
Academic Editor:

Ramona Rupeika-Apoga

Received: 15 December 2024

Revised: 9 January 2025

Accepted: 14 January 2025

Published: 17 January 2025

Citation: Lua, Zhi Zhan, Chee Kiat

Seow, Raymond Ching Bon Chan, Yiyu

Cai, and Qi Cao. 2025. Automated

Bitcoin Trading dApp Using Price

Prediction from a Deep Learning

Model. Risks 13: 17. https://doi.org/

10.3390/risks13010017

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Automated Bitcoin Trading dApp Using Price Prediction from a
Deep Learning Model
Zhi Zhan Lua 1, Chee Kiat Seow 1, Raymond Ching Bon Chan 2 , Yiyu Cai 3 and Qi Cao 1,*

1 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK;
2717895l@student.gla.ac.uk (Z.Z.L.); cheekiat.seow@glasgow.ac.uk (C.K.S.)

2 InfoComm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore;
raymond.chan@singaporetech.edu.sg

3 School of Mechanical & Aerospace Engineering, Nanyang Technological University,
Singapore 639798, Singapore; myycai@ntu.edu.sg

* Correspondence: qi.cao@glasgow.ac.uk

Abstract: Distributed ledger technology (DLT) and cryptocurrency have revolutionized
the financial landscape and relevant applications, particularly in investment opportunities.
Despite its growth, the market’s volatility and technical complexities hinder widespread
adoption. This study proposes a cryptocurrency trading system powered by advanced
machine learning (ML) models to address these challenges. By leveraging random forest
(RF), long short-term memory (LSTM), and bi-directional LSTM (Bi-LSTM) models, the
cryptocurrency trading system is equipped with strong predictive capacity and is able
to optimize trading strategies for Bitcoin. The up-to-date price prediction information
obtained by the machine learning model is incorporated by custom oracle contracts and
is transmitted to portfolio smart contracts. The integration of smart contracts and on-
chain oracles ensures transparency and security, allowing real-time verification of portfolio
management. The deployed cryptocurrency trading system performs these actions auto-
matically without human intervention, which greatly reduces barriers to entry for ordinary
users and investors. The results demonstrate the feasibility of creating a cryptocurrency
trading system, with the LSTM model achieving a return on investment (ROI) of 488.74%
for portfolio management during the duration of 9 December 2022 to 23 May 2024. The
ROI obtained by the LSTM model is higher than the performance of Bitcoin at 234.68% and
that of other benchmarking models with RF and Bi-LSTM over the same timeframe. This
approach offers significant cost savings, transparent portfolio management, and a trust-free
platform for investors, paving the way for broader cryptocurrency adoption. Future work
will focus on enhancing prediction accuracy and achieving greater decentralization.

Keywords: decentralized application (dApp); blockchain oracle; cryptocurrency price
prediction; portfolio management

1. Introduction
Currency or money plays three important roles in society, including as a store of

value, medium of exchange, and unit of account (De Mariz 2022). Innovation in money
and payment efficiency are active research topics, which involve central bank digital
currencies (CBDC), cryptocurrencies, and stablecoins. Cryptocurrency has emerged as a
transformative force in the financial world, offering an alternative investment opportunity
to both retail and institutional investors globally. Since the inception of Bitcoin in 2008
(Nakamoto 2008), the cryptocurrency market has experienced exponential growth, evolving
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from a niche concept to a significant financial asset class. The revolutionary idea of Bitcoin
as a decentralized digital currency, free from government control and central bank policies,
has sparked the development of thousands of alternative cryptocurrencies.

As of December 2024, there are about 10,000 cryptocurrencies in existence (Statista.com
2024a), including notable ones like Bitcoin, Ethereum (ETH), Binance Coin, USD Coin
(USDC), Solana, and Tether, with a total market capitalization of about USD 3.68 trillion
(Statista.com 2024b). In contrast, as of October 2024, the total market capitalizations
of NYSE, Nasdaq, and HKSE are USD 29.71 trillion, USD 28.19 trillion, and USD 4.53
trillion, respectively (The WFE Statistics Team 2024). These cryptocurrencies have attracted
substantial interest due to their high returns and potential for significant price appreciation.
Bitcoin, for instance, has seen its value skyrocket from a few cents to tens of thousands of
dollars within a decade, making early adopters extraordinarily wealthy.

The cryptocurrency market is characterized by extreme volatility. Price swings of 10%
or more within a single day are not uncommon. As such, there are ongoing arguments over
cryptocurrency‘s ability to fulfil the three roles of money. Cryptocurrency may fail to be
suited to the roles that refer to a store of value and unit of account, besides the limited public
acceptance of it as a medium of exchange or payment (De Mariz 2022). Cryptocurrencies
are not considered as a complete replacement for CBDC, although in certain countries
with high inflation, CBDC also exhibits extreme volatility. Despite the high volatility of
cryptocurrency, the promise of high returns has lured an increasing number of investors,
who now consider cryptocurrencies as an investable asset class alongside traditional assets
like stocks, bonds, and real estate (Zhao and Zhang 2021). The growth of decentralized
finance (DeFi) and non-fungible tokens (NFTs) further underscores the expanding use cases
and applications of blockchain technology.

1.1. Problem Formulation

Despite its rapid growth and increasing acceptance, the cryptocurrency landscape
presents significant obstacles to widespread adoption and education. One of the primary
barriers is the lack of accessible and reliable information (Smutny et al. 2021). Many poten-
tial investors are deterred by the technical complexities associated with cryptocurrencies,
such as understanding blockchain technology, navigating various exchanges, and securing
digital wallets. Some cryptocurrencies are criticized for consuming large amounts of energy.
The interests of cryptocurrency investors have gradually become more concerned with
environmental sustainability, exhibiting a preference for green or clean cryptocurrencies
(Wątorek et al. 2023). It is not easy for ordinary investors to understand the intrinsic dif-
ferences among cryptocurrencies and their technical complexity. For example, various
consensus mechanisms are used by different cryptocurrencies including proof of work
(PoW), proof of stake (PoS), and hybrid consensus strategies (Chen et al. 2023), which may
result in different degrees of energy efficiency while maintaining reliability. Additionally,
resources and educational materials are often scattered and inconsistent, making it difficult
for newcomers to gain a comprehensive understanding of the market.

Price volatility further exacerbates these challenges, creating an environment of un-
certainty and risk. The correlations between the cryptocurrency market and traditional
financial markets show that cryptocurrencies have become a connected part of global finan-
cial markets (Wątorek et al. 2023). The level of financial market volatility could be impacted
by various factors, including companies’ fundamental performances, political uncertainty
(Vancea et al. 2017), financial crises, global pandemic (Tabash et al. 2024; Dumiter et al.
2023), energy and sustainability (Haq et al. 2023), etc. Stock market volatility and the
impact on investment returns in certain developed and emerging markets were studied
using univariate GARCH models during two financial crises in 2008 and 2019 (Tabash
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et al. 2024). The connections among financial market volatility, energy, and sustainable
cryptocurrencies have been discussed; institutional investors can choose energy-efficient
and sustainable cryptocurrency to diversify their portfolio management with traditional
financial assets (Haq et al. 2023). Human factors play a part in the risks of trading and
portfolio management. Although investment is inherently coupled with the balance of
returns and risk levels, high volatility levels may significantly impact the volatility persis-
tence of investors (Tabash et al. 2024). Some types of risk-seeking investors are willing to
accept high risks and volatility if there is a higher possibility of returns, while for others,
the fear of sudden and significant losses outweighs the allure of high returns. This volatility,
coupled with the technical barriers, poses a significant hurdle for the broader adoption of
and investment in cryptocurrencies.

