρ|
Exp

(
−1

2
uρ−1u′

)
(33)

is the joint density function of {W1, . . ., Wn}, |ρ| is the determinant of ρ, u = (u1, . . ., un),
and A′ denotes the transposed of an arbitrary matrix A. Moreover, if Ln denotes the
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Lebesgue measure on F , it is known that the Radon–Nikodym derivative of P with respect
to Ln is the density function above, that is,

dP
dLn

=

fρ




log
(
ωj/Sj(0)

)
−
(

µj − γj −
σ2

j

2

)
T

σj
√

T


n

j=1


√

T
−n

∏n
j=1

(
Sj(0)
σjωj

) (34)

on Rn
+.

5.2. The Stochastic Discount Factor

Consider the family of Arithmetic Brownian Motions (ABM)

W̃∗
j = W∗

j +
µj − r

σj
t,

j = 1, . . ., n, t ≥ 0. Straightforward manipulations imply that (31) and (32) become
dSj = Sj

((
r − γj

)
dt + σjdW̃∗

j

)
Sj(T) = Sj(0)Exp

((
r − γj −

σ2
j

2

)
T + σj

√
TW̃j

) (35)

Thus, both (31) and (32) remain the same if every µj is replaced by r and every W∗
j is replaced

by W̃∗
j . It is known that the Girsanov Theorem guarantees the existence of an equivalent

to P probability measure Q making W̃∗
j a SBM for j = 1, . . ., n. Therefore,

(
W̃1, . . ., W̃n

)
becomes an n−dimensional standard normal random variable under Q whose correlation
matrix is still ρ. Moreover, the current price of every marketed claim PT with maturity at
T will be e−rTIE(zΠPT) = e−rTIEQ(PT), IEQ denoting “expectation under Q”. Proceeding
as above,

dQ
dLn

=

fρ




log
(
ωj/Sj(0)

)
−
(

r − γj −
σ2

j

2

)
T

σj
√

T


n

j=1


√

T
−n

∏n
j=1

(
Sj(0)
σjωj

)
.

(36)

Hence, since the stochastic discount factor satisfies (Duffie 1988)

zΠ =
dQ
dP =

(
dQ
dLn

)(
dLn

dP

)
,

(34) and (36) lead to
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zΠ =

fρ




log
(
ωj/Sj(0)

)
−
(

r − γj −
σ2

j

2

)
T

σj
√

T


n

j=1



fρ




log
(
ωj/Sj(0)

)
−
(

µj − γj −
σ2

j

2

)
T

σj
√

T


n

j=1


for every ω = (ω1, . . ., ωn) ∈ Rn

+. Consequently, (33) leads to

zΠ = Exp
(

1
2

(
uρ−1u′ − vρ−1v′

))
(37)

with

uj =

log
(
ωj/Sj(0)

)
−
(

µj − γj −
σ2

j

2

)
T

σj
√

T

vj =

log
(
ωj/Sj(0)

)
−
(

r − γj −
σ2

j

2

)
T

σj
√

T
,

j = 1, . . ., n. Bearing in mind that expressions inside the second parenthesis of (37) remain
the same if uj is replaced by −uj and vj is replaced by −vj, one can take

vj =

log
(
Sj(0)/ωj

)
+

(
r − γj −

σ2
j

2

)
T

σj
√

T
(38)

uj =

log
(
Sj(0)/ωj

)
+

(
µj − γj −

σ2
j

2

)
T

σj
√

T
= vj +

µj − r
σj

√
T (39)

j = 1, . . ., n, ωj > 0. If one considers the Sharpe ratios

R = (R1, . . .,Rn) =

(
µ1 − r

σ1
, . . .,

µn − r
σn

)
,

then, bearing in mind that ρ−1 is symmetric (ρ−1 =
(
ρ−1)′), (39) implies that uρ−1u′ − vρ−1v′ =

(
v +

√
TR
)

ρ−1
(

v +
√

TR
)′

− vρ−1v′

= 2
√

Tvρ−1R′ + TRρ−1R′,

and therefore, (37)–(39) imply that
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zΠ = Exp
(√

Tvρ−1R′ +
T
2
Rρ−1R′

)

v = (v1, . . .vn)

vj =
log
(
Sj(0)/ωj

)
+
(

r − γj − σ2
j /2

)
T

σj
√

T
, j = 1, . . ., n, ωj > 0

R = (R1, . . .,Rn) =

(
µ1 − r

σ1
, . . .,

µn − r
σn

)
, j = 1, . . ., n

(40)

which provides us with the SDF of the model.

