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Abstract: When inter-arrival times between events follow an exponential distribution,
this implies a Poisson frequency of events, as both models assume events occur indepen-
dently and at a constant average rate. However, these assumptions are often violated
in real-insurance applications. When the rate at which events occur changes over time,
the exponential distribution becomes unsuitable. In this paper, we study the distribution
of inter-arrival times of severe storms, which exhibit substantial variability, violating the
assumption of a constant average rate. A new approach is proposed for modeling severe
storm recurrence patterns using a finite mixture of log-normal distributions. This approach
effectively captures both frequent, closely spaced storm events and extended quiet peri-
ods, addressing the inherent variability in inter-event durations. Parameter estimation is
performed using the Expectation–Maximization algorithm, with model selection validated
via the Bayesian information criterion (BIC). To complement the parametric approach,
Kaplan–Meier survival analysis was employed to provide non-parametric insights into
storm-free intervals. Additionally, a simulation-based framework estimates storm recur-
rence probabilities and assesses financial risks through probable maximum loss (PML)
calculations. The proposed methodology is applied to the Billion-Dollar Weather and
Climate Disasters dataset, compiled by the U.S. National Oceanic and Atmospheric Admin-
istration (NOAA). The results demonstrate the model’s effectiveness in predicting severe
storm recurrence intervals, offering valuable tools for managing risk in the property and
casualty insurance industry.

Keywords: EM algorithm; mixture models; Kaplan–Meier estimators; probable maximum
loss; severe storms; United States

1. Introduction
In most risk assessment applications, the inter-arrival times between events (e.g.,

insurance claims) are often assumed to follow an exponential distribution as a consequence
of a Poisson process. The Poisson process assumes that events occur independently within a
fixed time interval at a constant average rate. Additionally, it assumes that events occur one
at a time and that the probability of an event occurring in a small interval is proportional
to the length of the interval (see Kaas et al. 2008; Klugman et al. 2019). However, these
assumptions are frequently violated in real-world insurance applications.

To illustrate the challenges of modeling inter-arrival times for risk assessment, this
study focuses on the inter-arrival times between severe storms in the United States. Severe
storms are among the most destructive natural events, with far-reaching impacts on life,
infrastructure, and the economy. The Property and Casualty Insurance Industry in the U.S.
is particularly concerned with the frequency and severity of these storms. According to a
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report published by the National Association of Insurance Commissioners (NAIC 2023),
insured losses from natural catastrophes in the United States totaled roughly USD 80 billion
in 2023. The majority of these losses resulted from severe convective storms rather than
isolated large-scale events like hurricanes.

Severe storms, which encompass high-impact weather phenomena such as hail, torna-
does, derechos, and floods, are defined by the NOAA National Centers for Environmental
Information (2024) as weather systems producing wind gusts of at least 58 mph, hail one
inch or larger in diameter, or tornadic activity. Hailstorms result in widespread damage to
crops, vehicles, and rooftops, while tornadoes, known for their violent, rotating columns of
air, cause localized but catastrophic destruction to infrastructure and communities. Dere-
chos, long-lived, straight-line windstorms, often lead to power outages and structural
damage across vast areas. Flash floods, frequently triggered by intense rainfall during
severe storms, overwhelm drainage systems, leading to rapid inundation and significant
threats to lives and property. These storms frequently lead to flash flooding and other catas-
trophic outcomes. Each year, approximately 100,000 thunderstorms occur across the United
States, with 10% escalating to severe levels (see National Weather Service (NWS) 2024).

The property insurance sector is under immense pressure due to the increasing fre-
quency and severity of the natural catastrophes. High inflation, shifting population den-
sities toward higher-risk areas, and rising reinsurance costs have stressed traditional
insurance models, leading to significant financial challenges for insurers and property
owners alike. These systemic pressures not only increase premiums but also affect property
valuations and local economies. In high-risk areas where storms and floods are recurrent
threats, many homeowners face difficulties securing adequate insurance coverage. Insuf-
ficient insurance leaves properties underinsured, slowing recovery efforts and reducing
neighborhood property values post-disaster (see New York Times 2024). The impacts
of severe storms extend beyond immediate property damage (see Miljkovic et al. 2018).
Insights from the National Weather Service (NWS) (2024) highlight significant differences
in forecasting capabilities across storm types. For hailstorms, radar and predictive models
have improved large-scale forecasting, but precise predictions for specific locations remain
a challenge due to their dependence on localized atmospheric dynamics. Tornadoes benefit
from advancements in Doppler radar and storm-tracking models, which have enhanced
the ability to identify critical conditions like wind shear and instability. However, short
lead times and unpredictable formation patterns still pose challenges. Flash floods, often
associated with these severe storms, rely on improvements in precipitation monitoring
and hydrological modeling, yet their rapid and localized onset makes them difficult to
predict accurately. Derechos, being widespread and long-lived windstorms, are the least
predictable, with current forecasting systems struggling to determine their trajectories
and intensities. The rising cost of insurance affects the feasibility of new developments,
determining where infrastructure can be built and at what cost. Unaffordable premiums or
a lack of coverage in certain areas disrupt housing markets and expose lenders to increased
financial risk (see Office of Financial Research (OFR) 2023). Thus, this financial vulnerabil-
ity underscores the need for improved severe storm predictions to enhance preparedness.
Accurate forecasting enables better risk assessment and allocation of resources, helping
insurers, governments, and communities to mitigate the long-term economic and social
impacts of these destructive weather events.

1.1. Research Gaps

Despite technological progress, forecasting models face limitations due to incomplete
historical data, regional biases, and simplified statistical methods. Historical records,
particularly before the 1980s, are often inconsistent, making long-term trend analysis
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difficult. Models also struggle to capture the complexity of storm recurrence, especially
under evolving climate conditions, and frequently overlook smaller-scale variability. These
challenges are compounded by the lack of integration of key environmental variables such
as humidity and precipitation (see González et al. 2020; Zhang et al. 2023; Yang et al. 2024).

The research on the inter-arrival times between severe storms in the United States
is limited, particularly when focusing on storms with non-overlapping durations. Non-
overlapping durations may indicate a lack of statistical dependence between successive
events, which introduces additional complexity in understanding the patterns and fre-
quencies of such events. This gap in the literature creates uncertainty in understanding
the patterns and frequencies of such events. While simple statistical models based on
the exponential distribution are readily available in the literature, they may not always
be appropriate if the inter-arrival times are not exponentially distributed. This raises the
question: what alternative models should be considered? Therefore, this study aims to
address and close this gap by thoroughly examining the distribution of inter-arrival times
between severe storms.

1.2. How Do We Add Value?

To address the gaps in the literature, alternative statistical models are proposed for
modeling inter-arrival times between events, enhancing predictive accuracy and reliability.
Various theoretical distributions are studied, examining deviations from expected patterns
and exploring alternative probability models to better capture observed variations. The
following research questions are considered:

• Q1. What is the most suitable probability distribution for modeling inter-arrival times
between severe storms in the United States?

• Q2. What is the highest potential financial loss from a single severe storm based on
the historical losses?