Moreover, centralized entities that facilitate cryptocurrency trading and storage often
lack transparency in managing user funds (Rehman et al. 2020). High-profile cases of
mismanagement, such as the collapse of FTX (Conlon et al. 2022), where user funds were
mishandled for profit-making purposes, highlight the risks associated with centralized
exchanges. Current solutions to ensure transparency, such as proof of reserves (Pines and
Zell 2023), are inadequate as they only provide a snapshot of reserves at a specific point in
time without clarifying the sources or stability of those reserves.

The urgent need for a decentralized and transparent approach to managing user funds
is clear. Investors need assurance that their assets are secure and managed transparently,
free from the risks posed by centralized entities. Some prior works have been reported
in the literature. The investment slopes of Bitcoin from January 2014 to April 2023 have
been studied, using the principal component analysis (PCA) method for analyzing BTC
investment, including key factor identification, investment performance, risk assessment,
etc. (Aivaz et al. 2023). The volatility spillover dynamics of four cryptocurrencies including
Bitcoin, ETH, Ripple, and Litecoin, have been investigated using a multivariate GARCH
model and a wavelet method (Kumar and Anandarao 2019). The analysis conducted in
(Kayani and Hasan 2024) discusses how the finance industry has been impacted and revo-
lutionized by cryptocurrencies, particularly Bitcoin and Ethereum, which affect volatility,
diversified investing options, and the clarity of regulations. A simulated cryptocurrency
trading system with a deep LSTM has been utilized to forecast the Bitcoin price (Parvini
et al. 2022). A Bitcoin trading method incorporating reinforcement learning algorithm has
been presented based on Bitcoin historical prices and Twitter sentiment analysis (Otabek
and Choi 2024).

1.2. Objectives

To address these challenges, we propose the development of a decentralized cryp-
tocurrency trading system powered by advanced machine learning (ML) models. The
objectives of this study are multifaceted, aiming to enhance transparency, reduce risks, and
leverage data-driven insights to optimize trading strategies. The application will utilize
ML techniques to analyze vast amounts of data, including historical asset prices, on-chain
metrics, and user sentiment from various sources such as Google Trend. This comprehen-
sive analysis will help predict future price movements, identify emerging trends, and make
informed buying and selling decisions.

To ensure transparency and security, the predicted prices and trading decisions gen-
erated by the ML models will be brought on chain through the development of on-chain
oracles. These oracles will enable the integration of off-chain data into smart contracts,
ensuring that all trading activities and portfolio management are transparent and verifiable
on a public blockchain. User funds will be managed through smart contracts deployed
on a public blockchain. This approach eliminates the need for intermediaries and ensures
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that all transactions and portfolio management activities are conducted transparently and
autonomously, leaving no room for mismanagement or fraud. Users will have the ability to
verify portfolio management in real time, fostering trust and confidence in the system.

1.3. Organization

The rest of the paper is organized into several sections. Section 2 examines existing
approaches and identifies gaps in current research. Section 3 describes the methods and
models used to develop the decentralized cryptocurrency trading system. Section 4 presents
the outcomes and analysis of the developed models and components. Finally, Section 5
summarizes the findings and suggests future research directions.

2. Related Work
2.1. Cryptocurrency Price Prediction

Some machine learning models have been reported in past studies to predict cryp-
tocurrency prices. Random forest (RF), an ensemble model, was able to provide correct
next-day binary trading signals more than 50% of the time and generated around 10%
annual returns by trading Bitcoin in falling market conditions, based on the historical daily
price data from 7 August 2015 to 3 March 2019 (Sebastião and Godinho 2021). In this
work, there is still room for improvement in the forecasting performance, as the models
were not optimized to minimize the forecasting error but to maximize the average of the
one-step-ahead returns. Chen (2023) employed machine learning algorithms trained using
historical Bitcoin daily price data from 31 March 2015 to 1 April 2022 and 47 variables for
next-day Bitcoin price prediction. In this work, RF showed comparable results when com-
pared to other advanced models such as long short-term memory (LSTM) on evaluation
metrics like root mean square error (RMSE) and mean absolute percentage error (MAPE).
The RF model achieved RMSE and MAPE scores of 2094.24 and 3.29%, respectively. A
cryptocurrency trading system has been introduced with a multi-layer perceptron (MLP)
as a classifier and a pipeline to forecast short-term prices (Parente et al. 2024). The price
data of several cryptocurrencies including Bitcoin, ETH, and minor coins was collected in
the timeframe from 17 August 2017 to 4 December 2022. The model achieved 66% accuracy
and generated significantly higher profits compared to linear models over both long- and
short-term trading periods. But the price predication accuracy may have been impacted
significantly by the low liquidity of some minor coins (Parente et al. 2024).

Another study using LTSM, trained with 1829 Bitcoin historical price data points from
27 June 2014 to 27 June 2019, was used to predict Bitcoin prices and achieved an RMSE
score of 288 at 500 epochs through an epoch search (Ferdiansyah et al. 2019). However,
the disadvantage of this work was the poor accuracy at a lower number of epochs. Bi-
directional LSTM (Bi-LSTM) overcomes the limitations of LSTM that allow input sequence
processes in the reverse direction (Seabe et al. 2023). Three machine learning algorithms,
including Bi-LSTM, LSTM, and Gated recurrent unit (GRU), were employed to perform
price predictions for Bitcoin, ETH, and Litecoin. The training and testing datasets were from
1 January 2018 to 31 December 2021 and from 1 January 2022 to 1 January 2023, respectively.
Two performance evaluation metrics were used: RMSE and MAPE. The Bi-LSTM model
showed better performance, with a lower error score of around 19%, in comparison to
LSTM and GRU. But a certain risk of low prediction accuracy and maintenance costs are
associated in this work (Seabe et al. 2023).

Hybrid models are being researched for cryptocurrency price prediction. One study
investigated a hybrid deep neural network, CNN-BiLSTM, to predict Bitcoin prices (Tripathi
and Sharma 2022). The model, trained using 3142 historical daily price data points from 1
April 2013 to 6 November 2021, achieved an MAPE of 0.28% for a next-day Bitcoin price
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forecast and 2.25% for seven-day price forecasts. In another study, a one-dimensional CNN
and stacked GRU (1DCNN-GRU) model was trained for predicting Bitcoin prices using
10,797 historical Bitcoin price data points over a duration of one week with one-minute
intervals, which gave an RMSE score of 43.933 on the Bitcoin dataset (Kang et al. 2022).
But one potential limitation of the work was that only one week of price data samples
was used. Another hybrid model was trained with historical daily Bitcoin prices from
February 2014 to September 2021 and used for predicting Bitcoin prices, with a MAE score
of 1707.42, while deep cross networks (DCN), a non-hybrid model, had a MAE score of
2902.90 (Nagula and Alexakis 2022). The hybrid model achieved a return on investment
(ROI) of 11% over 36 months of Bitcoin futures trading, which was 260% and 82% higher
than the buy-and-hold and DCN models, respectively.

2.2. Blockchain, Smart Contract, and Oracles

This sub-section will explore blockchain platforms that provide smart contract capabil-
ities and the advantages they offer. The focus will be on permissionless (public) blockchains,
which allow anyone to interact with the application (Mohan 2019). Concepts of blockchain
oracles that enable smart contracts to access off-chain data will be reviewed as well.

A blockchain is a distributed ledger that involves the replication and storage of
transactions across multiple nodes. Transactions are organized into blocks, which serve as
immutable records (Di Pierro 2017). These transactions store various types of information
such as monetary value, parameters, and function calls. The implementation of blockchain
technology eliminates the need for intermediaries and ensures transparent handling of user
funds, minimizing the risk of mishandling (Ammous 2016).