5.3. The Optimal Expected Shortfall-Linked Golden Strategy

(40) obviously implies that all the conditions imposed in Theorem 3 are satisfied unless
µj = r, j = 1, . . ., n, in which case zΠ = 1 (or Q = P), and the model is risk-neutral. Let us
suppose that µj ̸= r for at least one risky asset. The equality

∥zΠ∥ = Ess_Sup(zΠ) = +∞ (41)

easily follows from (40), and therefore, Corollary 1 implies the existence of ES1−β∗−golden
strategies for every 0 < β∗ < 1. More accurately, one has

Theorem 5. Suppose that µj ̸= r for at least one risky asset. Then, the following hold:
(a) There are ES1−β∗−golden strategies for every 0 < β∗ < 1, and ỹβ∗ = I1zΠ>1/β∗ is the

optimal one, where zΠ is given by (40).
(b) Consider the row matrix R(ρ =

(
R(ρ

1 , . . .,R(ρ
n

)
= Rρ−1. There exists j ∈ {1, . . ., n}

such that R(ρ
j ̸= 0. If R(ρ

j > 0, then ỹβ∗(ω) = 1 if and only if



log
(
ωj
)
<

log
(
Sj(0)

)
+
(

r − γj − σ2
j /2

)
T

+
σj

R(ρ
j

∑
i ̸=j

R(ρ
i

σi

(
log(Si(0)/ωi) +

(
r − γi − σ2

i /2
)
T
)

+
σj

R(ρ
j

(
T
2
Rρ−1R′ + log(β∗)

)
(42)

for ω = (ω1, . . ., ωn) ∈ Rn
+. If R(ρ

j < 0, then ỹβ∗(ω) = 1 if and only if



log
(
ωj
)
>

log
(
Sj(0)

)
+
(

r − γj − σ2
j /2

)
T

+
σj

R(ρ
j

∑
i ̸=j

R(ρ
i

σi

(
log(Si(0)/ωi) +

(
r − γi − σ2

i /2
)
T
)

+
σj

R(ρ
j

(
T
2
Rρ−1R′ + log(β∗)

)
(43)
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for ω = (ω1, . . ., ωn) ∈ Rn
+.

Proof. (a) The obvious consequence of Corollary 1 and (41).
(b) Obviously, Rρ−1 = 0 =⇒ R = 0 =⇒ µj = r, j = 1, . . ., n, against the

assumptions. Suppose that R(ρ
j > 0.

ỹβ∗(ω) = 1 ⇐⇒ zΠ > 1/β∗ ⇐⇒ log(zΠ) > − log(β∗),

and therefore, (40) leads to

ỹβ∗(ω) = 1 ⇐⇒ v
(
R(ρ

)′
> −

(√
T

2
R(ρR′ +

1√
T

log(β∗)

)
.

The third equality in (40) and straightforward manipulations imply that (42) is equivalent
to ỹβ∗(ω) = 1. Besides, the proof of (43) is similar.

Remark 3. If one were dealing with future derivatives rather than spot ones, then it is known
that (31), (32) and (35) become

dFj = Fj

((
µj − r

)
dt + σjdW∗

j

)

Fj(T) = Fj(0)Exp

((
µj − r −

σ2
j

2

)
T + σj

√
TWj

)

dFj = FjσjdW̃∗
j

Fj(T) = Fj(0)Exp

((
−

σ2
j

2

)
T + σj

√
TWj

)

Thus, straightforward modifications of the arguments above imply that the right-hand side of (42)
and (43) will become



log
(

Fj(0)
)
−
(

σ2
j /2

)
T

+
σj

R(ρ
j

∑
i ̸=j

R(ρ
i

σi

(
log(Fi(0)/ωi)−

(
σ2

i /2
)
T
)

+
σj

R(ρ
j

(
T
2
Rρ−1R′ + log(β∗)

) (44)

and one has the optimal ES1−β∗−golden strategy for future derivatives.