By answering these research questions we aim to predict the likelihood and timing
of the next severe storm. Our approach focuses on extreme occurrences in the tail of
the probability distribution. Furthermore, the study estimates expected financial losses
associated with these events, offering quantifiable insights into the economic risks posed by
severe storms. The insights gained will be crucial for improving insurance and property risk
management strategies, providing actionable information to insurers, property developers,
policymakers, and other stakeholders to better prepare for and mitigate the financial
impacts of severe storms.

The remainder of this paper is structured as follows. Section 2 evaluates existing
research on storm recurrence models and highlights key gaps. Section 3 describes the
data sources and exploratory data analysis. Section 4 outlines the statistical methods for
analyzing storm recurrence with the new proposed approach. Section 5 demonstrates
the application of the proposed approach and its practical utility. Section 6 is designed
to evaluate recurrence patterns, estimate the probability of the next storm occurrence,
and forecast potential impacts, including financial losses. Limitations of the study are
discussed in Section 8. Finally, Section 9 provides concluding remarks and opportunities
for further work.

2. Literature Review
The literature review, summarized in Table 1, highlights significant advancements in

understanding the dynamics of severe storms. Recent studies have employed sophisticated
statistical methods and comprehensive datasets to identify patterns, enhance predictive
models, and provide actionable insights for mitigating the impacts of severe weather on
communities, economies, and infrastructure. A key focus of this research is the distribu-
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tion of recurrence times or return intervals between severe storms, which is critical for
characterizing and understanding their behavior.

Santhanam and Kantz (2008) explored return intervals between extreme events in
long-range correlated systems using simulated Gaussian data. Their findings revealed a
dual-distribution behavior, with power-law dominance for short intervals and stretched
exponential behavior for longer intervals. Starting with hailstorms and thunderstorm
winds, which cause extensive damage to roofs, vehicles, and other property, accurate
prediction and mitigation of these events are essential. Thunderstorm winds, in particular,
serve as defining metrics for classifying and tracking storm severity.

Li et al. (2024) examined the impacts of hailstorms using data from the Community
Collaborative Rain, Hail, and Snow Network (CoCoRaHS), which provided valuable
insight into the severity and distribution of hailstorms across a wide geographic area
through citizen science observations from 1998 to February 2023. This study utilized Monte
Carlo simulations and gamma distribution models to estimate hail-induced roof damage
probabilities, demonstrating that impact-resistant roofs reduced damage probabilities by
60% to 98% compared to unrated roofs. While this approach emphasizes uncertainty
propagation in physical damage modeling, it does not center on the temporal variability
of storm events and their financial implications. Additionally, the authors utilize fragility
curves to assess the likelihood of roof damage based on hailstone size, combining physical
impact models with uncertainty analysis, without focusing on temporal patterns and
clustering of storm events without extending to physical impact modeling.

Similarly, Van Dijk and Franses (2003) analyzed hailstorms and thunderstorm wind
events using NOAA’s Storm Events Database (1996–2022). By applying the Epidemic-
Type Aftershock Sequence (ETAS) model, which is among the most popular stochastic
models of seismicity based on a Poisson distribution, they revealed strong clustering
of hailstorms in the central U.S., showing that hailstone size has a direct influence on
the dynamics and aftermath of hailstorms. The period from 1996 to 2022 was selected
because it aligns with the availability and comprehensiveness of the NOAA Storm Events
Database, which serves as a robust source for systematically recorded hailstorm and
thunderstorm wind events. This period represents a critical timeline during which the
database expanded significantly in both its geographic coverage and the detail of its
recorded meteorological phenomena. By focusing on this interval, the studies could
leverage a large dataset with standardized reporting protocols, enabling more reliable
statistical modeling and comparisons. Additionally, this period captures sufficient temporal
breadth to observe long-term trends and clustering behaviors, as well as the potential
impacts of climate variability on storm dynamics. The inclusion of this timeframe also
facilitates the comparison of results with other contemporary analyses, such as Lo Galbo
and Chiodi (2024), who examined the same dataset, ensuring methodological consistency
and enhancing the validity of cross-study inferences. Lo Galbo and Chiodi (2024) applied
the ETAS model to data from the U.S. for the same period to examine spatiotemporal
clustering of hailstorms and thunderstorm winds. Their analysis showed that hailstorms
tend to occur in close proximity to one another, forming clusters rather than being evenly
distributed. Thunderstorm winds also demonstrated limited geographical spread, with
their effects confined to relatively smaller areas. Their consistency across different events
suggests a stable pattern of behavior.

Kahn (2005) highlighted that windstorms are among the deadliest natural disasters,
examining annual deaths from natural disasters between 1980 and 1999 using data from The
Emergency Events Database (EM-DAT). The study used zero-inflated negative binomial
regressions to analyze the influence of income, geography, and institutional quality on
mitigating disaster-related fatalities. The findings indicated that while richer nations expe-
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rience as many natural disasters as poorer ones, they have significantly lower fatality rates
due to better infrastructure, governance, and response mechanisms, including advanced
early warning systems and effective evacuation procedures. In contrast, poorer nations
face higher vulnerability due to inadequate infrastructure, dense populations in risk-prone
areas, and limited governmental capacity for disaster response.

Prein and Holland (2018) developed a probabilistic hail prediction algorithm using
environmental predictors and hail data (1979–2015) across the U.S., Europe, and Australia.
The study replicated hail frequency patterns and identified hotspots, such as the U.S. Plains
and the lee side of the Andes. On a similar note, Thorarinsdottir and Gneiting (2010)
developed a probabilistic wind speed forecasting model using data from meteorological
stations in the Pacific Northwest in 2008. The author employed the Ensemble Model Output
Statistics (EMOS) technique, which combines multiple linear regression with Gaussian
predictive probability density functions to forecast wind speeds. Richman et al. (2013)
further highlighted specific atmospheric conditions that indicate a higher likelihood of
storm formation. Using principal component analysis (PCA) with varimax rotation, the
study analyzed data collected 24 h before severe weather outbreaks in North America. The
analysis identified nine to eleven components, such as pressure, moisture, and temperature,
that explained variability in severe weather outbreaks like tornadoes, hailstorms, and
wind events, demonstrating differences in atmospheric conditions leading to different
storm types.

Floods, which are often caused by extreme rainfall, pose significant risks due to their
frequency and potential for widespread damage. Understanding the relationship between
extreme rainfall and floods is crucial for disaster preparedness, risk management, and
policy development. Dupuis and Trapin (2023) examined mesoscale convective systems
(MCSs), large organized clusters of thunderstorms that often cause heavy rainfall, and their
influence on rainfall in Greater St. Louis, Missouri (1979–2014). Using a mixed-frequency
extreme value regression model within the generalized extreme value (GEV) framework,
the study found that large clusters of thunderstorms were associated with intense rainfall
over short periods, particularly during the afternoon, in July. However, while this study
provides valuable insights into rainfall dynamics, it primarily focuses on meteorological
factors, leaving broader flood-related considerations unexplored. The interplay between
hydrology, urban infrastructure, and socioeconomic conditions is critical to understanding
flood severity and impact. This highlights the need for more holistic approaches that
integrate these factors into flood research and management.

