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Abstract: This paper presents a novel 5-factor model for agricultural commodity risk
premiums, an approach not explored in previous research. The model is applied to the
specific cases of corn, soybeans, and wheat. Calibration is achieved using a Kalman filter
and maximum likelihood, with data from futures markets and analysts’ forecasts. Risk
premiums are computed by comparing expected and futures prices. The model considers
that risk premiums are not solely determined by contract maturity but also by the marketing
crop years. These crop years, in turn, are influenced by the respective harvest periods,
a crucial factor in the agricultural commodity market. Results show that risk premiums
vary across commodities, with some exhibiting positive and others negative values. While
maturity affects risk premiums’ size, sign, and shape, the crop year plays a critical role,
especially in the case of wheat. As speculators in the financial markets demand a positive
risk premium, its sign provides insights into whether they are buyers or sellers of futures
for each crop year, maturity, and commodity. This research offers valuable insights into
grain price behavior, highlighting their similarities and differences. These findings have
significant practical implications for market participants seeking to refine their trading and
risk management strategies and for future research on the industry structure for each crop.
Moreover, this enhanced understanding of risk premiums can be directly applied in the
finance and agricultural industries, improving decision-making processes.

Keywords: futures; risk premium; analysts’ forecasts; commodities

1. Introduction
This paper presents a novel 5-factor model to measure risk premiums for the three

most relevant agricultural commodities regarding futures transaction volume and open
interest: corn, soybeans, and soft red winter wheat. Instead of relying on traditional
financial equilibrium models, like the capital asset pricing model (CAPM), it estimates
risk premiums by comparing expected and risk-neutral prices and considers some unique
characteristics of grains.

Whether positive or negative, the existence and nature of commodity risk premiums
is a topic of ongoing debate in the academic and professional spheres (Gorton et al. 2012;
Bakshi et al. 2019; Beck 1994; Li and Chavas 2023). This debate is particularly intense in
the context of agricultural commodities, especially grains (Frank and Garcia 2009; Kolb
1992). Given the uncertainties related to weather, plagues, and geopolitical tensions,
measuring reward by risk-taking is critical in the agricultural sector. The forecasting and
trading of agricultural commodities has also attracted significant attention in the literature
(Brignoli et al. 2024), driven by various factors, such as their increasing open interest
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and volume in the futures market, the crucial role of food for humans and livestock, and
their emerging significance in the production of ethanol (corn) and biodiesel (soybeans)
(Tokgoz et al. 2012).

One early hypothesis for risk premiums was related to the cost of carrying redundant
commodity stocks and their value fluctuations, which needed to be financed with borrowed
money. The speculator who assumed this risk demanded an incentive to undertake it
(Keynes 1930; Hicks 1939). Thus, a risk premium is transferred between a hedger and
a speculator whenever a futures transaction is agreed upon. The hedger, who wants to
protect herself from price risk, pays the speculator a premium1. Since speculators can be
futures buyers or sellers, they must receive a risk premium from the hedgers, regardless
of their position2. This idea does not ensure that speculators will necessarily be the ones
to benefit at the time of expiration. This only means that, according to their expectations
of the future spot price, speculators will demand a reward in terms of price when taking
a position, since they are not bound by past commitments to engage in such activities. If
speculators who charge for assuming risk are unnecessary, risk netting could occur between
hedgers with different coverage goals. Conversely, two speculators could intend to charge
for risks assumed from opposite positions in a futures contract—one long and the other
short—requiring them to have different expectations of the future spot price.

A second hypothesis is related to the theory of storage. According to this theory
(Kaldor 1939; Working 1948; Telser 1958), there is a relation between inventories and the
term structure of futures. When commodity inventories are high, there must be an incentive
to carry the storage and sell it at a higher price in the future. The recent findings of Karali
et al. (2020) reaffirm the theory of storage, showing that news about fundamental supply
factors, after adjusting for measurement error, significantly influences the variations in
grain futures prices.

Hirshleifer (1990) links both hypotheses of the risk premium, the Keynes–Hicks ap-
proach, and the theory of storage approach in a generalized hedging pressure hypothesis.
Basu and Miffre (2013) use this to estimate hedging pressure risk premium, considering
that hedgers and speculators could be short or long. They conclude that hedging pressure
and inventory levels are significant determinants of commodity risk premiums. Also, they
find a positive relationship between risk premiums and the lagged conditional volatility of
commodity futures, indicating that when there is greater volatility, speculators demand a
higher reward from hedgers for assuming the price risk.

Findings on the financialization of agricultural commodities (Ordu et al. 2018; Boyd
et al. 2018; Aït-Youcef 2019; Sanders and Irwin 2010) have added to the importance of
correctly measuring these risk premiums. This financialization is fueled by the emergence
of agricultural index funds and ETFs, which allow investors to take positions in the futures
market more efficiently. The expansion of market participants has allowed for greater
liquidity in the futures market. It suggests a decrease in risk premiums (Irwin and Sanders
2012) and the cost of hedging (Hirshleifer 1990).

Agricultural commodities, unlike others, like energy or metals, are not produced
continuously over time. Their production is vulnerable to adverse weather conditions
(Aglasan et al. 2023), they depend on planting and harvesting periods, and statistical
evidence shows that their prices exhibit seasonal patterns (Scheinkman and Schechtman
1983; Fama and French 1987; Mitra and Boussard 2012). These characteristics, which will
be discussed in more detail in the following sections, are critical for adequately modelling
their prices.