Remark 4. If n = 1, then straightforward manipulations of (42) or (43) easily imply that, under
the obvious notation, ỹβ∗ is the binary put (respectively, call) with strike

k = S(0)e

µ + r − σ2

2
−γ

T

(β∗)σ2/(µ−r) (45)
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if µ > r (respectively, µ < r). Notice also that (45) leads to

β∗ =

(k/S(0))e

σ2 − µ − r
2

+γ

T


(µ−r)/σ2

, (46)

that is, if (46) generates a value β∗ ∈ (0, 1), then, given the strike of a digital option (put if µ > r,
call if µ < r), one can compute the level of confidence making this option an optimal ES1−β∗−golden
strategy. Besides, (45) and (46) become

k = F(0)e

µ − r − σ2

2

T

(β∗)σ2/(µ−r)

β∗ =

(k/F(0))e

σ2 − µ + r
2

T


(µ−r)/σ2

for future options.

Remark 5. If n = 2, then

ρ−1 =
1

1 − ρ2
1,2

(
1, −ρ1,2

−ρ1,2, 1

)

R(ρ =
1

1 − ρ2
1,2

(R1 − ρ1,2R2,R2 − ρ1,2R1)
′

Rρ−1R′ =
R2

1 +R2
2 − 2ρ1,2R1R2

1 − ρ2
1,2

.

(47)

Since there are several potential scenarios, let us shorten the exposition and consider the most
common case R2 > R1 > 0. In order to simplify the notation, suppose also that one is dealing with
future derivatives. (42), (44), and (47) easily lead to

ω2

F2(0)
< C

(
ω1

F1(0)

)−
σ2(R1 − ρ1,2R2)

σ1(R2 − ρ1,2R1) (β∗)

σ2

(
1 − ρ2

1,2

)
R2 − ρ1,2R1 (48)

where the parameter C > 0 depends on (r, µ1, µ2, σ1, σ2, ρ1,2, T); that is, C is not affected by
ωj/Fj(0), j = 1, 2. The subset of R2

+ generated by (48) clearly depends on the sign of R1 − ρ1,2R2.
If R1 − ρ1,2R2 > 0 (for instance, if ρ1,2 vanishes), then ω2/F2(0) must be lying under a curve
tending to infinity as ω1/F1(0) tends to zero. If R1 − ρ1,2R2 = 0, then ω2/F2(0) must belong to
the interval 0, C(β∗)

σ2

(
1 − ρ2

1,2

)
R2 − ρ1,2R1

,
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that is, ỹ is a digital put whose unique underlying asset is that with the highest Sharpe ratio. Lastly,
if R1 − ρ1,2R2 < 0, then ω2/F2(0) must be lying under a curve tending to zero as ω1/F1(0)
tends to zero.

Remark 6. Remarks 4 and 5 show that it is worth involving several underlying securities in the
same derivative. If n = 2, R2 > R1 > 0, and one separately deals with S1 and S2, then Remark
4 implies that the best choice is a couple of digital puts: one per asset. By contrast, if S1 and S2

are integrated, then (48) shows that one can beat the use of a digital put per security. In other
words, Remarks 4 and 5 confirm that the answer to Question Q in the introduction is “yes”. This is
important because, as indicated in the introduction, the major objective of this paper is to verify that
the use of multi-asset options improves the efficiency of a golden strategy.

Remark 7. As pointed out, the main purpose of this paper is theoretical, and any empirical study
would significantly enlarge the content and would be beyond its scope. The empirical test remains to
be investigated in the future. At any rate, it is worthwhile to recall that an empirical test involving
derivatives with a single underlying asset was implemented in Balbás et al. (2016), and the results
are clear: “the golden strategy beats very important international stock indices”, and this finding
remains true if the usual market imperfections and model limitations (market depth, bid–ask spread,
absence of a constant riskless rate, absence of constant drifts and volatilities, etc.) are incorporated.
It is also noteworthy that the authors tested an ES1−β∗−golden strategy constructed with BSM
which was not optimal; that is, they did not deal with I1zΠ>1/β∗ . Consequently, there are two reasons
to be optimistic with respect to the empirical performance of the multi-asset option of this paper.
Firstly, as pointed out in Remark 6, the multi-asset option is better than a combination of options
with a single underlying asset. Secondly, in this paper, the optimal golden strategy has been found.