Tornadoes are among the most violent and unpredictable weather phenomena.
González et al. (2020) analyzed tornado reports in the U.S. from 1980 to 2016, focusing
on their starting locations and seasonal patterns. Using the spatiotemporal K-function
and a studentized permutation test, the study revealed significant seasonal differences in
tornado patterns, with stronger clustering observed during the cold season. Brooks and
Dotzek (2008) analyzed the spatial distribution and secular changes in severe convective
storms globally, focusing on tornadoes, hail, and convective wind events. Using data from
the U.S. (1954–2004), the study discovered that tornado intensity distributions could be
modeled using Weibull and Rayleigh distributions. It also identified specific environmental
conditions, like convective available potential energy (CAPE) and wind shear, as critical
predictors of significant severe thunderstorms.

Elsner et al. (2016) evaluated long-term and short-term tornado patterns in the U.S.
from 1970 to 2015 using data from NOAA. By employing negative binomial regression and
the integrated nested Laplace approximations (INLAs) method for approximate Bayesian
inference, the study identified spatial and temporal variations in tornado risks. ENSO (El
Niño–Southern Oscillation) was found to significantly influence tornado activity, with El



Risks 2025, 13, 19 6 of 24

Niño reducing activity in some areas and increasing it in others. Potvin et al. (2022) further
examined tornado frequency in the central U.S. from 1975 to 2018, highlighting reporting
biases due to the under-reporting or underestimation of tornado characteristics. Using
Bayesian inference with conditional autoregressive models, the study found significant
under-reporting of strong tornadoes and a substantial bias correction for weaker tornadoes.

Yang et al. (2024) focused on tornado touchdown data in Kansas from 1950 to 2015,
employing a Bayesian zero-inflated Poisson (ZIP) model to estimate touchdown probabil-
ities and identify high-risk areas. Findings indicated that tornado risks were positively
correlated with temperature, with higher risks in eastern Kansas compared to western
regions. Daneshvaran and Morden (2007) also examined tornado and hail risks in the U.S.
using data from the NOAA Storm Prediction Center and Grazulis datasets (1949–2007).
By simulating 35,000 years of tornado outbreaks using Monte Carlo simulations and re-
gression analysis, the study found that tornado losses dominate the extreme ends of loss
distributions, while hail causes more frequent moderate losses. Refan et al. (2020) examined
tornado-related financial losses in Kansas and Oklahoma from 1970 to 2014 using Monte
Carlo simulations and negative binomial distribution modeling. The study found that
higher tornado frequency and population density in Oklahoma contributed to greater
average annual losses compared to Kansas.

The Southeastern United States, often referred to as Dixie Alley, is also a hotspot for
tornado activity. Bradburn (2016) analyzed tornado density and return periods in this
area using data from 1980 to 2014. By applying kernel density estimation (KDE) and
k-means clustering, the study identified specific high-impact areas, particularly in Alabama,
Mississippi, and Arkansas. These regions experienced the most intense tornadoes, with
high numbers of injuries and fatalities. Nouri and Devineni (2022) examined spatial and
temporal changes in large-tornado outbreaks (LTOs) across the U.S. from 1950 to 2019,
identifying a southeastward shift in tornado activity and a decrease in spatial dispersion,
indicating more localized outbreaks in recent decades.

Zhang et al. (2023) analyzed time trends in tornado-related losses in the U.S. from
1954 to 2018, using statistical models like maximum likelihood estimation (MLE) and
the generalized method of moments (GMM). The study found that, after adjusting for
inflation, population growth, and economic factors, normalized tornado-related losses have
generally declined, though Alabama showed an increasing trend. Cossette et al. (2003)
focused on catastrophic events in the U.S. from 1980 to 2001, examining the frequency of
events like floods and tornado outbreaks and their associated losses. The study highlighted
the correlation between catastrophe intensity and insured losses, emphasizing the difficulty
of diversifying risks associated with such events even in large insurance portfolios.

Overall, these studies collectively provide a comprehensive understanding of the
dynamics of severe storms, hail, tornadoes, and floods. They have highlighted specific
atmospheric conditions, spatial patterns, and clustering behavior, as well as the socioeco-
nomic factors influencing storm impacts and related losses. Such findings are essential for
developing predictive models, disaster preparedness plans, and risk management strategies
that can mitigate the impacts of severe weather on vulnerable communities and economies.
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Table 1. Chronological summary of key studies on severe storm modeling.

Author(s) and Year Region/Geography Methods/Models Main Findings

Cossette et al. (2003) U.S. Stochastic ordering Catastrophe risks need reinsurance, not diversification.
Van Dijk and Franses (2003) U.S. Poisson distrib. model Hailstorms and thunderstorm winds exhibit distinct clustering patterns.
Kahn (2005) Global Zero-inflated negative binomial regressions Wealthier nations experience fewer fatalities.
Daneshvaran and Morden (2007) U.S. Monte Carlo simulation, Weibull distrib. Tornadoes cause severe losses, hail results in moderate damage.
Brooks and Dotzek (2008) U.S. Weibull and Rayleigh distrib. Tornado intensities align with environmental patterns.
Santhanam and Kantz (2008) Simulated Gaussian data Power-law and exponential distrib. Severe storm intervals: power-law short, exponential long.
Thorarinsdottir and Gneiting (2010) U.S. Multiple linear regression Improved wind speed forecasts.
Richman et al. (2013) North America Principal component analysis Moisture, temperature, and pressure changes signal severe storms.
Bradburn (2016) U.S. Kernel density estimation Identified high-risk areas for deadly tornadoes.
Elsner et al. (2016) U.S. Negative binomial regression El Niño shifts tornado risks.
Prein and Holland (2018) U.S., Europe, Australia Prediction algorithm Global hail prediction tool that identifies storm frequencies.
González et al. (2020) U.S. Spatiotemporal Cold-season tornadoes cluster more strongly.
Refan et al. (2020) U.S. Monte Carlo simulation Oklahoma had higher tornado-related losses than Kansas.
Potvin et al. (2022) U.S. Bayesian, negative binomial distrib. Tornadoes were under-reported by a factor of three
Nouri and Devineni (2022) U.S. K-medoids clustering, kernel density estimation Tornado outbreaks are shifting southeastward and are more localized.
Dupuis and Trapin (2023) U.S. Generalized extreme value distrib. Thunderstorms intensify rainfall, especially during July.
Zhang et al. (2023) U.S. Maximum likelihood estimation Tornado-related losses declined nationally by 30%.
Li et al. (2024) U.S. Monte Carlo simulations, gamma distrib. Impact-resistant roofs reduce hail damage by 60–98%.
Yang et al. (2024) U.S. Spatiotemporal, Markov chain Monte Carlo Rising temperatures were linked to increased tornado risks.
Lo Galbo and Chiodi (2024) U.S. Maximum likelihood estimation Hailstorms and thunderstorm winds showed declining clustering.
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3. Data
This study utilizes a comprehensive dataset sourced from the National Centers for

Environmental Information (NCEI) NOAA National Centers for Environmental Informa-
tion (2024), cataloging significant billion-dollar disaster events in the United States from
1981 to 2024. The dataset contains a total of 203 observations, each uniquely named, with
“severe weather”, and “tornadoes” being among the most frequently mentioned words,
emphasizing the recurring nature of these events. However, the events are not further
categorized into specific subtypes. Figure 1 shows that severe storms are most prevalent in
Texas, followed by Illinois. While they can occur year-round, these events are particularly
common in April and May.
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Figure 1. Geographic distribution of severe storm events in the United States (top) and their monthly
frequency (bottom) for the period 1981–2024, with months ordered from highest to lowest frequency.