In recent years, many permissionless blockchains have emerged, aiming to challenge
ETH, which has been the dominant programmable blockchain (Irresberger et al. 2020).
As of 28 May 2024, according to DefiLlama, the total value locked on ETH, excluding
its side chains and layer 2 solutions, stands at approximately USD 66.06 billion, which
accounted for roughly 61% of the overall value locked on public blockchains. ETH suffers
from low transaction throughput and high transaction costs (Hafid et al. 2020). To address
these issues, an alternative approach involves utilizing Ethereum Virtual Machine (EVM)-
compatible blockchains, particularly layer 2 solutions (Sguanci et al. 2021). These solutions
provide the benefit of utilizing the security and decentralization of the Ethereum main chain,
while achieving greater transaction throughput and reduced transaction costs. Additionally,
there are alternative programmable blockchains such as Solana, Cardano, and Cosmos that
offer higher throughput and lower transaction fees as well (Irresberger et al. 2020).

Smart contracts on a blockchain can be executed automatically if the required condi-
tions are fulfilled, which helps enforce certain agreements among multiple parties (Taher-
doost 2023). As one of the use cases of smart contracts, token smart contracts enable
payments and token transfer on a blockchain, where a state variable storing the token
holdings under each user will be modified accordingly (John et al. 2023). The ability of
transaction inspections ensures that truth conditions are met for smart contract execu-
tions. Decentralized finance (DeFi) is another application using smart contracts to provide
financial services without the need of intermediaries, with the benefits of transparency
and immutability (Benetti and Piazza 2023). But potential concerns have been raised over
the risks of meeting regulatory requirements and protecting investors. As a part of DeFi,
the decentralized exchange (DEX) enabled by smart contracts allows users to trade with
each other without traditional custodial intermediaries (Shah et al. 2023), although there
are potential security threats and risks regarding attacks, such as stolen tokens, market
manipulation, etc. (Li et al. 2024).
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Smart contracts are limited to on-chain data and cannot directly interact with external
systems that contain real-world data and events (Pasdar et al. 2023). A blockchain oracle
serves as a bridge between the real world and the blockchain, enabling smart contracts
to access and utilize real-world data. As displayed in Figure 1, the oracle ecosystem usu-
ally comprises the following three parts: data source, oracle node, and smart contract.
Blockchain oracles play an important role in enabling interactions between blockchain
networks and real-world data. But the concept of centralization and a potential single point
of failure have been used as arguments against the advantages of decentralization (Hassan
et al. 2023). Data could be brought into smart contracts by a decentralized network of
oracles. As an example of oracle use cases, randomness in blockchain is obtained through
oracles using verifiable random functions to build smart contracts for minting non-fungible
tokens (Andrei 2024). Another example of a blockchain price oracle is reported to fetch
the latest price of Bitcoin for DeFi smart contracts (Lys and Potop-Butucaru 2022). Decen-
tralized oracles collect agricultural risk factor data from Internet of things (IoT) sensing
devices to build smart contracts for agricultural insurance purposes (Manoj et al. 2024).
Generally, there are two types of blockchain oracles: permissioned and permissionless. In a
permissionless oracle, any user can join or leave the network at any time. Decentralized
oracles provide significantly higher guarantees of correctness and eliminate the existence of
a single point of failure. Several popular decentralized blockchain oracles exist, including
Chainlink (Breidenbach et al. 2021) and time-weighted average price (TWAP) (Adams
et al. 2023), etc. Among them, Chainlink is one of the most popular blockchain oracles. It
provides a comprehensive suite of products, including data feeds, proof of reserves, and
automated smart contracts. TWAP is a fully on-chain oracle provided by decentralized
exchanges (DEXs) like Uniswap, enabling access to the average price of an asset over a
specific period.
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Research has explored different systems for data-onchaining that aim to provide
trustworthy data (Heiss et al. 2019). One such approach is Transport Layer Security (TLS),
with implementations like TLS-Notary (TLSNotary n.d.). Another approach is voting-based
onchaining by Chainlink (Breidenbach et al. 2021). These systems offer diverse methods for
ensuring the reliability and integrity of data in different contexts.

TLS-Notary is a protocol to prove the authenticity of data on the web, without revealing
it to anyone (TLSNotary n.d.). Figure 2 illustrates how the TLS-Notary protocol works.
The prover requests data from a server over TLS while cooperating with the verifier in
secure and privacy-preserving multi-party computation (MPC). Next, the prover selectively
discloses the data to the verifier. Then, the verifier verifies the data. Selective disclosure
can be paired with zero-knowledge proof (ZKP) to prove properties of the redacted data
without revealing the data themselves.
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2.3. Decentralized Applications (dApps)

This sub-section will discuss the different types of dApps, how they are built, and the
system architecture they have adopted. dApps are applications that run on a blockchain
or peer-to-peer network of computers instead of a single computer (Zheng et al. 2023).
They are designed to be open source, decentralized, and incentivized through the use of
tokens. dApps have gained significant attention due to their potential to disrupt traditional
centralized systems by providing transparency, security, and autonomy. dApps can be
broadly categorized into three types:

1. DeFi (Decentralized Finance): These applications aim to recreate traditional financial
systems such as lending, borrowing, and trading on the blockchain. Examples include
Uniswap, Aave, and Compound.

2. NFT (Non-Fungible Tokens): These are unique digital assets verified using blockchain
technology. They are used in various fields such as art, gaming, and collectibles.
Examples include CryptoKitties, NBA Top Shot, and OpenSea.

3. GameFi (Gaming and DeFi): These applications combine gaming with financial
incentives, allowing players to earn tokens through gameplay. Examples include Axie
Infinity and Decentraland.

The architecture of dApps typically involves smart contracts, blockchain, and a user
interface. Smart contracts are self-executing contracts with the terms of the agreement
directly written into code. They run on the blockchain and are responsible for the logic of
the dApps. The user interface allows users to interact with the dApps, often through a web
browser and a Web3 wallet, e.g., MetaMask.

dApps offer several advantages over traditional applications, including transparency,
security, and autonomy (Alamsyah et al. 2024). However, dApps also face challenges
such as scalability, user experience, and regulatory compliance. The scalability issue arises
from the limited transaction throughput of many blockchains, which can lead to high fees
and slow transaction times (Khan et al. 2021). Improving the user experience is crucial for
mainstream adoption, as managing private keys and interacting with blockchain technology
can be complex for non-technical users. Regulatory compliance is another challenge, as the
decentralized nature of dApps can conflict with existing legal frameworks.

3. Our Methodology
The decentralized cryptocurrency trading system being developed for this research

falls under the DeFi category. Bitcoin was chosen for price prediction in this research due to
its status as the most important and largest cryptocurrency; Bitcoin occupies about 54.47%
of total cryptocurrency market capitalization as of 1 January 2025 (CoinGecho.com 2025).
Bitcoin is the most frequently and extensively studied cryptocurrency, accounting for about
79% of research papers, followed by Ethereum at about 32% (John et al. 2024). Bitcoin
prices possibly impact the volatility of the cryptocurrency market (Kumar and Anandarao
2019). The capability to predict Bitcoin prices at a high accuracy level could be very helpful
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to investors making investment decisions or to governments making regulatory policies
(Goodell et al. 2023). The transparency of Bitcoin prices has become more efficient and
well known (Omole and Enke 2024). Bitcoin is used in hedging for the movement of
gold prices, stock market indices, etc. (Chatterjee et al. 2024), although higher volatility is
observed in Bitcoin prices compared to those traditional financial assets (Omole and Enke
2024). There is abundant trading and blockchain data, and extensive research has been
conducted on Bitcoin pricing patterns. This makes Bitcoin an ideal choice for engaging
non-cryptocurrency users/investors.