Remark 8. Although empirical tests about the efficiency of I1zΠ>1/β∗ are left for future studies,
one can summarize how they can be carried out. The methodology of Balbás et al. (2016) can be
generalized. Indeed, since BSM is complete, these authors selected a quite liquid futures contract in
order to replicate their golden derivative. For instance, if the selected underlying asset is the S&P
500 index, then their golden strategy was replicated by holding δ futures, where δ is the usual delta
Greek of the golden strategy to be synthetically constructed. Once a day, they modified their position
in the futures contract according to the modification of δ. Under the present framework, that is, for
multi-asset options, one has several deltas, that is, one delta per underlying security, so let us briefly
summarize a simple way to estimate them all. In order to simplify the mathematical exposition, let
us assume that there are only two underlying securities. With the obvious notation, the price of
I1zΠ>1/β∗ takes the form of a double integral (recall (2))

e−rT
∫∫

zΠ(ω̃1, ω̃2)I1zΠ(ω̃1,ω̃2)>1/β∗ fρ(ω1, ω2)J(ω1, ω2)dω1dω2, (49)

where fρ is given by (33), zΠ is given by (40), and J is the determinant of the Jacobian matrix(
∂ω̃1/∂ω1, ∂ω̃1/∂ω2

∂ω̃2/∂ω1, ∂ω̃2/∂ω2

)
.

The usual Cholesky decomposition (Gentle 1998) provides us with a linear change in variables
transforming (49) into a new integral of the type

k
∫∫

zΠ
(
ω̃′

1, ω̃′
2
)
I1zΠ(ω̃′

1,ω̃′
2)>1/β∗ f I

(
ω′

1, ω′
2
)

J̃(ω1, ω2)dω′
1dω′

2, (50)
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for some constant k, f I similar to fρ if ρ is replaced by the identity matrix and J̃ generated by several
involved Jacobians. Then, a second change in variables ω′

i = Φ−1(ω′′
i
)
, i = 1, 2 transforms (50)

into a new integral
1∫

0

1∫
0

U
(
ω̃′′

1 , ω̃′′
2
)
dω′′

1 dω′′
2 ,

for some function U, with Φ being the cumulative distribution function of the standard normal
distribution. U

(
ω̃′′

1 , ω̃′′
2
)

obviously depends on (S1(0), S2(0)) (recall (40)), and therefore,

δi =

1∫
0

1∫
0

∂U
∂Si(0)

dω′′
1 dω′′

2 ,

where i = 1, 2. Thus, δi is an integral that may be easily estimated by means of Monte Carlo
simulations if

(
ω′′

1 , ω′′
2
)

is simulated as a couple of independent uniform distributions in the
interval (0, 1). Once (δ1, δ2) is known, the generalization of Balbás et al. (2016) consists in holding
δi futures of Si, i = 1, 2 and rebalancing the number of futures once a day according to the dynamic
evolution of (δ1, δ2). The position in the riskless asset is fixed at the initial date t = 0.

Remark 9. The stochastic discount factor (40) may deserve a final comment. Indeed, in more general
studies involving investment and consumption, the stochastic discount factor may be quite difficult
to estimate because it may critically depend on various macroeconomic conditions (Duffie 1988).
Nevertheless, the use of BSM has allowed us to overcome this difficulty. BSM does not involve
consumption and is complete as a pricing model, which has implied that the closed formula (40) has
been given for zΠ. In other words, the estimation of zΠ has become simple in our particular setting.

6. Conclusions
The existence of expected shortfall-linked and expectile-linked golden strategies has

been deeply studied, and it has been pointed out that this existence often holds. These
strategies are very important for practitioners because they allow us to create self-financing
positions with negative risks. If a golden strategy is implemented jointly with another
one, both risk and return are improved. Tractable (probably infinite-dimensional) linear
programming problems have been presented to detect the expectile-linked golden strategies,
and a closed formula has been given for the expected shortfall. This closed formula
has been particularized for the Black–Scholes–Merton multi-dimensional model, and an
important consequence has been obtained: the optimal golden strategy is a multi-asset
option; that is, multi-asset-options allow us to beat portfolios composed of options with a
single underlying asset.
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