It is well known in the grain industry that new and old crop derivatives are tied to
different physical supplies and are priced consequently (CME Group 2024). This paper
introduces a new model that considers that risk premiums depend not only on contract ma-
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turities, like previous models applied to energy and metals (Cifuentes et al. 2020; Cortazar
et al. 2021, 2022), but also on their marketing crop years. This implies that factors related to
harvesting dynamics and specific characteristics of each grain impact the magnitude and
sign of risk premiums since they determine, to some extent, the price of futures contracts.
Despite being studied in the literature (Dutt and Fenton 1997), this approach had not been
used alongside an econometric model that estimates the risk premium for each crop year.

Market players could use the differentiation in marketing crop years to capitalize
on (or react to) future events that may affect prices, such as changes in trade policies,
disruptions in international relations, adverse weather forecasts, or economic breakdowns.
These events might impact certain crops more than others. Therefore, futures that expire
in those crop years could be more heavily affected, not necessarily altering the futures
curve evenly for different crop years. Moreover, Dutt and Fenton (1997) showed that the
spreads of grain futures behaved differently if they were intra-crop (between contracts
expiring in the same crop year) and inter-crop (between contracts expiring in different crop
years), indicating that aiming for an inter-crop spread was riskier. This will also impact
the structure of the risk premium derived from prices, enabling the differentiation of the
impact of external events.

We introduce a new 5-factor model for agricultural commodity risk premiums applied
to corn, soybeans, and wheat. The model is calibrated using a Kalman filter (Kalman 1960)
and maximum likelihood, with data from futures markets and analysts’ forecasts. Risk
premiums are then computed by comparing expected and futures prices.

The paper is organized as follows. Section 2 summarizes the characteristics of each of
the three agricultural commodities. Section 3 presents the 5-factor model. Section 4 shows
the data. Section 5 analyzes the model results and implications, and, finally, Section 6
concludes the manuscript.

2. Agricultural Commodities
Farmers and producers are exposed to multiple risks that affect their future income

when planting, such as weather, diseases, and pests (USDA 2022b; Pérez Zañartu 2023;
Prager et al. 2020). Some risks can be covered with flexible production strategies that protect
against negative scenarios, while others can be covered by buying insurance or trading
financial derivatives. Futures contracts are stock traded derivatives related to commodity
spot prices (Li and Chavas 2023; Vollmer et al. 2020; Huang et al. 2020; Beckmann and
Czudaj 2014) and allow farmers to fix selling prices before harvesting, which is one of the
best ways to cover price risk.

A critical feature of agricultural commodities, and their main difference from metals,
is the existence of crop years and seasonality. A marketing crop year begins at the start of the
harvest month and lasts until just before the following harvest. Marketing crop years do
not match calendar years since they depend on the seasons. In the United States, the crop
year runs between 1 September and 31 August for corn and soybeans and from June 1 to
May 31 for wheat (USDA 2022a).

The planting and harvesting periods depend on the state, but Table 1 shows them in
aggregate for the United States.

As explained below, seasonal patterns in the spot prices of agricultural commodities
depend on the supply structure and the shape of the marginal convenience yield function.

Planting and harvesting periods of agricultural commodities are determined by the
seasons, so they cannot be produced continuously over time. As the crop year progresses,
stocks are gradually consumed, reaching their lowest levels before harvest. When the har-
vest is over, stocks are replenished. This seasonal phenomenon, determined by the natural
climatic conditions, generates seasonality in the inventories of agricultural commodities.
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This translates to the price during the crop year; spot prices increase as inventories are
consumed. After the harvest, however, restocking inventories increases supply and lowers
spot prices (Sørensen 2002).

Table 1. Usual planting and harvesting dates in the United States.

Commodity Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Corn P P H H H

Soybeans P P H H
SRW wheat H H P P

P Plant Mid-season H Harvest
Source: National Agricultural Statistics Service, USDA.

The marginal convenience yield depends on inventory changes, affecting the spot
price seasonal patterns (French 1986). The marginal convenience yield and spot prices
should be low when inventory is abundant and high when there is scarcity. This explains
seasonality in futures prices, since the no-arbitrage relationship links them with the spot
price (Working 1948).

Unlike other commodities, like natural gas and electricity, where seasonal patterns
are constant and, therefore, deterministic over time, agricultural commodities have a
variable seasonality due to unexpected price jumps caused by supply and demand changes
(Koekebakker and Lien 2004).

The fact that agricultural commodities’ futures prices often display stochastic seasonal
fluctuations also affects the risk premia (Hevia et al. 2018). As the crop year progresses,
relevant information is revealed, especially during the growth and harvest periods (Koeke-
bakker and Lien 2004), which may change the price trend of the previous year. Knowing
with certainty how the next harvest will come is impossible, and the supply curve is inelas-
tic and subject to unexpected changes (Kaldor 1939). Consequently, modelling seasonality
using a constant function is inappropriate for agricultural commodities. This phenomenon
results in a shifting futures curve, where the relationship between the prices of different
futures contracts within a crop year also changes.

Figure 1 shows, for each crop, how much the average contract price expiring in a
specific month deviated from the average price of the crop year. For example, in the case of
corn, during the 2012–2013 crop year, the price of the March contract was about 7% higher
than the annual average of all contracts, but for the 2015–2016 crop year, it was 6% lower.
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Figure 1. Deviations of the average contract price from the crop year average price. Source: data
from Bloomberg.

Thus, the evidence does not support a constant seasonality structure that depends
only on the month of the year. Dutt and Fenton (1997) noted that agricultural commodities’
futures term structure depends not only on maturity but also on the crop year in which
they matured, a feature that will be included in our proposed model.