3.1. Blockchain, Smart Contracts, and Oracle

Blockchain was the key technology used to build the decentralized crypto trading
system. It enables the use of smart contracts to build applications and oracles on top of the
blockchain.

3.1.1. Blockchain

Arbitrum, an Ethereum layer 2 solution, was chosen for this research due to the
high liquidity of Wrapped Bitcoin (wBTC) and its inheritance of Ethereum’s security and
decentralization. Arbitrum has the 4th highest total value locked (TVL) after Tron, Binance
Chain, and Ethereum as of August 2023 (Wagner et al. 2024). Ethereum is slow and
expensive to use (Hafid et al. 2020). Tron and Binance Chain are managed by centralised
entities. This makes Arbitrum the best choice for this study. Arbitrum is a layer 2 solution
that borrows security from Ethereum, which is layer 1. Transactions that happen on
Arbitrum will be batched and committed to Ethereum using mathematical fraud proofs.
This drastically reduces the cost required to do trading without sacrificing the decentralized
nature of a blockchain. Arbitrum uses optimistic rollups, a data compression technique that
bundles multiple transactions into a single “rolled-up” transaction. This reduces blockchain
processing time and costs by confirming only the rolled-up transaction instead of each
individual transaction within it. Optimistic rollups assume the validity of transactions
within the rollup. However, validators can dispute transactions suspected of fraud. They
must stake ETH before confirming transactions, incentivizing honest behavior. Alchemy, a
blockchain node service provider platform, was used to access Arbitrum in developing our
decentralized crypto trading system.

3.1.2. Smart Contract

Smart contracts are software applications that run on blockchain networks. They can
be created using Solidity, a programming language specifically designed for developing
smart contracts on Ethereum Virtual Machine (EVM) chains. Audited open-source smart
contracts from OpenZeppelin and Uniswap were utilized to build the decentralized crypto
trading system. OpenZeppelin is an open-source framework that provides tools and
libraries for building secure smart contracts. Uniswap is a decentralized cryptocurrency
exchange (DEX) that employs a set of smart contracts to facilitate trading. Uniswap was
used as the DEX, with trades being executed based on price predictions generated by the
models.

Hardhat is utilized for the development, testing, and deployment of smart contracts.
Hardhat is an EVM development environment platform that offers various features and
tools to streamline the development process.

The decentralized crypto trading system involved the creation of a portfolio contract
that enables trading between wBTC and USDC on Uniswap. The trades are executed based
on the price predictions provided by the models. Each user is required to deploy their own
portfolio contract and deposit USDC to trade with wBTC. This approach empowers users
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with full control over their funds, eliminating the need for an external party and achieving
decentralization.

3.1.3. Oracle

To integrate the price predictions from the model into the decentralized crypto trading
system, a custom oracle was developed using Solidity. This oracle is designed to receive the
predicted price exclusively from the application owner, while allowing anyone to request
the predicted price at any given time.

To maintain regular and timely price updates, a cron job was implemented to schedule
periodic requests for the price. This ensures that the smart contracts receive up-to-date and
accurate price information.

The time-based automation feature of Chainlink can be utilized to automate this
process. However, it currently does not support the automatic deployment of time-based
automation upkeep contracts. A custom oracle contract was created to accept the predicted
price from the model and transmit it to the portfolio contract that invokes the oracle. This
approach guarantees that the portfolio contract has access to the latest price information
required for executing trades.

3.2. System Architecture and Trading Flowchart

The architecture of the decentralized cryptocurrency trading system, as depicted in
Figure 3, involves several components. The system is not completely decentralized due to
the use of custom oracle and centralized services like a database. However, the use of these
centralized services does not impact on the custody of users’ funds. Users still maintain
complete control over their funds. The web application accesses the database to retrieve
user portfolio contracts and display them on the web interface. The scheduler service also
utilizes the database to interact with smart contracts and to request the predicted Bitcoin price
at 12:00 GMT+8 daily. The oracle service receives these requests and uses the ML model
to predict the price using the explanatory features. The oracle service pushes the predicted
price to the oracle contract. The portfolio contracts utilize the price data from the oracle
contract to execute wBTC/USDC trades on the Uniswap pool contract. Figure 4 depicts a
detailed flowchart illustrating how the decentralized cryptocurrency trading system works.
The system performs the actions automatically, starting from price requests with the scheduler
service, to receiving the predicted price from the ML model, to going through several trading
strategies and conducting the buy/sell trading between wBTC and USDC.

In this research, three trading strategies were used and compared for trading Bitcoin
based on the predicted Bitcoin closing prices, which are shown in Table 1. For all three
trading strategies, a commission fee of 0.5% per transaction was adopted. For the first
trading strategy, if the price change between the predicted BTC price and the pool price was
more than +USD 50 and there was an available USDC balance in the portfolio contract, then
the system performed the buy BTC action to swap the available USDC into BTC through
the Uniswap. On the other hand, if the price change between the predicted BTC price and
the pool price was more than −USD 50 and there was an available wBTC balance in the
portfolio contract, then the system performed the sell BTC action to swap the available BTC
into USDC through Uniswap.

The moving average convergence or divergence (MACD) is one of the most used
technical indicators, calculated by subtracting the 26-day exponential moving average
(EMA) from the 12-day EMA, as shown in Equation (1). A nine-day EMA was calculated as
the MACD signal line.

MACD = (12-day EMA) − (26-day EMA) (1)
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For the second trading strategy, the buy or sell BTC transaction was performed when
the MACD moves cross over or under the MACD signal line, together with the fulfillment
of the ±USD 50 price change strategy criteria.

For the third trading strategy, the MACD ratio was calculated as shown in Equation (2).
The buy or sell BTC transaction was performed when the MACD ratio was above 1.25 or
below 0.75, together with the fulfillment of the ±USD 50 price change strategy criteria.

MACD Ratio = MACD Line/Signal Line (2)

Table 1. Trading strategies used in this study.

No. Strategy Description

1 ±USD 50 price change
Buy or sell BTC when there is a ±USD 50 change

between the Bitcoin open and the predicted Bitcoin
close price with 0.5% fees taken from each trade.

2
Moving average convergence or divergence

(MACD) crossover with ±USD 50 price
change

Buy or sell when the MACD line crosses over or
under the signal line, together with the ±USD

50 price change strategy criteria.

3 MACD ratio with ±USD 50 price change
Buy or sell BTC when the MACD ratio is above 1.25 or
below 0.75, together with the ±USD 50 price change

strategy criteria.
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3.3. Machine Learning Models Used

In the system architecture shown in Figure 3, the ML model takes in the relevant BTC
data and predicts the BTC price for the oracle service. In this research, three types of ML
models were adopted and evaluated: random forest (RF), LSTM, and Bi-LSTM. The results
of these three ML models will be compared and analyzed.

3.3.1. Random Forest

RF is an ensemble learning algorithm that combines multiple decision trees to enhance
prediction accuracy and robustness. It constructs a multitude of decision trees during
training and outputs the mode of the classes for classification tasks or the mean prediction
for regression tasks. It leverages the power of ensemble learning, which involves training
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several models and combining their predictions to improve overall performance and reduce
the risk of overfitting.

In the context of predicting daily Bitcoin future closing prices, RF can be effective
due to its ability to handle large datasets and its robustness against noise and overfitting.
Bitcoin price prediction is inherently challenging due to the asset’s extreme volatility and
sensitivity to various market factors, such as trading volume, investor sentiment, and
macroeconomic indicators. By training multiple decision trees on different subsets of the
data, RF can capture diverse patterns and relationships within the data, leading to more
accurate and reliable predictions. It is reported that higher prediction accuracy is obtained
by RF in predicting Bitcoin price direction than that of logit models, but it is subject to
potential sensitivity to the number of trees (Basher and Sadorsky 2022).