The primary variables chosen for analysis include the type of disaster, the start and
end dates of each event, and the Consumer Price Index (CPI)-adjusted financial loss cap.
These variables enable a detailed examination of how often severe storms occur, their
durations, and the economic impact they impart, though accurately estimating disaster
losses remains challenging due to factors such as indirect costs and inconsistencies in
reporting. The dataset spans a significant temporal range, with the earliest recorded event
occurring on 5 May 1981 and the latest on 13 July 2024, providing over four decades of
comprehensive historical records. To analyze the inter-event time between severe storm
events, we calculate the difference between the start and end dates for each event. The
formula for calculating the inter-arrival time is

Inter-event Duration = (End Date − Begin Date) + 1 (1)

In this formula, the “Begin Date” and “End Date” represent the respective start and
end dates of each severe storm event, ensuring that even single-day events are fully
accounted for. The earliest intra-event time was excluded from the analysis as we lacked
information about storms preceding the dataset’s starting date, making it impossible to
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compute. Using this single dataset from the NCEI allows us to conduct a focused analysis
of severe storms over recent decades, highlighting changes in their frequency, duration,
and economic impact.

Figure 2 illustrates a clear upward trajectory in the annual occurrence of severe storms,
with a pronounced surge in recent years, highlighting a substantial rise in storm frequency
over recent decades. Notably, the average annual frequency of storms in the earlier decades
(1981–1990) was approximately 0.8 storms per year, compared to an average of 11 storms
per year in the most recent decade (2014–2023), representing a more than tenfold increase.
Among the years depicted, 2023 stands out with 19 recorded storms, marking it as the
highest frequency observed in the dataset and nearly 60% higher than the average of
the preceding 10 years. The figure also integrates statistical insights, emphasizing key
characteristics of the dataset. The maximum frequency of 19 storms, recorded in 2023,
stands out as a significant peak, while the median of 2 storms per year indicates that half
the recorded years experienced relatively low storm counts. Interestingly, the mode of one
storm per year reflects the most commonly observed annual frequency. This variability
reflects the dynamic and cyclical nature of severe weather activity while highlighting the
significant escalation in storm frequency in recent decades.
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Figure 2. Frequency distribution of severe storm events across years, with descriptive statistics.

Figure 3 shows that no two storms in 2023 occurred on the same date or overlapped
in their durations. This was verified by analyzing the start and end dates of each event.
The 2023 dataset includes three hail storms (HSs), 15 severe weather (SW) events, and
one tornado. This non-overlapping property was observed across the entire dataset. The
distinct, non-overlapping boundaries of these events may suggest they can be treated as
independent. However, this is not sufficient evidence to claim temporal independence. In
order to investigate further the assumption of independence and identically distributed
observations, we focus on the distribution of inter-arrival times shown in Figure 4.

Figure 4 illustrates the distribution of inter-event durations for severe storms, pre-
sented using both a linear scale and a logarithmic scale for comparison. The distribution is
highly right-skewed, with the majority of storm events occurring within short intervals.
A pronounced peak is observed within 10 to 50 days. Beyond 50 days, the frequency of
inter-event durations declines sharply, with intervals longer than 200 days being relatively
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rare. Notable outliers include three extended intervals exceeding 500 days, highlighting
significant pauses between major storm occurrences. The longest recorded interval, span-
ning 1171 days, represents an unusually long gap between the Western Severe Storms and
Flooding (February 1986) and the Southern Derecho and Severe Storms (May 1989). The
logarithmic transformation of the x-axis addresses the challenges posed by the extreme
skewness of the data. The log-transformed scale redistributes inter-event durations to
provide greater emphasis on mid-range intervals (10–100 days) that are compressed in the
linear representation. The peak density, around 50 days, remains apparent, reinforcing the
observation that most storms occur within this timeframe. By compressing larger intervals,
the log scale reduces the visual dominance of outliers, such as the 1171-day gap, while still
acknowledging their presence. This transformation enhances the visibility of variability
across all ranges, particularly for the mid-range durations that are difficult to discern in the
linear plot.
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Figure 3. Timeline of severe storm events in 2023 by month, with each short line representing an
individual event duration.
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Figure 4. Side-by-side comparison of inter-event duration distributions for severe storms on linear
(left) and logarithmic (right) scales. In both plots, histograms are overlaid with density curves to illus-
trate the distribution of inter-event durations more smoothly. (a) Linear scale. (b) Logarithmic scale.

Together, the linear and log-transformed views in Figure 4 show the complex tem-
poral patterns of severe storms. The linear scale effectively highlights the extremity of
the right-skewed distribution, emphasizing the clustering of events within short intervals
and the rarity of extended pauses. Meanwhile, the log-transformed scale mitigates the
disproportionate influence of outliers, revealing a more balanced view of the data and
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emphasizing variability in mid-range intervals. The evidence of multi-modality suggests
modeling the inter-arrival time using mixtures to capture heterogeneity in the data, which
is the topic of Section 4.

4. Methodology
4.1. Background

In modeling the inter-arrival times, we initially tested several single-component prob-
ability distributions—exponential, gamma, Weibull, log-normal, Rayleigh, Gumbel, and
generalized Pareto (see Appendix A)—selected for their compatibility with the data’s
right-skewed, long-tailed characteristics (see Casella and Berger 2002). These distributions
are also used to test the assumption of independence in the data. If the rate of the storm
occurrence is not constant (e.g., storms are more frequent in certain seasons or under
specific weather conditions), the Poisson process assumption breaks down. This can lead to
a non-exponential distribution of inter-arrival times. In this section, we explore modeling
inter-arrival times using finite mixtures. We apply goodness-of-fit tests, summarized in
Appendix B, to show that modeling inter-arrival times using several single-component
probability distributions fails. We want to test if inter-arrival times are identically dis-
tributed because each one might come from a different component distribution (short
intervals vs. long intervals). By allowing multiple distributions to represent these inter-
arrival patterns, the mixture model better reflects the natural clustering and variability
observed, as detailed in the following subsections.

4.2. Proposed Modeling

To improve the fit for inter-arrival times of storms, we applied a G-component finite
mixture model, following the methodology of Blostein and Miljkovic (2019). This approach
flexibly combines distributions, such as gamma, log-normal, and Weibull to better capture
the complex patterns in recurrence intervals across different storm categories. Although
our dataset did not include left-truncated entries, the model’s structure is versatile enough
to handle varied data patterns.