3. The Risk Premium Model
A new
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-factor stochastic risk premium model for agricultural commodities, which
builds on previous commodity models, is presented. It computes risk premiums by com-
paring expected (historical) and futures (risk-neutral) prices. As stated, if there are positive
risk premiums (expected prices larger than futures prices), speculators should take net-
long positions in futures while hedgers should be net-shortening them. Likewise, if risk
premiums are negative, positions between hedgers and speculators should be reversed. In
both cases, speculators earn the absolute value of the risk premium.

The proposed
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-factor model is derived from the Cortazar et al. (2019) N-factor
stochastic model for expected and futures prices applied to oil, copper, and gold. The latter
does not address the seasonality present in agricultural commodities, which, as Beck (1993)
noted, could be mistaken for a time-varying risk premium if not adequately accounted
for. Also, agricultural commodities’ well-known seasonal price behavior (Scheinkman and
Schechtman 1983; French 1986; Sørensen 2002; Koekebakker and Lien 2004; Hevia et al.
2018) must be considered.
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lowing Fainé (2010), M − 1 factors representing M different crop years. Thus, the proposed
model has

Risks 2025, 13, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 1. Deviations of the average contract price from the crop year average price. Source: data 
from Bloomberg. 

3. The Risk Premium Model 
A new 𝑵ന-factor stochastic risk premium model for agricultural commodities, which 

builds on previous commodity models, is presented. It computes risk premiums by com-
paring expected (historical) and futures (risk-neutral) prices. As stated, if there are posi-
tive risk premiums (expected prices larger than futures prices), speculators should take 
net-long positions in futures while hedgers should be net-shortening them. Likewise, if 
risk premiums are negative, positions between hedgers and speculators should be re-
versed. In both cases, speculators earn the absolute value of the risk premium. 

The proposed 𝑵ന-factor model is derived from the Cortazar et al. (2019) N-factor sto-
chastic model for expected and futures prices applied to oil, copper, and gold. The latter 
does not address the seasonality present in agricultural commodities, which, as Beck 
(1993) noted, could be mistaken for a time-varying risk premium if not adequately ac-
counted for. Also, agricultural commodities’ well-known seasonal price behavior 
(Scheinkman and Schechtman 1983; French 1986; Sørensen 2002; Koekebakker and Lien 
2004; Hevia et al. 2018) must be considered. 

The 𝑵ന-factor model uses the Cortazar et al. (2019) N-factor model but includes, fol-
lowing Fainé (2010), M − 1 factors representing M different crop years. Thus, the proposed 
model has 𝑵ന = N+M − 1 stochastic factors when applied to agricultural commodities. 

The Proposed 5-Factor Model 

This paper implements the 𝑵ന-factor stochastic model as a 5-factor model. The first 
three factors (N = 3) are latent state variables similar to those used in Cortazar et al. (2019) 
to study oil, copper, and gold. The following two factors (M − 1 = 2) represent the first 
three (M = 3) marketing crop years. A summary of the 5-factor model is presented in what 
follows, while the general 𝑵ന-factor model is described in the Appendix A. The model 
jointly estimates futures and expected price curves using a constant term structure of risk 
premiums. It is a non-stationary canonical lognormal model that allows for the 

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

Sep Nov Jan Mar May Jul Aug

D
ev

ia
tio

n 
fro

m
 th

e 
cr

op
 y

ea
r a

ve
ra

ge
 p

ric
e 

Future contract

Soybeans percentage deviation of the contract average price from the crop year average price

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017

2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 Average deviation

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

Jul Sep Dec Mar May

D
ev

ia
tio

n 
fro

m
 th

e 
cr

op
 y

ea
r a

ve
ra

ge
 p

ric
e 

Future contract

SRW wheat percentage deviation of the contract average price from the crop year average price

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017

2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 Average deviation

= N + M − 1 stochastic factors when applied to agricultural commodities.

The Proposed 5-Factor Model

This paper implements the

Risks 2025, 13, x FOR PEER REVIEW 5 of 20 
 

 

 

Figure 1. Deviations of the average contract price from the crop year average price. Source: data 
from Bloomberg. 

3. The Risk Premium Model 
A new 𝑵ന-factor stochastic risk premium model for agricultural commodities, which 

builds on previous commodity models, is presented. It computes risk premiums by com-
paring expected (historical) and futures (risk-neutral) prices. As stated, if there are posi-
tive risk premiums (expected prices larger than futures prices), speculators should take 
net-long positions in futures while hedgers should be net-shortening them. Likewise, if 
risk premiums are negative, positions between hedgers and speculators should be re-
versed. In both cases, speculators earn the absolute value of the risk premium. 

The proposed 𝑵ന-factor model is derived from the Cortazar et al. (2019) N-factor sto-
chastic model for expected and futures prices applied to oil, copper, and gold. The latter 
does not address the seasonality present in agricultural commodities, which, as Beck 
(1993) noted, could be mistaken for a time-varying risk premium if not adequately ac-
counted for. Also, agricultural commodities’ well-known seasonal price behavior 
(Scheinkman and Schechtman 1983; French 1986; Sørensen 2002; Koekebakker and Lien 
2004; Hevia et al. 2018) must be considered. 

The 𝑵ന-factor model uses the Cortazar et al. (2019) N-factor model but includes, fol-
lowing Fainé (2010), M − 1 factors representing M different crop years. Thus, the proposed 
model has 𝑵ന = N+M − 1 stochastic factors when applied to agricultural commodities. 