The inherent feature selection mechanism of RF helps in identifying the most relevant
predictors for Bitcoin price, such as historical prices, trading volume, and social media sentiment.
This capability is crucial in financial markets where numerous variables can influence asset
prices, and distinguishing the significant ones can lead to good predictive performance.

In this research, scikit-learn, a Python library, was used to create and train the RF
model. The criterion was set to the parameter of absolute_error, and the parameter of
n_estimators was set to be 500. The training of the RF model is illustrated in Figure 5, where
predicted BTC prices based on input dataset are derived with 500 decision trees and the
average RF predicted price is taken.

Risks 2025, 13, x FOR PEER REVIEW  12  of  27 
 

 

In the context of predicting daily Bitcoin future closing prices, RF can be effective due 

to  its ability  to handle  large datasets and  its  robustness against noise and overfitting. 

Bitcoin price prediction is inherently challenging due to the asset’s extreme volatility and 

sensitivity  to various market  factors,  such  as  trading volume,  investor  sentiment, and 

macroeconomic indicators. By training multiple decision trees on different subsets of the 

data, RF can capture diverse patterns and relationships within the data, leading to more 

accurate and reliable predictions. It is reported that higher prediction accuracy is obtained 

by RF  in predicting Bitcoin price direction than that of logit models, but  it  is subject to 

potential sensitivity to the number of trees (Basher and Sadorsky 2022). 

The inherent feature selection mechanism of RF helps in identifying the most relevant 

predictors for Bitcoin price, such as historical prices, trading volume, and social media 

sentiment. This capability is crucial in financial markets where numerous variables can 

influence asset prices, and distinguishing the significant ones can lead to good predictive 

performance. 

In this research, scikit‐learn, a Python  library, was used to create and train the RF 

model. The criterion was set  to  the parameter of absolute_error, and  the parameter of 

n_estimators was set  to be 500. The  training of  the RF model  is  illustrated  in Figure 5, 

where predicted BTC prices based on input dataset are derived with 500 decision trees 

and the average RF predicted price is taken. 

 

Figure 5. Illustration of the training of the RF model. 

3.3.2. LSTM 

LSTM is a specialized type of recurrent neural network (RNN) that excels at captur‐

ing and modeling  long‐term dependencies  in sequential data. Traditional RNNs suffer 

from the problem of vanishing and exploding gradients, which hampers their ability to 

learn  from  long‐term dependencies  in  the data. LSTM  addresses  this  issue  through  a 

unique architecture that includes memory cells and gating mechanisms, allowing them to 

retain and utilize information over extended sequences effectively. LSTMs can maintain 

and update the cell state effectively, preserving long‐term dependencies while mitigating 

the problems associated with standard RNNs. 

In the context of predicting daily Bitcoin closing prices, LSTM is well‐suited due to 

its ability to model temporal dependencies in financial time series data. LSTM can better 

address long‐term memory issues in cryptocurrency markets (Wu et al. 2024). LSTM can 

Figure 5. Illustration of the training of the RF model.

3.3.2. LSTM

LSTM is a specialized type of recurrent neural network (RNN) that excels at capturing
and modeling long-term dependencies in sequential data. Traditional RNNs suffer from
the problem of vanishing and exploding gradients, which hampers their ability to learn
from long-term dependencies in the data. LSTM addresses this issue through a unique
architecture that includes memory cells and gating mechanisms, allowing them to retain
and utilize information over extended sequences effectively. LSTMs can maintain and
update the cell state effectively, preserving long-term dependencies while mitigating the
problems associated with standard RNNs.

In the context of predicting daily Bitcoin closing prices, LSTM is well-suited due to its
ability to model temporal dependencies in financial time series data. LSTM can better address
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long-term memory issues in cryptocurrency markets (Wu et al. 2024). LSTM can obtain
favorable results for cryptocurrency prices prediction by learning complex relationships in
historical data (Akila et al. 2023). Bitcoin price movements are influenced by various factors
that unfold over time, including historical prices, trading volumes, market trends, and external
economic indicators. LSTM can learn from these sequential patterns and dependencies,
providing more accurate and reliable predictions (Parente et al. 2024). But the prediction
performance of LSTM could be sensitive to the scale of the input data (Syed et al. 2023).

In this research, TensorFlow.keras, a Python library, was used to create and train the
LSTM model. The training of the LSTM model is illustrated in Figure 6, which consists
of three layers. The first LSTM layer consists of 256 units and uses the rectified linear
unit (ReLU) activation function. The second LSTM layer has 128 units and uses the ReLU
activation function. The final layer is a dense layer with a single unit. Callbacks such
as EarlyStopping and ModelCheckPoint were configured to monitor and save the best
model to be used later. EarlyStopping monitors validation loss with a patience of 10 epochs
and restores the best weights. ModelCheckPoint saves the best model by monitoring the
validation loss occurred in the epochs. The model trained for a maximum of 100 epochs.
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3.3.3. Bi-LSTM

Bi-LSTM is an advanced extension of the traditional LSTM network that enhances
the model’s ability to capture information from both past and future contexts in sequen-
tial data. While standard LSTM processes data in a single forward direction, Bi-LSTM
networks consist of two LSTM layers: one that processes the input sequence from past
to future (forward direction) and another that processes it from future to past (backward
direction). This bidirectional processing enables the model to have a more comprehensive
understanding of the sequence by accessing information from both temporal directions.

In the context of predicting daily future Bitcoin closing prices, Bi-LSTM networks have
certain advantages. Bitcoin price movements are influenced by a multitude of factors that
unfold over time. By leveraging information from both past and future contexts, Bi-LSTM
networks can better understand and predict these complex temporal dependencies. For
instance, the forward LSTM can capture how historical prices and volumes impact future
prices, while the backward LSTM can provide insights into how upcoming market events
might have been influenced by past data. This dual perspective allows for more accurate
and robust predictions (Seabe et al. 2023). But Bi-LSTM has a more complex structure than
LSTM (Wang et al. 2021). Sometimes a lack of awareness of market behavior changes may
appear using Bi-LSTM (Lu 2022).



Risks 2025, 13, 17 14 of 25

In this research, TensorFlow.keras, a Python library, was used to create and train the
Bi-LSTM model, which consists of three layers. The first Bi-LSTM layer has 256 units and
uses the ReLU activation function. The second Bi-LSTM layer has 128 units and uses the
ReLU activation function. The final layer is a dense layer with a single unit. Callbacks
such as EarlyStopping and ModelCheckPoint were configured to monitor and save the best
model to be used later. EarlyStopping monitors validation loss with a patience of 10 epochs
and restores the best weights. ModelCheckPoint saves the best model by monitoring the
validation loss occurred in the epochs. The model trained for a maximum of 100 epochs.

3.4. Architecture Implementation of the System

A user interface is required to provide convenient access to the service. A web application
was chosen as the interface for the decentralized crypto trading system. Users can easily
access the service through a web browser. Furthermore, the browser is compatible with Web3
wallets like MetaMask and Trust Wallet. These Web3 wallets enable users to securely access
dApps. With a Web3 wallet, users have complete control over their funds and data.

Users must bear significant responsibility when using decentralized Web3 wallets,
such as remembering and backing up their seed phrases and private keys. This information
cannot be reset or recovered by anyone once lost or forgotten. However, many users who
are not familiar with the Web3 space may not be accustomed to such responsibility, as
mainstream services often offer alternative recovery methods via email, phone, security
questions, or in-person verification.