The model is defined as follows: given a sample X = (X1, . . . , Xn) of independent
and identically distributed inter-arrival time variables, the probability density function is
expressed as

h(x | θ) =
G

∑
j=1

ωjg(x | θj) (2)

where G is the total number of components in the mixture model, ωj represents the mixing
proportion for each component, constrained such that ∑G

j=1 ωj = 1 and ωj > 0 for each
component j, and g(x | θj) is the probability density function of the j-th component. The
parameter vector θj is specific to each component, allowing each distribution to capture
distinct patterns within the data.

Parameter estimation was performed using the Expectation–Maximization (EM) al-
gorithm proposed by Dempster et al. (1977), which refines initial estimates by iteratively
performing expectation (E-step) and maximization (M-step) steps until convergence. This
EM-based approach provided robust parameter estimates, thereby enhancing the inter-
pretability and predictive accuracy of the model.

The ltmix R package, proposed by Blostein and Miljkovic (2024), was used to fit the
G-component model. This package is designed for implementing mixture models with any
combination of log-normal, gamma, and Weibull components. Although developed for
left-truncated data, we set the truncation parameter to null to suit our dataset. The package
also allowed us to calculate component weights and maximum likelihood estimates (MLEs);
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the probability density function (PDF), was derived using the MLEs, component weights
and cumulative distribution functions (CDFs), facilitating comprehensive model analysis.

To select the best-fitting model configuration, we first used the Akaike information
criterion (AIC) proposed by Akaike (1974) and Bayesian information criterion (BIC) pro-
posed by Schwarz (1978), identifying the model with the lowest AIC and BIC values to
balance fit accuracy and model complexity. After selecting the best model, we assessed
the fit using a series of goodness-of-fit tests, including the Kolmogorov–Smirnov (KS) test,
Anderson–Darling (AD) test, and chi-square goodness-of-fit (GOF) test, in addition to a
probability–probability (P-P) plot, which is used to compare the CDF of a dataset to the
CDF of a theoretical distribution. These tests, which leverage the cumulative distribution
function, were instrumental in identifying discrepancies between the observed data and
the fitted model. Finally, we plotted the fitted mixture model using the calculated weights
and MLEs.

These results were also bench-marked using a non-parametric Kaplan–Meier approach
to study the inter-event times between severe storms. This method allows for analyzing the
data without assuming a specific parametric distribution, providing flexibility in capturing
patterns and trends directly from the observed data.

4.3. Kaplan–Meier Method

To model the likelihood of extended quiet periods between storms, the Kaplan–Meier
(KM) estimator, proposed by Kaplan and Meier (1958), was employed. This method
calculates the probability that no storm will occur up to a given number of days, known as
the survival probability Ŝ(t), and is defined as

Ŝ(t) = ∏
ti≤t

(
1 − di

ni

)
, (3)

where ti represents the time of the i-th storm event, di is the number of storms occurring
at ti, and ni is the number of intervals at risk just before ti. The KM estimator provides
a robust, non-parametric approach for evaluating inter-arrival times, making it ideal for
datasets with variable and clustered storm activity.

The survival function Ŝ(t) represents the probability that an interval between storms
lasts longer than t days. It is related to the CDF F(t), which gives the probability that an
interval lasts less than or equal to t days, through the equation

Ŝ(t) = 1 − F(t). (4)

Here, F(t) serves as the usual distribution function in this context, quantifying the
likelihood of a storm occurring by time t. Conversely, the survival function expresses the
probability of no storm occurrence by t, effectively describing the persistence of storm-
free intervals. An inverse KM plot visualizes F(t), the cumulative probability that at
least one storm has occurred by a given day. This perspective, equivalent to the CDF,
offers an intuitive “time-to-first-storm” interpretation. For a more in-depth analysis of the
underlying methods and results, refer to Appendix C.

5. Application
In modeling the inter-arrival times of severe storms, a G-component finite mixture

model was applied, with the log-normal–log-normal (LL) configuration emerging as the
optimal fit based on the lowest AIC and BIC values (see Appendix D, Table A4). This
model effectively captures the variability in storm intervals, as demonstrated in Figure 5,
where the histogram of observed frequencies aligns closely with the fitted PDF. The density
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curve overlays the observed data, accurately reflecting the clustering of shorter inter-arrival
times and the tapering off at longer intervals. Figure 5 provides additional validation
through a P-P plot, which shows a strong agreement between the empirical CDF and the
theoretical CDF predicted by the LL model. The close alignment along the 45-degree line
confirms the robustness of the model in representing severe storm recurrence patterns.
These results highlight the LL model’s capacity to account for the variability and skewness
inherent in inter-arrival times, making it a reliable tool for analyzing and predicting storm
recurrence intervals. Confidence in these findings is further reinforced by the consistency
of the model’s performance across different statistical measures.
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Figure 5. Histogram of the inter-arrival times (left) along with the fitted LL PDF. The P-P plot (right)
compares the observed versus theoretical CDFs.

The summary statistics in Table 2 confirm the suitability of the LL mixture model for
modeling inter-arrival times of severe storms. The goodness-of-fit tests, including the KS
and AD tests, both returned p-values above 0.05 (0.43 and 0.78, respectively), indicating no
significant deviation between the observed data and the model’s predictions. These results,
combined with the low chi-square test statistic (8.54) and its associated p-value (0.074),
further validate the reliability of the model. The strong alignment of the empirical CDF
with the theoretical CDF, as seen in the P-P plot (Figure 5), provides additional support for
the model’s robustness.

Table 2. Summary statistics and goodness-of-fit tests for the LL mixture.

Component 1 Component 2

meanlog 5.53 2.64
sdlog 0.50 0.94
Weights 0.20 0.80

BIC 2011.50
AIC 1994.96
Log-likelihood −992.48

KS test statistic 0.062
KS p-value 0.43

AD test statistic 0.47
AD p-value 0.78

χ2 test statistic 8.54
χ2 p-value 0.074

The LL mixture effectively captures the bimodal nature of storm inter-arrival times,
as reflected in the weights assigned to its components: Component 2 accounts for shorter
intervals, with a weight of 0.80, while component 1 captures the longer intervals, with
a weight of 0.20. The mean log and standard deviation log values for each component
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(5.53 and 0.50 for component 1, 2.64 and 0.94 for component 2) highlight the distinct
separation between frequent short intervals and the less common extended intervals.
By looking closely at the results, the shorter intervals included in component 2 suggest
potential temporal dependence, as storms occur in closer succession. Events in component 2
frequently include locations such as Texas, Colorado, and Oklahoma, indicating potential
spacial clustering in these states.

6. Simulation
To evaluate recurrence patterns, estimate the probability of the next storm occurrence,

and forecast potential impacts, including financial losses, this study conducted a simula-
tion of severe storms’ inter-arrival times using the best-fit probabilistic models. Specifically,
1000 simulated samples, each with 1000 iterations, were generated to estimate event occur-
rence probabilities across selected time thresholds (e.g., 10, 30, 60, 90, 180, and 365 days). These
thresholds captured both short- and long-term recurrence patterns, with intervals determined
by statistical measures such as the mean and standard deviation (see Appendix D, Table A3).