The Proposed 5-Factor Model 

This paper implements the 𝑵ന-factor stochastic model as a 5-factor model. The first 
three factors (N = 3) are latent state variables similar to those used in Cortazar et al. (2019) 
to study oil, copper, and gold. The following two factors (M − 1 = 2) represent the first 
three (M = 3) marketing crop years. A summary of the 5-factor model is presented in what 
follows, while the general 𝑵ന-factor model is described in the Appendix A. The model 
jointly estimates futures and expected price curves using a constant term structure of risk 
premiums. It is a non-stationary canonical lognormal model that allows for the 

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

Sep Nov Jan Mar May Jul Aug

D
ev

ia
tio

n 
fro

m
 th

e 
cr

op
 y

ea
r a

ve
ra

ge
 p

ric
e 

Future contract

Soybeans percentage deviation of the contract average price from the crop year average price

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017

2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 Average deviation

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

Jul Sep Dec Mar May

D
ev

ia
tio

n 
fro

m
 th

e 
cr

op
 y

ea
r a

ve
ra

ge
 p

ric
e 

Future contract

SRW wheat percentage deviation of the contract average price from the crop year average price

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017

2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 Average deviation

-factor stochastic model as a 5-factor model. The first
three factors (N = 3) are latent state variables similar to those used in Cortazar et al. (2019)
to study oil, copper, and gold. The following two factors (M − 1 = 2) represent the
first three (M = 3) marketing crop years. A summary of the 5-factor model is presented
in what follows, while the general
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-factor model is described in the Appendix A. The
model jointly estimates futures and expected price curves using a constant term structure
of risk premiums. It is a non-stationary canonical lognormal model that allows for the
simultaneous estimation of both price curves.

We define Yi
t as the logarithm of the spot price at time t, using the following process:

Yi
t = log(Si

t) =
(

hi
)′

xt

where i = 1, 2, 3 represents the marketing crop years.
hi is a vector that relates log

(
Si

t
)

to the state variables. Three of them are the same for
all crop years, and the other two are activated depending on the number of crop years to
expiration (i = 1, 2, or 3). Contracts that expire in the same crop year (i = 1) are modelled
using only the first three state variables x1, x2, and x3. Contracts expiring in the following
crop year (i = 2) are modelled not only by the first three state variables x1, x2, x3, but also
by x4. Finally, contracts that expire in two more crop years (i = 3) are modelled by the state
variables x1, x2, x3, and x5.

The behavior of the latent state variables is modeled according to an Ornstein–
Uhlenbeck stochastic differential equation, as follows:

dxt = (−Kxt + b)dt + Σdwt

where K is a 5× 5 mean-reversion diagonal matrix. Four of the five state variables are mean
reverting while one is not, modelling permanent changes in the spot price, b is a 5× 1 vector
with the long-term mean values of the state variables, Σ is a 5 × 5 diagonal matrix with
the instantaneous volatility of each of the state variables, and dwt is a 5 × 1 multivariate
Wiener process, with dwtdwt

′ correlated increments defined in an 5 × 5 matrix Θ.
Now, under the equivalent martingale measure Q, and a 5×1 vector of constant risk

premiums λ, the risk-adjusted process for the state variables is as follows:

dxt = (−Kxt + b − λ)dt + ΣdwQ
t

The futures price is the expectation of the spot price under a risk-adjusted process, as
follows:

Fi(xt, t, T) = EQ
t

[
Si(xt, T)

]
In this model, it can be shown that futures prices are as follows:

Fi(xt, t, T) = exp

(
x1(t) +

3
∑

j=2
e−kj(T−t)xj(t) +

(
b1 − λ1 +

1
2

σ2
1

)
(T − t)−

3
∑

j=2

1 − e−kj(T−t)

k j
λj

+
1
2

3
∑

j=1

3
∑

l=2
σjσlρjl

1 − e−(kj+kl)(T−t)

k j + kl
+ ψi

)
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ψi(xt, t, T) =


0, i = 1

e−kzi (T−t)xzi (t)−
(

1 − e−kzi (T−t)

kzi

)
λzi +

1
2

3
∑

j=1
σjσzi ρjzi

1 − e−(kj+kzi )(T−t)

k j + kzi

, 1 < i ≤ 3

where zi = 2 + i is the index position of the marketing crop year i.
Expected prices are the forecasts of the spot price as follows:

Et

[
Si(xt, T)

]
= exp

(
x1(t) +

3

∑
j=2

e−kj(T−t)xj(t) +
(

b1 +
1
2

σ2
1

)
(T − t) +

1
2

3

∑
j=1

3

∑
l=2

σjσlρjl
1 − e−(kj+kl)(T−t)

k j + kl
+ γi

)
where

γi(xt, t, T) =


0, i = 1

e−kzi (T−t)xzi (t) +
1
2

3
∑

j=1
σjσzi ρjzi

1 − e−(kj+kzi )(T−t)

k j + kzi

, 1 < i ≤ 3

Finally, the annual risk premiums are as follows:

πi =
1

(T − t)
log

Et

[
Si(xt, T)

]
Fi(xt, t, T)


Replacing the values of the expected spot price and futures price, the risk premium is

as follows:

πi = λ1 +
3

∑
j=2

1 − e−kj(T−t)

k j(T − t)
λj + ϕi

where

ϕi(xt, t, T) =

 0, i = 1(
1−e−kzi (T−t)

kzi (T−t)

)
λzi , 1 < i ≤ 3

This model can be estimated using the Kalman filter (Kalman 1960) and maximum
likelihood similar to Cortazar et al. (2019) and Cifuentes et al. (2020), among others.