To address this gap in user experience and cater to those who are not comfortable man-
aging their wallet responsibilities, Web3Auth, a Web3 wallet service provider, was used.
Web3Auth offers social media OAuth 2.0 authentication methods, which allow users to
manage their wallets using familiar social media accounts. While this approach is not as de-
centralized and secure as traditional Web3 wallets, it enhances user experiences for individuals
who prefer or are unfamiliar with the responsibility of managing their wallet independently.

The web application incorporated libraries such as Web3Auth, Uniswap, and ethers.js.
These databases are used to store user data related to the deployed contracts of users and to
provide convenient access from the web application. This combination of technologies will
create a streamlined experience for users. Table 2 summarizes the framework, libraries, and
host provider used to implement the architecture of the decentralized crypto trading system.

Table 2. Frameworks, libraries and host providers used for architecture implementation.

Service Framework Libraries Host Provider

Web React Ether.js, Uniswap SDK, Web3Auth,
Firebase, Tailwind CSS Firebase Hosting

Scheduler Node.js Ether.js, Uniswap SDK,
Firebase Firebase Function

Oracle Node.js Ether.js, Uniswap SDK,
Firebase, Replicate Firebase Function

Smart Contract Solidity Uniswap, Ether.js
Openzeppelin, Hardhat Arbitrum Blockchain

ML Model Development Python Numpy, Pandas, Scikit-learn,
Matplotlib, Seaborn, Tensor-flow -

ML Model Cog Numpy, Pandas,
Scikit-learn, Tensor-flow Replicate

Database Firestore - Firebase
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3.5. Three-Stage Approach of the Crypto Trading System

The flowchart of the three-stage approach for the Bitcoin price prediction models
is shown in Figure 7. These three stages include data preparation for 30 features, data
pre-processing, and modelling. The models were trained using 30 features that have an
influence on pricing based on previous studies in the field. These can be grouped according
to their types as follows:

• Bitcoin: Part of Bitcoin market data.
• Bitcoin Technologies: Related to variables derived from the Bitcoin codebase and node

operations.
• Cryptocurrencies: Other currencies that are assumed to have price correlations.
• Commodities: Commodities that are assumed to influence cryptocurrency prices.
• Stock Markets: Key indexes that may affect cryptocurrency prices.
• Public Sentiment: Market behaviors can often be driven by emotions, leading to

irrational decisions, especially in speculative assets like cryptocurrencies.
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Table 3 shows the explanatory 30 features and their data sources. They were collected
from various sources such as Yahoo Finance, Coin Metrics, Alternative.me, and CoinMar-
ketCap. The collected data spanned from 18 September 2014 to 23 May 2024. The data
samples are with daily timeframes unless stated otherwise. The data encompasses three
distinct bubble cycles, during which Bitcoin experienced significant price fluctuations.

A total of 3535 days or rows of data were collected. Of those data, 70% was used for
training, the next 15% was used for validation, and the last 15% was used for testing. The
validation dataset was later used for training for the RF model.

In the second phase shown in Figure 7, Python libraries such as Pandas, CSV, and
JSON were used for data pre-processing. The previous day’s data point was used to handle
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missing data in the dataset due to the cryptocurrencies not being invented yet, or it being a
non-trading day. Deleting data was not an ideal approach due to the time series nature of
the model being trained.

Table 3. 30 explanatory variables and features affecting future Bitcoin closing price.

Feature Source

Bitcoin open price Yahoo Finance
Bitcoin close price Yahoo Finance

Bitcoin total Fees, USD Coin Metrics 1

Bitcoin supply held by all mining entities, USD Coin Metrics 1

Bitcoin miner revenue, USD Coin Metrics 1

Bitcoin difficulty, last Coin Metrics 1

Bitcoin hash rate, mean Coin Metrics 1

Bitcoin revenue per hash unit, USD Coin Metrics 1

Bitcoin mean block size, bytes Coin Metrics 1

Bitcoin MVRV capitalization, free float Coin Metrics 1

Bitcoin flow into exchanges, USD Coin Metrics 1

Bitcoin flow out of exchanges, USD Coin Metrics 1

Ethereum open price Yahoo Finance
Solana open price Yahoo Finance

Cardano open price Yahoo Finance
Binance Coin open price Yahoo Finance

Doge Coin open price Yahoo Finance
Polygon open price Yahoo Finance

Market capitalization CoinMarketCap
Gold open price Yahoo Finance
Silver open price Yahoo Finance

Oil open price Yahoo Finance
U.S Dollar Index open price Yahoo Finance

10-year yield open price Yahoo Finance
S&P 500 open price Yahoo Finance

DJI open price Yahoo Finance
Nasdaq open price Yahoo Finance

Nikkei 225 open price Yahoo Finance
CSI 3000 open price Yahoo Finance

Bitcoin fear/greed index Alternative.me
1 Coin Metrics data sources are one day behind the other data sources.

For training, validation, and testing purposes, the data were divided into three parts.
The first part, from 18 September 2014 to 26 June 2021, was the training period. The second
part, from 27 June 2021 to 8 December 2022, was the validation period for the LSTM and
Bi-LSTM models. The final part, from 9 December 2022 to 23 May 2024, was the testing
period. The RF model did not require the validation set, so the validation data were used
for training the model instead, as shown in Figure 7.

In the third phase shown in Figure 7, the models integrated three types of machine
learning algorithms for price predictions: RF, LSTM, and Bi-LSTM, which, after pre-
processing, were fed and trained using the data. The trained models were evaluated
using three trading strategies with the key criteria being profitability exceeding a buy-
and-hold strategy, with an initial capital of USD 1000 and a commission rate of 0.5% per
transaction. This research used MAE (mean absolute error), RMSE, and MAPE to assess the
prediction performance of the models (Chicco et al. 2021). Table 4 outlines the descriptions
of these three evaluation metrics.
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Table 4. Error evaluation metrics used in this study.

Metric Description Formula

MAE Measures the average absolute difference between the
predicted and actual Bitcoin prices. MAE = 1

m

m
∑

i=1
|Xi − Yi|

RMSE
Provides an interpretable measure of the average magnitude
of the prediction errors in the same unit as the target variable,

helping to understand the average prediction error.
RMSE =

√
1
m

m
∑

i=1
(Xi − Yi)

2

MAPE Measures the average absolute percentage difference between
the predicted and actual Bitcoin prices. M =

1
n

n
∑

t=1

∣∣∣∣ At − Ft

At

∣∣∣∣
4. Experiments and Result Analysis

In this section, we will examine the outcomes achieved through the experiments and
testing of the decentralized crypto trading system.

4.1. Experimental Results on Price Prediction

Three ML models, RF, LSTM, and Bi-LSTM, were tested on their ability to predict Bitcoin
close price. The error evaluation results of these three ML models are presented in Table 5. It
is observed that the Bi-LSTM model outperforms both the RF and Bi-LSTM models.

Table 5. Error evaluation of RF, LSTM, and Bi-LSTM.