For each simulated sample, the proportion of inter-arrival times below each threshold
was calculated, providing probability estimates for recurrence within specific periods.
Confidence intervals of 95% were constructed to assess the reliability of the model, with
average probabilities spanning a time range of 15 to 365 days serving as the basis for
further analysis.

The simulations, grounded in the LL mixture model, identified as the optimal fit for
storm inter-arrival patterns, revealed essential insights into storm recurrence. Figure 6
demonstrates the estimated probabilities of storm recurrence, incorporating the simulated
cumulative probability curve, the theoretical curve derived from the LL model, and the
inverse KM survival curve, all overlaid on a single plot. Additionally, a zoomed-in inset
focuses on the range of 10–90 days, showing the sharp rise in recurrence probability during
the initial period and the mean inter-arrival time marked with a vertical dashed red line.
The gray shaded area represents the 95% confidence intervals for the estimated probabilities.

The simulation results indicate that the probability of storm occurrence rises sharply
in the initial days, stabilizing near 1.0 after approximately 60 days, which aligns closely
with the mean inter-arrival time of storms. The narrow confidence intervals within this
range further support the reliability of the LL model. The overlay of the KM survival curve
and the simulated probability curve highlights the strong agreement between empirical
data and model predictions, particularly in the first 90 days, reinforcing the accuracy of the
LL model in capturing storm recurrence patterns. These results, as illustrated in Figure 6,
emphasize the effectiveness of the LL model in forecasting storm recurrence.

Table 3 below provides detailed simulation probabilities at specific time points, along
with their 95% confidence intervals. These probabilities further highlight the sharp increase
in storm occurrence likelihood during the initial days, followed by a gradual stabilization
over time.

Table 3. Simulation probabilities with 95% confidence intervals.

Days Simulation Probability 95% CI

10 0.28 (0.25, 0.32)
20 0.52 (0.48, 0.55)
30 0.63 (0.60, 0.66)
90 0.78 (0.77, 0.79)
180 0.85 (0.83, 0.86)

The integration of theoretical modeling, simulated probabilities, and KM curves
provides a robust framework for risk assessment associated with the severe storms.
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Figure 6. Estimated probabilities of storm recurrence. The plot shows the inverse Kaplan–Meier
survival curve (green line) and the simulated cumulative probability curve (blue dashed line), both
with 95% confidence intervals represented by vertical lines in matching colors. The theoretical
cumulative probability curve from the log-normal–log-normal mixture model is shown as a black
dashed line. The vertical red dashed line marks the mean inter-arrival time (in days).

7. Probable Maximum Loss (PML) Analysis
A widely recognized concept in risk analysis and catastrophe modeling, the probable

maximum loss (PML) was introduced by McGuinness (1969) and further discussed by
Black and Hurley (1970). It provides a monetary estimate of the worst-case scenario loss
for a structure or group of structures during a maximum credible event (MCE), such
as a significant natural disaster. To construct the PML curve, several calculations were
performed to quantify the relationship between event frequency and financial loss, which
are explained as follows.

First, the exceedance probability (EP), representing the likelihood of observing losses
of a given magnitude or greater in any year, was calculated using the formula

EP =
Rank

Total Number of Events + 1
(5)

Here, the rank represents the position of an event in the sorted list of storm events, ordered
from the largest to the smallest severity of losses. The severity of losses is expressed as
adjusted cost using a Consumer Price Index (CPI-adjusted). In our data, the total number
of events is 203, and the addition of one ensures the probability remains below one even
for the largest event. For example, the largest event (rank 1) will have an EP slightly less
than 1, reflecting the uncertainty associated with finite data.

Using the exceedance probability, the return period (T), which represents the average
recurrence interval for events of a given magnitude, was calculated as

T =
1

EP
. (6)

The return period, expressed in days, indicates how often an event of a particular
size might be expected to occur on average. For example, an event with an exceedance
probability of 0.005 would have a return period of 200 days, meaning it is expected to occur
approximately once every 200 days.
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The financial loss associated with each return period was calculated based on the CPI-
adjusted cost of the storm event, converted into billions of USD for clarity. The conversion
is given by

Loss in Billions =
CPI-Adjusted Cost

1000
. (7)

This step adjusts all costs for inflation, ensuring consistency across years, and expresses
losses in a simplified monetary unit for better readability.

To annotate key points on the PML curve, specific return periods were selected (e.g.,
20.3, 50.8, 101.5, and 203 days). Events closest to these return periods were identified by
minimizing the difference between their calculated return period and the target values.
The annotations include both the return period and the corresponding PML percentage,
calculated as

PML (%) =
1
T
× 100. (8)

This highlights the likelihood of observing such events as a percentage. For example,
a return period of 203 days corresponds to an exceedance probability of approximately
0.005 (0.5%), representing the chance of experiencing a loss of this magnitude or greater in
any given day.

The relationship between return periods and losses forms the basis of the PML curve.
This curve provides a quantitative visualization of the increasing financial impact of rarer,
more severe events. Selected return periods and their corresponding losses and PML
percentages are summarized in Table 4.

Figure 7 illustrates the PML curve, which captures the nonlinear relationship between
return periods and financial losses. The red line represents the overall trend, reflecting the
increasing losses associated with less frequent, higher-severity storm events. Blue markers
denote key return periods, providing actionable benchmarks for decision making.
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Figure 7. Probable maximum loss (PML) curve with key return period markers.

The PML curve reveals a steep increase in financial losses with longer return periods.
For instance, a return period of 20.3 days corresponds to a loss of USD 5.66 billion, with a
PML percentage of 4.93%, while a return period of 203 days is associated with a loss of USD
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14.31 billion, with a PML of 0.49%. These findings underscore the significant financial risks
posed by rare but severe catastrophic events, demonstrating the necessity of probabilistic
modeling for comprehensive disaster risk management.

Table 4. Loss estimates and PML percentages for selected return periods.

Return Period (Days) Loss (Billions, USD) PML (%)

20.3 5.66 4.93
50.8 11.36 1.97

101.5 13.34 0.99
203.0 14.31 0.49

8. Limitations
Several limitations of this study are discussed as follows, based on the current analysis

and understanding of the data and methods used. In this study, we utilized BIC as the
primary criterion for model selection, as it is a widely accepted approach in finite mixture
modeling. While additional methods such as cross-validation, posterior predictive checks,
and out-of-sample validation are recognized as valuable for assessing predictive accuracy,
the relatively small sample size limited our ability to implement these techniques robustly.
Predictive validation methods often require splitting the dataset into training and testing
subsets, which can reduce the effective sample size for model estimation. With a limited
dataset, this could lead to unstable or unreliable estimates. Future work may address this
limitation by collecting additional data or accessing independent datasets. A larger sample
size will facilitate more rigorous validation techniques, including holdout validation and
cross-validation, to further ensure the robustness and predictive accuracy of the model.

The EM algorithm, while effective for fitting finite mixture models, is sensitive to
outliers due to its reliance on likelihood maximization. In our storm data, which include
rare but extreme events, outliers may have a disproportionate influence on parameter
estimates and component assignments. However, these are legitimate data points and
should not be excluded from the data. To mitigate this, we believe that a robust initialization
in the EM algorithm reduces the impact of outliers. However, one can explore different
component distributions (i.e., Burr, inverse Burr, etc.) beyond those used in our study in
order to improve the fit in the tail.