The Kalman filter consists of two dynamic components, which allows the Bayesian
estimation of the different state variables.

The transition equation is as follows:

xt︸︷︷︸
N×1

= At︸︷︷︸
N×N

xt−1︸︷︷︸
N×1

+ ct︸︷︷︸
N×1

+ wt︸︷︷︸
N×1

wt ∼ N(0, Qt)

The measurement equation is as follows:

zt︸︷︷︸
mt×1

= Ht︸︷︷︸
mt×N

xt︸︷︷︸
N×1

+ dt︸︷︷︸
mt×1

+ vt︸︷︷︸
mt×1

vt ∼ N(0, Rt)

The transition equation relates the time state variables to their previous status,
and the measurement equation relates the observable variables (logarithm of prices)
to the state variables, which are latent (not directly observed, but inferred through the
mathematical model).

In each stage, the total number of observations is the sum of futures prices and spot
price expectations, as follows:

mt︸︷︷︸
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Five futures contracts expire each year for corn and soft red winter wheat (March, 
May, July, September, and December) and seven expire each year for soybeans (January, 
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We use data from up to three crop years each week. In addition, following Dutt and 
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observations at t

= mF
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Fenton (1997), transition contracts, which correspond to September futures for corn and 
soybeans and July futures for SRW wheat, are not considered in the model. 
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4. Data
The model uses futures prices as risk-neutral expectations and analysts’ forecasts as a

proxy for expected prices. We now describe the two data sets used: futures and Bloomberg’s
analysts’ forecasts.

4.1. Futures

Futures data include weekly settlement prices of contracts of corn, soybeans, and
soft red winter (SRW) wheat traded between 2016 and 2021 at the Chicago Board of
Trade (CBOT). This is the world’s largest exchange for these commodities in volume and
open interest.

These futures contracts are traded in units of 5000 bushels. We use weekly data
(Wednesdays) from 2016 to 2020 (in-sample) and 2021 (out-of-sample).

Five futures contracts expire each year for corn and soft red winter wheat (March, May,
July, September, and December) and seven expire each year for soybeans (January, March,
May, July, August, September, and November).

We use data from up to three crop years each week. In addition, following Dutt and
Fenton (1997), transition contracts, which correspond to September futures for corn and
soybeans and July futures for SRW wheat, are not considered in the model.

Figure 2 shows weekly futures prices for each commodity from 2016 to 2021.
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Table 2. Corn, soybeans, and SRW futures data from 2016 to 2020, by marketing crop year. The table
includes mean price, price standard deviation, maximum price, minimum price, mean price, and
number of observations for corn, soybeans, and SRW wheat for each marketing crop year.

Corn

Marketing crop Mean price Price SD Max price Min price Mean maturity Number of
year (i) (¢/bushel) (¢/bushel) (¢/bushel) (years) observations

1 377.23 24.24 474.50 304.50 0.3175 582
2 397.22 24.48 461.75 315.50 1.0555 1044
3 409.45 15.91 440.00 359.50 1.9980 913

Soybeans

Marketing crop Mean price Price SD Max price Min price Mean maturity Number of
year (i) (¢/bushel) (¢/bushel) (¢/bushel) (years) observations

1 969.54 83.50 1303.75 814.25 0.3426 884
2 961.54 55.70 1150.25 827.75 1.0635 1566
3 952.82 40.28 1032.00 831.75 2.0094 1398

SR Wheat

Marketing crop Mean price Price SD Max price Min price Mean maturity Number of
year (i) (¢/bushel) (¢/bushel) (¢/bushel) (years) observations

1 493.71 57.21 640.75 361.00 0.3169 542
2 529.53 41.46 641.50 428.50 1.0161 1044
3 557.59 28.54 632.75 487.25 2.0163 1044

Source: Bloomberg.

4.2. Analysts’ Forecasts

Analysts’ forecasts, used as a proxy for expected prices, are obtained from Bloomberg.
They collect expected spot prices from several banks worldwide. Data from 12 to 14 banks
are used for each commodity. For each week, the forecasts within a 15-day maturity bucket
are averaged.

Figure 3 shows weekly forecasts from 2016 to 2021, and Table 3 summarizes the
analysts’ forecast data by crop year.
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Figure 3. Corn, soybeans, and SRW wheat analysts’ forecasts from 2016 to 2021 (Bloomberg).
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Table 3. Analysts’ forecasts data from 2016 to 2020 by marketing crop year (Bloomberg). The table
includes mean price, price standard deviation, maximum price, minimum price, mean price, and
number of observations for corn, soybeans, and SRW wheat for each marketing crop year.

Corn

Marketing crop Mean price Price SD Max price Min price Mean maturity Number of
year (i) (¢/bushel) (¢/bushel) (¢/bushel) (years) observations

1 380.89 25.38 510.00 325.00 0.4545 257
2 394.17 25.31 500.00 325.00 0.9949 643
3 414.25 28.75 500.00 363.00 1.9635 246

Soybeans

Marketing crop Mean price Price SD Max price Min price Mean maturity Number of
year (i) (¢/bushel) (¢/bushel) (¢/bushel) (years) observations

1 969.63 67.45 1440.00 825.00 0.4522 266
2 969.09 63.02 1600.00 820.00 0.9879 668
3 997.66 63.34 1200.00 875.00 1.9653 248

SR Wheat

Marketing crop Mean price Price SD Max price Min price Mean maturity Number of
year (i) (¢/bushel) (¢/bushel) (¢/bushel) (years) observations

1 481.17 42.09 650.00 351.00 0.4851 313
2 480.82 45.17 680.00 265.26 1.0302 711
3 486.05 56.91 711.00 260.59 1.9643 306

5. Results
This section presents the results of calibrating the model under two different settings.
First, analysts’ forecasts are ignored, and the model is calibrated using only futures

prices. Thus, the proposed model can be compared with two other models from the
literature, which also use only futures.