Model RF LSTM Bi-LSTM

MAE 1417.32 1418.14 1074.49
RMSE 2304.62 2160.36 1500.82
MAPE 0.0335 0.0335 0.0280

Figure 8 illustrates the price differences of the predicted BTC prices produced by the
three models to the actual BTC price during the same testing period from 9 December
2022 to 23 May 2024. It is observed that the price predicted by the Bi-LSTM model has the
smallest differences compared to the actual BTC price. Figure 8 also demonstrates a wide
variability of predictions.
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4.2. Experimental Results on Profitability of Portfolio Management

The profitability of portfolio management using the proposed decentralized crypto
trading system was evaluated with backtesting using the test data. Figure 9 shows the
duration of the training, validation, and testing periods of the models. The testing period
was from 9 December 2022 to 23 May 2024.
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Figure 10 illustrates the profitability of portfolio management using the three trading
strategies shown in Table 1 by the three ML models, in comparison to a buy-and-hold
strategy during the testing period. In Figure 10, RF, LSTM, and Bi-LSTM denote these three
ML models with the first trading strategy. RF, LSTM, and Bi-LSTM with MACD (CROSS)
denote these three ML models with the second trading strategy. Meanwhile, RF, LSTM
and Bi-LSTM with MACD (RATIO) denote these three ML models with the third trading
strategy. It is observed that Bi-LSTM and LSTM significantly outperform the RF model
in all three trading strategies. The Bi-LSTM and LSTM models, when using the first two
trading strategies, also outperform the buy-and-hold strategy.
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Table 6 showcases the monthly profits generated by each ML model and its corre-
sponding trading strategy. The resultant profits that are in bold in the table outperform
those of the buy-and-hold strategy. Both the LSTM and Bi-LSTM models, employing their
three respective trading strategies, outperform the buy-and-hold strategy overall. In con-
trast, the RF (with the first strategy), MACD (RATIO) RF, and MACD (CROSS) strategies
underperform when compared to the buy-and-hold strategy.

Table 6. Monthly profit of three ML models vs. buy-and-hold strategy (Note: $ represents USD).

Date RF LSTM Bi-
LSTM

MACD
(RATIO)

RF

MACD
(RATIO)

LSTM

MACD
(RATIO)
Bi-LSTM

MACD
(CROSS)

RF

MACD
(CROSS)

LSTM

MACD
(CROSS)
Bi-LSTM

Buy and
Hold

1 January 2023 $0.00 −$44.85 −$44.85 $0.00 $1.06 $1.06 $0.00 −$27.19 −$27.19 −$44.85
1 February 2023 $171.96 $397.82 $404.56 $244.75 $428.50 $428.50 $0.00 $388.19 $388.19 $362.98

1 March 2023 $171.96 $485.82 $583.66 $144.81 $416.34 $463.64 $0.00 $357.55 $357.55 $358.55
1 April 2023 $248.15 $919.94 $1109.16 $159.62 $756.99 $815.66 $0.00 $357.55 $357.55 $632.28
1 May 2023 $289.98 $1250.56 $1177.13 $146.58 $746.98 $795.25 $0.00 $357.55 $248.87 $613.92
1 June 2023 $64.08 $1152.81 $1078.58 $94.68 $730.34 $713.98 $0.00 $341.44 $192.33 $540.87
1 July 2023 $189.11 $1480.25 $1367.63 $248.56 $973.58 $900.62 −$42.25 $530.01 $359.94 $757.47

1 August 2023 $198.26 $1406.12 $1296.86 $211.24 $914.59 $843.81 −$42.25 $484.28 $319.29 $704.94
1 September 2023 −$4.02 $1231.53 $1130.20 $53.08 $664.59 $603.05 −$178.14 $322.46 $175.46 $482.31

1 October 2023 $3.41 $1420.34 $1310.44 $83.00 $805.43 $738.68 −$108.60 $434.35 $274.92 $607.73
1 November 2023 $161.40 $2071.36 $1741.86 $271.35 $1286.31 $1201.78 $128.82 $816.4 $614.49 $1035.95
1 December 2023 $130.07 $2353.17 $2007.41 $388.00 $1496.08 $1403.81 $81.04 $983.06 $762.63 $1222.75

1 January 2024 $226.38 $2828.00 $2433.28 $510.09 $1849.54 $1744.20 $124.38 $1263.87 $1012.23 $1537.51
1 February 2024 $284.72 $2733.39 $2348.43 $638.08 $1779.12 $1676.38 $124.38 $1207.92 $962.5 $1474.80

1 March 2024 $336.43 $4411.75 $3853.73 $655.48 $3028.48 $2879.56 $124.38 $2200.5 $1844.75 $2587.35
1 April 2024 $336.23 $5041.11 $4418.19 $641.95 $3496.97 $3330.73 $124.38 $2572.7 $2175.57 $3004.54
1 May 2024 $336.23 $4048.89 $3896.94 $641.95 $2758.37 $2619.43 $124.38 $1985.91 $1654.01 $2346.82
23 May 2024 $336.23 $4887.48 $4679.07 $641.95 $3382.61 $3220.59 $124.38 $2481.85 $2094.82 $2902.70

Table 7 shows the profitability metrics of portfolio management for the three ML
models using the three strategies, compared to a buy-and-hold strategy. The best results of
the profitability metrics are in bold in the table. The LSTM model performs best in terms of
profit made and correct trading decisions. The Bi-LSTM and LSTM models show similar
profitability, suggesting that substantial improvement in the error evaluation metrics is
required to enhance profitability.

Table 7. Profitability metrics of portfolio management from 9 December 2022 to 23 May 2024. (Note:
$ represents USD).

Metric RF LSTM Bi-LSTM
MACD

(RATIO)
RF

MACD
(RATIO)

LSTM

MACD
(RATIO)
Bi-LSTM

MACD
(CROSS)

RF

MACD
(CROSS)

LSTM

MACD
(RATIO)
Bi-LSTM

Buy and
Hold

Initial Capital $1000 $1000 $1000 $1000 $1000 $1000 $1000 $1000 $1000 $1000
Win Trade 24 34 31 6 5 4 2 2 1 -
Loss Trade 30 11 16 6 2 3 6 3 4 -
Total Trade 54 45 47 12 7 7 8 5 5 -
Win Ratio 0.44 0.75 0.65 0.5 0.71 0.57 0.25 0.4 0.2 -
Loss Ratio 0.55 0.24 0.34 0.5 0.28 0.42 0.75 0.6 0.8 -

Win–Loss Ratio 0.8 3.09 1.93 1.0 2.5 1.3 0.33 0.66 0.25 -
Total Profit $336.23 $4887.47 $4679.06 $641.94 $3382.61 $3220.59 $124.38 $2481.85 $2094.82 $2346.82

ROI 33.62% 488.74% 467.90% 64.19% 338.26% 332.05% 12.43% 248.18% 209.48% 234.68%
Peak Value $1356.23 $6334.16 $5946.18 $1937.65 $4715.12 $4540.81 $1197.54 $3746.02 3329.62 $4198.80

Trough Value $959.41 $944.49 $944.49 $1000 $996.39 $996.39 $801.53 $968.27 $968.26 $944.49
Maximum
Drawdown −29.25% −85.08% −84.11% −48.39% −78.86% −78.05% −33.06% −74.15% −70.92% −77.70%

Sharpe Ratio
(0.223%) 1.58 1.32 1.38 1.24 1.30 1.32 0.24 1.13 1.06 1.22

The MACD (RATIO) and MACD (CROSS) strategies, i.e., the third and second trading
strategies, result in lower maximum drawdown percentages. This is due to the fact that
the trough value is closer to the initial capital, with the MACD (RATIO) RF strategy not
falling below the initial investment. The MACD indicator also significantly reduces the
total number of trades made.

As can be observed in Table 7, all the trading strategies except MACD (CROSS) RF
achieve Sharpe ratios above 1 on daily returns, with the RF model having the highest
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Sharpe ratio at 1.58. The MACD (RATIO) RF strategy achieves the highest Sharpe ratio,
which is likely due to the low maximum drawdown ratio. This means most of the trading
strategies generated better returns compared to the 0.223% daily risk-free rate based on the
S&P 500 index, as used in the Sharpe ratio formula.

4.3. Result Comparisons with Prior Work

The result comparisons with prior work should be taken as an indicator rather than
a direct comparison, due to differences in the datasets such as the features used, data
timeframe, and size of the data. However, benchmarking the results against prior works
can still provide valuable context for assessing the performance made by the proposed
decentralized crypto trading system.