The assumption of statistical independence between events is a major limiting factor
in this study. Future work may focus on distinguishing among types of disasters and
limitations of statistical approaches due to the differences. Also, forcing functions for
different types of flood, hail, tornado, or other disasters are different, although they are
mostly weather-induced.

9. Conclusions and Future Work
In this study, we introduced a comprehensive statistical approach for analyzing the

recurrence patterns of severe storms in the United States from 1981 to 2024. By leveraging a
log-normal–log-normal mixture model, we addressed the complexities of storm inter-arrival
times, capturing both frequent, closely spaced events and extended quiet periods with
high precision. Analyzing the observations within each component of the mixture allowed
us to study temporal dependencies associated with specific regions where these events
occurred. The Expectation–Maximization (EM) algorithm facilitated robust parameter
estimation, and the reliability of the model was validated through goodness-of-fit tests.
Unlike traditional methods, the proposed model accounts for nuanced variations in inter-
event durations, thereby enhancing predictive accuracy. Additionally, the incorporation
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of a Kaplan–Meier analysis enriched the study by evaluating storm-free intervals non-
parametrically, providing a useful benchmark against the parametric results.

A simulation study was implemented to validate the empirical findings of the log-normal–
log-normal mixture model. Specifically, 1000 simulated samples, each with 1000 iterations,
were generated to estimate event occurrence probabilities across various thresholds (rang-
ing from 10 to 365 days) with their 95% confidence intervals. The results indicated that
the probability of storm occurrence rises sharply in the initial days, stabilizing near 1 after
approximately 60 days. This pattern aligns closely with the observed mean inter-arrival time
of storms. Both parametric and non-parametric (Kaplan–Meier) approaches highlighted a
consistent agreement in the results.

Based on the historical data, a PML curve is constructed for severe storms, providing
valuable insights into potential financial risks associated with these events. The analysis es-
timates that a period of 20.3 days between storms corresponds to a loss of USD 5.66 billion,
while a return period of 203 days (less than 6 months) is associated with a loss of USD
14 billion. These findings are crucial not only for risk managers and actuaries working
in the insurance and reinsurance industries, who rely on accurate loss projections to set
premiums and reserves, but also for government agencies and policymakers responsible
for disaster preparedness and financial risk mitigation strategies. Understanding these loss
estimates helps ensure more effective decision making, resource allocation, and resilience
planning in the face of severe storms.

While this study focuses on modeling the inter-arrival times of severe storms, ap-
plying similar statistical approaches to flood events presents unique challenges. Floods
are complex phenomena influenced by hydrologic factors, watershed characteristics, and
precipitation patterns, often resulting in clustering and dependencies not captured by
simple statistical distributions. For instance, methods such as those outlined in Bulletin
17C (England et al. 2018) emphasize the use of hydrologic models and advanced statisti-
cal techniques like the Expected Moments Algorithm (EMA) to address data censoring,
regional skew, and non-stationary trends in flood data. Incorporating such approaches,
which are well established in flood frequency analysis, could improve the applicability of
statistical models to flood-related inter-arrival studies. Additionally, the assumption of
independence inherent in many statistical models may not hold for flood events, where
antecedent conditions and spatial dependencies play a significant role. Future work could
expand on this study’s findings by integrating hydrologic and climate-based variables
into the modeling of storm and flood inter-arrival times. Drawing from methodologies in
Bulletin 17C (England et al. 2018), such as the EMA and regional skew adjustments, would
provide a more comprehensive framework for analyzing the complex dependencies and
clustering behaviors characteristic of flood events.

Finally, the results of this study are based on data collected from storms that caused
at least USD 1 billion in losses. While this approach highlights the most economically
significant events, it excludes smaller-scale storms that may exhibit different recurrence
patterns and levels of dependence. Expanding the dataset to include storms with losses
below USD 1 billion could provide a more comprehensive understanding of storm dynam-
ics, particularly regarding whether the assumption of independence holds across events
of varying scales. Future research should focus on assessing whether the log-normal–
log-normal mixture model remains appropriate for modeling inter-arrival times with this
broader dataset. Additionally, the inclusion of smaller-scale storms may reveal clustering
or dependencies that are less evident in high-cost events. Exploring alternative models and
distributional assumptions would ensure robust predictions and offer insights into storm
recurrence across diverse storm types and scales.
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Appendix A. Distributions Used in Analysis
The distributions used in the analysis offer different characteristics that make them

suitable for time-to-event modeling.
Rayleigh Distribution: The Rayleigh distribution is often used for modeling time-to-

event data, especially when the variance increases over time. The distribution is defined as

f (x|σ) = x
σ2 e−

x2

2σ2 ,

where σ is the scale parameter, and σ > 0. The range of x is [0, ∞).
Exponential Distribution: Commonly used for modeling the time between indepen-

dent events, the exponential distribution assumes a “memoryless” property, which is useful
for disaster recurrence analysis. It is defined as

f (x|λ) = λe−λx,

where λ is the rate parameter, and λ > 0. The range of x is [0, ∞).
Gamma Distribution: The gamma distribution is flexible and can model the time until

multiple events occur. It is defined as

f (x|α, θ) =
θα

Γ(α)
xα−1e−xθ ,

where α is the shape parameter (α > 0) and θ is the scale parameter (θ > 0). The range of x
is [0, ∞).

Weibull Distribution: The Weibull distribution is particularly suited for analyzing
time-to-event data where hazard rates change over time. Its density function is

f (x|λ, k) =
k
λ

( x
λ

)k−1
e−(

x
λ )

k
,

where λ is the scale parameter (λ > 0) and k is the shape parameter (k > 0). The range of x
is [0, ∞).

Generalized Pareto Distribution (GPD): The GPD is used in extreme value theory
to model the tails of distributions, which is important when considering rare, extreme
disasters. Its density function is

f (x|ξ, σ, µ) =
1
σ

(
1 +

ξ(x − µ)

σ

)− 1
ξ −1

,

https://www.ncei.noaa.gov/access/billions/
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where ξ is the shape parameter (ξ > −σ/(x − µ)), σ is the scale parameter (σ > 0), and µ is
the location parameter (µ ∈ R). The range of x is [µ, ∞) if ξ ≥ 0, and [µ, µ − σ/ξ) if ξ < 0.

Log-Normal Distribution: Used to model data that are positively skewed, the log-
normal distribution is suitable when the underlying data represent multiplicative processes.
Its density function is

f (x|µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 ,

where µ and σ are the mean and standard deviation of the logarithmic values of x, with
σ > 0. The range of x is [0, ∞).

Gumbel Distribution: The Gumbel distribution is often used for modeling the distri-
bution of the maximum or minimum of a number of samples. It is defined as

f (x|µ, β) =
1
β

e−
(

x−µ
β

)
e−e

−
(

x−µ
β

)
,

where µ is the location parameter (µ ∈ R) and β is the scale parameter (β > 0). The range
of x is (−∞, ∞).