Later, the proposed model is calibrated using futures and analysts’ forecasts. Risk
premiums for each commodity are presented. This provides information for discussing who
is hedging and speculating (producers or consumers) and the amount of the speculative
risk premium for each commodity.

5.1. Comparing Models with and Without a Crop-Year Factor

This subsection implements the proposed 5F model, described in Section 3, using
only futures. This allows for a better comparison with two other models that also use only
futures but do not include crop-year factors.

The first alternative will be the 3F model, a 3-factor version of the N-factor Gaussian
model from Cortazar and Naranjo (2006). The second alternative is the 3F with seasonality
model, which adds a sinusoidal function to account for seasonality, like in Sørensen (2002).

Figure 4 compares the futures price curves for corn, soybeans, and SRW wheat using
the three models for a given date.

Table 4 presents the in-sample and out-of-sample errors of the three models. Following
(Cifuentes et al. 2020; Cortazar et al. 2021, 2022), we use the MAPE predictive accuracy
criterion. The results show that our 5-factor model has a better fit than the other models, in
terms of MAPE, for both the in-sample and the out-of-sample periods3. Thus, using crop
year factors seems to provide valuable information.
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Table 4. Mean absolute percentage errors for the 5F, 3F, and 3F with seasonality models—time
window data between 2016 and 2020 (in-sample) and 2021 (out-of-sample).

Model Commodity MAPE MAPE
Nº of Parameters Log-Likelihood

In-Sample Out-of-Sample

5F
Corn 0.1282 0.3547 26 12,273

Soybeans 0.2135 0.4092 26 18,543
SRW wheat 0.2120 0.2498 26 11,731

3F
Corn 0.6654 2.1468 13 9809

Soybeans 0.5314 1.0644 13 15,974
SRW wheat 0.4642 0.7986 13 10,777

3F with seasonality
Corn 0.3929 1.6503 17 10,761

Soybeans 0.3709 0.7562 17 17,100
SRW wheat 0.3813 0.6251 17 11,181
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5.2. The 5F Model, Using Futures and Analysts’ Forecasts
Model Fit

Using futures prices and analysts’ forecasts from 2016 to 2020 and applying the Kalman
filter and maximum likelihood, the parameters of the 5F model can be estimated for each
commodity. Table 5 shows the results for corn. As can be seen, the most relevant parameters
(mean reversion and volatility) are statistically significant4.

Table 5. Corn: Parameters for the 5F model. Standard deviation, t-statistic, and p-value. Significance
levels are given by *** 1%, ** 5%, and * 10%.

Corn

Parameter Estimate Deviation t-Statistic p-Value

k2 1.2879 *** 0.0326 39.448 0
k3 1.2428 *** 0.0297 41.804 0
k4 1.0033 *** 0.0796 12.610 0
k5 0.6799 *** 0.0500 13.599 0
λ1 0.0085 0.0117 0.7285 0.3054
λ2 1.2032 1.1130 1.0811 0.2220
λ3 −1.1849 1.1141 −1.0636 0.2262
λ4 −0.0079 * 0.0044 −1.7754 0.0827
λ5 −0.0060 0.0042 −1.4213 0.1452
ρ12 −0.6151 *** 0.1060 −5.8042 0
ρ13 0.6215 *** 0.1049 5.9229 0
ρ14 0.0073 0.1234 0.0590 0.3979
ρ15 −0.0340 0.1037 −0.3279 0.3776
ρ23 −0.9998 *** 0.0001 −10854 0
ρ24 0.3110 *** 0.1046 2.9730 0.0051
ρ25 0.5136 *** 0.1192 4.3079 0
ρ34 −0.3140 *** 0.1036 −3.0305 0.0043
ρ35 −0.5106 *** 0.1186 −4.3033 0.0001
ρ45 0.3147 *** 0.1139 2.7632 0.0091
σ1 0.0671 *** 0.0046 14.701 0
σ2 4.9349 *** 1.4887 3.3149 0.0018
σ3 5.0632 *** 1.4867 3.4056 0.0013
σ4 0.0767 *** 0.0078 9.8950 0
σ5 0.2065 *** 0.0188 10.986 0
b1 0.0249 ** 0.0118 2.1102 0.0435
ξF 0.0024 *** 0.0000 139.77 0
ξE 0.0680 *** 0.0006 107.57 0

Log-likelihood 14,772

Table 6 presents the mean absolute percentage error (MAPE) of the 5F model for
each commodity.

Analysts’ forecasts, which are much more volatile than futures prices, exhibit, as
expected, a higher error for both in-sample and out-of-sample data.

Table 6. Mean absolute percentage error (MAPE) for the 5F model for corn, soybeans, and SRW
wheat. Data between 2016 and 2020 (in-sample) and 2021 (out-of-sample).

Data Commodity MAPE MAPE
In-Sample Out-of-Sample

Corn 0.1317 0.3847
Futures prices Soybeans 0.2147 0.4046

SRW wheat 0.2142 0.2275

Corn 5.1329 10.2856
Expected prices Soybeans 4.2061 14.4784

SRW wheat 7.7592 11.7089



Risks 2025, 13, 9 13 of 21

5.3. Risk Premiums

The proposed model’s insights about risk premiums are now discussed. One output
of the model is the term structure of risk premiums for each commodity. The emphasis is
on the magnitude of risk premiums and their sign, which can offer insight into who takes
each position in futures contracts. This approach also helps to understand the degree of
hedging pressure.