Tables 8 and 9 summarize the comparative error and performance metrics across all
three ML models and three trading strategies evaluated in this research. The best results of
performance metrics achieved are in bold in both tables. It is observed that the LSTM model
in the proposed system obtained the highest ROI and the win trade ratio. There is still room
for improvement regarding accuracy for the models in this research. Most of the models
from prior works have lower RMSE, MAE, and MAPE scores. The Bi-LSTM model in the
proposed system has a lower MAPE score compared to prior work. The high profitability
generated by the LSTM model in the proposed system meets the goal of finding a viable
model for the decentralized crypto trading system, despite potential for further accuracy
enhancements.

Table 8. Comparison of Bitcoin price prediction performance metrics with prior works.

Model Timeframe RMSE MAE MAPE

RF of our system 1 Day 2304.62 1417.32 0.0335
LSTM of our system 1 Day 2160.36 1418.14 0.0335

Bi-LSTM of our system 1 Day 1500.82 1074.49 0.0280
RF (Chen 2023) 1 Day 2096.24 - 0.0329

Bi-LSTM (Seabe et al. 2023) 1 Day 1029.36 - 0.0356
DANN (Tripathi and Sharma 2022) 1 Day 288.59 181.72 0.0225

1DCNN-GRU (Kang et al. 2022) 1 Minute 43.93 - -

Table 9. Comparison of Bitcoin trading performance metrics with past studies.

Model (Strategy) Timeframe Win Trade Ratio ROI After Fees

RF of our system 1 Day 0.44 33.62%
LSTM of our system 1 Day 0.75 488.74%

Bi-LSTM of our system 1 Day 0.65 467.90%
MACD (RATIO) RF 1 Day 0.5 64.19%

MACD (RATIO) LSTM 1 Day 0.71 338.26%
MACD (RATIO) Bi-LSTM 1 Day 0.57 332.05%

MACD (CROSS) RF 1 Day 0.25 12.43%
MACD (CROSS) LSTM 1 Day 0.4 248.18%

MACD (CROSS) Bi-LSTM 1 Day 0.2 209.48%
RF (Chen 2023) 1 Day 0.5 1.24%

Multi-layered Neural Network
(Parente et al. 2024) 4 h 0.66 11%

4.4. Discussions

In the current centralized financial industry, investors have to engage centralized
intermediaries such as brokers or bankers to invest in traditional financial instruments,
e.g., stocks, equity, bonds, etc. Investors could also engage in centralized cryptocurrency
exchanges for trading cryptocurrency assets. Commission fees are one of the revenue
sources of the centralized intermediaries. From a longer-term perspective, the acceptance
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and popularity of decentralized trading systems may attract investors and users. It may
potentially impact on the revenues of the centralized financial industry.

As there are no central custodial intermediaries to protect the funds and purchased
tokens of investors using the proposed decentralized crypto trading system, it is important
to equip necessary security measures. A frontend web application is needed for users’
authentication and management of their own funds, in parallel with the backend software
modules, such as portfolio contracts on the blockchain architecture, oracles, and machine
learning models. The web application is hosted to allow investors to access the investment
services with their web browsers. Users have the option to use their self-custodian wallets,
such as MetaMask, or login via social media accounts using Web3Auth. Through the fron-
tend web application, users can deploy their own portfolio contracts onto the blockchain.
Users are allowed to customize the nonce of transactions to override previous pending
transactions. Users can efficiently manage the portfolio contracts that they have deployed
with the web application. Users have the flexibility to withdraw funds that they have
deposited or add additional funds to the portfolio. All the activities can be performed by
users without having to go through any intermediary parties. But one of the challenges
is that there a certain learning curve is necessary for ordinary investors to understand
blockchain smart contracts, operations, and configurations. Another challenge is the sus-
tainability issues related to operating a decentralized trading system. For decentralized
trading transactions, consensus mechanisms in blockchain systems need a certain number
of miners and computational mining processes. This results in high energy consumption
and carbon footprint, which negatively impacts the environment.

Despite various obvious advantages, decentralized cryptocurrency trading systems
encounter challenges related to compliance with financial regulations, similarly to DeFi.
Smart contracts and blockchain technology operate differently from traditional legal con-
tracts, where it is difficult for the existing legal systems in most countries to regulate
integrity, mitigate risks, protect the benefits of investors, etc. (Harvey and Rabetti 2024).
Other potential regulation challenges include the prevention of money laundering (Benson
et al. 2024) or financial crimes (Wronka 2023), etc.

The level of financial inclusion in some countries or groups has room for improvement.
For example, some people do not even own bank accounts in the traditional financial
industry (Demirgüç-Kunt et al. 2018). The usage of cryptocurrencies could impact the
level of financial inclusion, as some people who were less included in the traditional
financial industry could be connected without traditional financial intermediaries (El Hajj
and Farran 2024). Some minority groups may experience some barriers to entry or inequity
in traditional financial markets, while a higher level of financial inclusion would become
possible in a decentralized cryptocurrency market (Pantin 2023). Cryptocurrencies and
DeFi have positive influences on perceived economic empowerment, which subsequently
leads to greater financial inclusion (Gupta 2022). The impact on financial inclusion caused
by the adoption of cryptocurrency has been studied in developing economies, where it is
observed that there is potential transformative change in financial inclusion brought by
cryptocurrencies and DeFi (El Hajj and Farran 2024). Decentralized cryptocurrency trading
systems enable investors to perform buy/sell tokens conveniently with each other directly,
which provides a higher level of financial inclusion to larger user groups.

5. Conclusions
This research demonstrates the feasibility of creating a decentralized trading system

using a public blockchain. The proposed decentralized crypto trading system allows users
to maintain complete control over their funds without intermediaries, offering significant
cost savings, transparent portfolio management, and a trust-free platform for investors and
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traders. Notably, the LSTM model achieved over 488% returns in the portfolio management
from 9 December 2022 to 23 May 2024, after deducting trading commission fees, despite
having room for improvement in prediction accuracy.

The research successfully developed a decentralized crypto trading system that lever-
ages machine learning models to predict Bitcoin prices and execute trades on a public
blockchain using three trading strategies. Three ML models, including RF, LSTM, and
Bi-LSTM, were adopted and evaluated. Among these, the LSTM model showed the high-
est profitability in the portfolio management, achieving a return on investment (ROI) of
488.74%. Smart contracts were deployed on the Arbitrum L2 mainnet, and a custom oracle
was developed to integrate price predictions into the trading system. Additionally, a web
application was created to provide users with easy access to the service, supporting both
self-custodian wallets and social media logins via Web3Auth.

In terms of the accuracy performance, the Bi-LSTM model outperformed the other
models created in this research, with an RMSE of 1500.82, MAE of 1074.49, and MAPE of
0.0280. With an initial capital of USD 1000 and a commission rate of 0.5% per transaction,
the LSTM model generated a total profit of USD 4887.47, significantly higher than the
buy-and-hold strategy’s profit of USD 2346.82. All strategies except for MACD (CROSS)
RF achieved Sharpe ratios above 1, with the RF model having the highest ratio at 1.587.

Current Limitations and Future Works

Despite these successes, there are areas for improvement. The LSTM model, while
profitable, has room for enhancement in prediction accuracy. Future work could explore
other advanced models or hybrid approaches to boost accuracy.

The decentralized crypto trading system is not fully decentralized due to the use of
a custom oracle and centralized services like a database. Future efforts could focus on
integrating decentralized oracle services like Chainlink to achieve greater decentralization
(Zheng et al. 2023). Additionally, while the use of Web3Auth for social media logins
improves user experience, it compromises decentralization. Exploring more decentralized
authentication methods that still offer ease of use could be beneficial. Scalability is another
area to address. Testing and improving the system’s ability to handle a larger number of
users and transactions efficiently will be crucial.
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