Mixture of Two Log-Normal Distributions: A mixture of two log-normal distributions
is often used to model data with two distinct subpopulations, each following a log-normal
distribution. The probability density function (PDF) of the mixture is given by

f (x|w1, µ1, σ1, µ2, σ2) = w1 ·
1

xσ1
√

2π
e
− (ln(x)−µ1)

2

2σ2
1 + (1 − w1) ·

1
xσ2

√
2π

e
− (ln(x)−µ2)

2

2σ2
2 ,

where

• w1 ∈ [0, 1]: The weight of the first log-normal component.
• µ1, µ2 ∈ R: The means of the logarithms of the two log-normal components.
• σ1, σ2 > 0: The standard deviations of the logarithms of the two log-normal components.
• x ∈ (0, ∞): The random variable being modeled.

The first term corresponds to the first log-normal component, scaled by its weight w1,
and the second term corresponds to the second log-normal component, scaled by 1 − w1.

Appendix B. Goodness-of-Fit Tests Used in Analysis
To determine the best-fitting distributions for the inter-event durations, three goodness-

of-fit (GOF) tests were applied: The Kolmogorov–Smirnov test, the Chi-square goodness-
of-fit test, and the lAnderson–Darling test.

Kolmogorov–Smirnov Test (KS Test): The KS test compares the empirical distribution
function of the data with the cumulative distribution function of the theoretical model. The
test statistic is

D = sup
x

|Fn(x)− F(x)|,

where Fn(x) is the empirical CDF and F(x) is the theoretical CDF. The p-values for this test
indicate how well the theoretical distribution fits the observed data.

Chi-square Goodness-of-Fit Test: The chi-square test compares the observed and
expected frequencies of disaster durations under each theoretical distribution. It is calcu-
lated as

χ2 = ∑
(Oi − Ei)

2

Ei

where Oi is the observed frequency in the i-th category and Ei is the expected frequency
based on the theoretical distribution.
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Anderson–Darling Test: The Anderson–Darling test places more emphasis on the tails
of the distribution, making it more sensitive to extreme values. The test statistic is

A2 = −n − 1
n

n

∑
i=1

(2i − 1)[ln(F(Xi)) + ln(1 − F(Xn+1−i))]

where n is the sample size, Xi is the ordered data points, and F(Xi) is the cumulative
distribution function.

Appendix C. Kaplan–Meier Supplementary Analysis
The KM survival analysis, presented in Figure A1 and Table A1, reveals that by day

100, the cumulative probability of experiencing a storm exceeds 90%, highlighting the
frequent and clustered nature of storm events. The rapid decline in survival probability
underscores the quick recurrence of storms, with minimal time between events. The shaded
region in Figure A1 represents the 95% confidence intervals, indicating the bounds of
uncertainty around the estimates. At shorter inter-arrival times, the intervals are narrower
due to the high density of data, while at longer intervals, they widen as data become
sparse, reflecting increased uncertainty. This variability emphasizes the unpredictability of
extended storm-free periods.
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Figure A1. The KM survival curve, depicting the probability of time between severe storm events
with 95% confidence intervals, represented by red vertical error bars.

Table A1. Kaplan–Meier survival analysis summary.

Characteristic Value

Number at risk at 1 year 6
Number of events at 1 year 196
1-Year survival probability 2.97% (95% CI: 1.35%, 6.53%)
Median survival (days) 20.5 (95% CI: 16, 25)

The analysis provides significant insights. The median survival time—indicating when
50% of intervals have experienced a storm—is just 20.5 days, underscoring the brief gaps
between storm occurrences. Additionally, the 1-year survival probability, or the likelihood
of not experiencing a storm within 365 days, is extremely low at 2.97%.
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Appendix D. Tables and Figures

Table A2. Goodness-of-fit results for single-component probability distributions.

Distribution MLEs χ2 Statistic χ2 p-Value AD Statistic AD p-Value

Exponential λ = 0.013 152.81 0 9.50 <0.001

Gamma α = 0.31, β = 0.0040 109.55 <0.001 9.32 <0.001

Weibull α = 0.67, β = 53.86 92.72 <0.001 7.43 <0.001

Log-normal µ = 3.23, σ = 1.45 49.80 <0.001 3.14 <0.001

GPD ξ = −0.1, σ = 30, µ = 0 136.32 0 1.040 0.0095

Rayleigh σ = 111.51 >200 0 >200 0

Gumbel µ = 31.04, σ = 59.01 >200 0 26.12 0
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Figure A2. Fitting different distributions to the inter-arrival time: Exponential (top left), gamma
(top right), log-normal (bottom right), Weibull (bottom left).
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Figure A3. Fitting different distributions to the inter-arrival time: Rayleigh (top left), Gumbel
(top right), generalized Pareto (bottom left).
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Table A3. Summary statistics for severe storm events across all years (1981 to 2024).

Statistic Value

Minimum 2.00
1st Quartile 8.00
Median 20.50
Mean 76.41
3rd Quartile 62.50
Maximum 1171.00
First Standard Deviation 138.29

Table A4. Summary results for mixture models. * NLL (negative log-likelihood). ** ∆AIC and ** ∆BIC
represent differences in AIC and BIC relative to the best model (the one with the lowest AIC or BIC).

Model Component G1 Component G2 Component G3 NLL * AIC BIC ∆AIC ** ∆BIC **

G Gamma NA NA −1041.2321 2086.464 2093.061 107.2331 95.0182
L Log-normal NA NA −1007.1072 2018.214 2024.811 38.9834 26.7684
W Weibull NA NA −1030.2376 2064.475 2071.072 85.2442 73.0292

GG Gamma Gamma NA −991.6013 1993.203 2009.694 13.9715 11.6515
GL Gamma Log-normal NA −987.5380 1985.076 2001.568 5.8449 3.5250
GW Gamma Weibull NA −991.9437 1993.887 2010.379 14.6563 12.3363
LL Log-normal Log-normal NA −985.7755 1981.551 1998.043 2.3200 0.0000
LW Log-normal Weibull NA −992.9091 1995.818 2012.310 16.5870 14.2671
WW Weibull Weibull NA −993.7595 1997.519 2014.011 18.2879 15.9680
GGG Gamma Gamma Gamma −983.1525 1982.305 2008.692 3.0739 10.6489
GGL Gamma Gamma Log-normal −983.1572 1982.314 2008.701 3.0833 10.6583
GGW Gamma Gamma Weibull −983.9881 1983.976 2010.363 4.7452 12.3202
GLL Gamma Log-normal Log-normal −981.7309 1979.462 2005.848 0.2308 7.8058
GLW Gamma Log-normal Weibull −983.8550 1983.710 2010.096 4.4788 12.0538
GWW Gamma Weibull Weibull −984.1801 1984.360 2010.747 5.1291 12.7041
LLL Log-normal Log-normal Log-normal −981.6155 1979.231 2005.618 0.0000 7.5750
LLW Log-normal Log-normal Weibull −982.9170 1981.834 2008.221 2.6030 10.1780
LWW Log-normal Weibull Weibull −984.3425 1984.685 2011.072 5.4540 13.0290
WWW Weibull Weibull Weibull −985.3793 1986.759 2013.145 7.5276 15.1026
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