Figure 5 shows the futures and expected price curves for corn, soybeans, and SRW
wheat on a given date as an example of the model output.

The figure shows that, for these dates, the behavior of prices for different commodities
may differ in many ways. First, each crop year has its price structure. Second, the magnitude
of risk premiums may vary in shape and size. This can be seen by recalling that the
percentage difference between expected and futures prices represents the risk premiums’
magnitude. Also, sometimes expected prices are higher than futures prices for the same
maturity, providing positive risk premiums, but in other cases, the reverse occurs (SRW
wheat in Figure 5). Finally, given that speculators must earn a positive risk premium,
a negative measure implies that speculators make a net-short futures investment while
hedgers take net-long positions.
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Figure 5. Futures and expected price curves on a given date as examples of model outputs.
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Figure 6 presents the risk premium term structure for corn, soybeans, and SRW wheat.
Several conclusions can be drawn from Figures 5 and 6 regarding the risk premium

structure for the three grains.
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Figure 6. Commodity risk premium term structure by crop year and horizon.

For these three grains, the annual risk premiums vary significantly, with the absolute
values ranging from close to 0% up to 14%. Corn exhibits the smallest premiums, while
SRW wheat shows the largest. This variability underscores the diverse market dynamics
and indicates differing speculative activity. Furthermore, the results reveal that maturity is
not the sole factor influencing the size of absolute risk premiums. The crop year also plays
a critical role, especially in the case of soft red winter wheat, where the risk premium struc-
tures have different shapes for different crop years, not exhibiting clear continuity across the
various curves. Additionally, the term structures of risk premiums for these commodities
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show notable differences. Such variations provide valuable clues about the underlying
market structures, potentially guiding strategic trading and risk management decisions.

For corn, the risk premium is relatively small, slightly positive for short horizons, and
decreases with maturity, suggesting a more balanced (or unbiased) market as maturity
increases. It also shows that the risk premium demanded for contracts expiring in that
same marketing crop year is higher than for contracts that expire in the subsequent crop
year. The last two crop year curves show continuity (trend and level) without showing a
sharp jump between crop years. This means the premium required for contracts expiring
after the next harvest does not differ significantly from their crop years.

In contrast, soybean risk premiums are negative for shorter maturities than one year,
decreasing absolute value by increasing maturity. As in the case of corn, the absolute value
of the risk premium demanded for contracts expiring in that same marketing crop year
is higher than for contracts expiring after the next harvest. Also, like corn, the curves for
the last two crop years in soybeans demonstrate continuity (in trend and level), meaning
it is only necessary to differentiate the current marketing crop year from the future. The
premium is positive for maturities over one year and converges to 2% for longer horizons.

For wheat, risk premiums are negative across all maturities and crop years, indicating
persistent futures prices above expected spot prices. This may be due to negative hedging
pressure (where hedgers predominantly take long positions on wheat futures at a discount).
However, as maturity increases, the absolute value of the risk premium decreases, and as
the number of harvests before expiration increases, so does the absolute value of the risk
premium. This observation suggests that the market perceives higher levels of uncertainty
associated with more distant crop years.

These patterns also hint at the positions of speculators in these markets. Positive risk
premiums—where expected spot prices exceed futures prices—suggest that speculators
hold long positions in futures contracts. Conversely, negative premiums imply short
positions. The data show that, during the period studied, speculators mostly shorted wheat
futures, whereas corn and soybean speculators predominantly took long positions (see
Figure 7). Understanding these dynamics is crucial for market participants aiming to align
their strategies with prevailing market sentiments and speculative behavior.
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6. Conclusions
This paper introduces and calibrates a new 5-factor model to analyze futures and

expected prices for agricultural commodities, namely corn, soybeans, and wheat. Using
data from futures markets, the model shows a superior fit compared to alternative models
that do not consider marketing crop years, such as the 3-factor and 3-factor with seasonality
models. This enhanced performance underscores the significance of incorporating crop
year factors, which are shown to affect price movements.

Risk premiums, derived by comparing expected and futures prices, exhibit notable
variations across commodities and contract maturities. For corn and soybeans, the absolute
values of risk premiums for contracts expiring within the same marketing crop year are
consistently higher than those for contracts expiring in subsequent crop years, showing no
significant difference between those expiring after the next harvest. Corn risk premia are
slightly positive for short maturities and converge to zero for longer horizons. For soybeans,
while risk premiums are negative for shorter maturities (less than one year), they become



Risks 2025, 13, 9 17 of 21

positive and gradually converge towards 2% for longer maturities. In the case of wheat,
the premiums are consistently negative across all maturities and crop years, increasing
the demanded premium in absolute value as the crop years become more distant. This
pattern suggests that hedgers are predominantly taking long positions on wheat futures
at a discount, reflecting a unique aspect of speculative behavior compared to corn and
soybeans for the period studied.

The comprehensive analysis provided in this paper contributes valuable insights into
the complex dynamics of commodity price behavior, emphasizing the influence of crop
years on risk premium structures. These insights have practical implications for market
participants seeking to refine their trading and risk management strategies, particularly in
understanding how contract expiries within the same marketing crop year carry different
risk premiums than those expiring after the next harvest. This understanding could assist
in forecasting and managing the fluctuations in grain futures markets and understanding
the industry structure for each crop.
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Appendix A
A General N-Factor Model

The model jointly estimates futures and expected price curves using a constant term
structure of risk premiums. It is a non-stationary canonical lognormal model that allows
for simultaneous estimating of both price curves.

We define Yi
t as the logarithm of the spot price at time t, using the following process:

Yi
t = log(Si

t) =
(

hi
)′

xt

where i = 1, . . . , M represents the marketing crop years. hi is a vector that relates log
(
Si

t
)

to the P state variables common to all marketing crop years and activates for the remaining
contracts a state variable at position zi = P + i − 1 (index of the marketing crop year i),
which have i − 1 marketing crop years to expiration. This is illustrated as follows:

(
hi
)′

= [

P︷ ︸︸ ︷
1 . . . 1 . . . 1

M−1︷ ︸︸ ︷
0 . . . 1 . . . 0]

The total number of state variables is N = P + M − 1. The model is exponentially
affine. Thus, a closed-form solution for futures and expected spot prices can be derived.

The behavior of the latent state variables is modeled according to an Ornstein–
Uhlenbeck stochastic differential equation, as follows:

dxt = (−Kxt + b)dt + Σdwt
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where K is a N × N mean reversion diagonal matrix. All state variables are mean reverting
except the first one, which models permanent changes in the spot price. b is a N × 1 vector
containing the long-term mean values of the state variables, Σ is a N × N diagonal matrix
of instantaneous volatility of state variables, and dwt is a N × 1 multivariate Wiener process
with increments correlated by the N × N matrix Θ, in with each element of Θ is ρij ϵ [−1, 1].

Under the equivalent martingale measure Q, the state variables use the following
process:

dxt = (−Kxt + b − λ)dt + ΣdwQ
t

where λ is a N × 1 vector of constant risk premiums.
Under the N-factor model, it can be shown that futures prices are as follows:

Fi(xt, t, T) = exp

(
x1(t) +

P
∑

j=2
e−kj(T−t)xj(t) +

(
b1 − λ1 +

1
2

σ2
1

)
(T − t)−

P
∑

j=2

1 − e−kj(T−t)

k j
λj

+
1
2

P
∑

j=1

P
∑

l=2
σjσlρjl

1 − e−(kj+kl)(T−t)

k j + kl
+ ψi

)
where

ψi(xt, t, T) =


0, i = 1

e−kzi (T−t)xzi (t)−
(

1 − e−kzi (T−t)

kzi

)
λzi +

1
2

P
∑

j=1
σjσzi ρjzi

1 − e−(kj+kzi )(T−t)

k j + kzi

, 1 < i ≤ M

Similarly, the expected spot prices are as follows:

Et

[
Si(xt, T)

]
= exp

(
x1(t) +

P

∑
j=2

e−kj(T−t)xj(t) +
(

b1 +
1
2

σ2
1

)
(T − t) +

1
2

P

∑
j=1

P

∑
l=2

σjσlρjl
1 − e−(kj+kl)(T−t)

k j + kl
+ γi

)
where

γi(xt, t, T) =


0, i = 1

e−kzi (T−t)xzi (t) +
1
2

P
∑

j=1
σjσzi ρjzi

1 − e−(kj+kzi )(T−t)

k j + kzi

, 1 < i ≤ M

Finally, the annual risk premiums are as follows:

πi =
1

(T − t)
log

(
Et
[
Si(xt, T)

]
Fi(xt, t, T)

)

Replacing the values of the expected spot price and futures price, the risk premium is
as follows:

πi = λ1 +
P
∑

j=2

1−e−kj(T−t)

kj(T−t) λj + ϕi

ϕi(xt, t, T) =

 0, i = 1(
1−e−kzi (T−t)

kzi (T−t)

)
λzi , 1 < i ≤ M

The Kalman filter (Kalman 1960) is implemented under the incomplete data panel
specification (Cortazar and Naranjo 2006), which allows state variables to be estimated
even though the data series does not have observations at all discretized time steps. This is
achieved by having a vector of price inputs of variable size at different stages of the model
and allowing the other vectors and matrices of the measurement equation (see below) to
be variable.
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The Kalman filter consists of two dynamic components, which allows the Bayesian
estimation of the different state variables.

The transition equation is as follows:

xt︸︷︷︸
N×1

= At︸︷︷︸
N×N

xt−1︸︷︷︸
N×1

+ ct︸︷︷︸
N×1

+ wt︸︷︷︸
N×1

wt ∼ N(0, Qt)

The measurement equation is as follows:

zt︸︷︷︸
mt×1

= Ht︸︷︷︸
mt×N

xt︸︷︷︸
N×1

+ dt︸︷︷︸
mt×1

+ vt︸︷︷︸
mt×1

vt ∼ N(0, Rt)

The transition equation relates the present time state variables to their previous status,
and the measurement equation relates the observable variables (logarithm of prices) to the
latent state variables.

In each stage, it must be ensured that the total number of observations is the sum
between futures prices and spot price expectations (See Cortazar et al. (2019) and Cifuentes
et al. (2020)), as follows:

mt︸︷︷︸
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expected spot at t

Notes
1 Initially, the Keynes–Hicks theory focused on producers as hedgers shorting futures to manage crop price risks, with speculators

taking long positions for a risk premium. This theory was later expanded to allow hedgers and speculators to assume long or
short positions in futures markets.

2 There may also be risk premium transfers between hedgers to hedgers, speculators to speculators, and speculators to hedgers,
but the theory of net hedging pressure focuses on the market’s net positions.

3 However, the proposed model benefits from having more factors and parameters.
4 Similar results are obtained for soybeans and SRW wheat.
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