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Abstract: Investigating how systemic risk originates and spreads across the financial
system poses an inherently compositional question, i.e., a question concerning the joint
distribution of relative risk share across several interdependent contributors. To address this
question, we propose a weighted compositional clustering approach aimed at tackling the
trajectories and turning points of systemic risk in the Eurozone, from both a chronological
and a geographical perspective. The cluster profiles emerging from our analysis indicate
a progressive shift from Northern Europe towards the Euro-Mediterranean region in
the coordinate center of systemic risk compositions. This shift matures as the outcome of
complex interactions between core and peripheral EU countries that compositional methods
have the merit of capturing and unifying in a self-contained multivariate framework.

Keywords: Compositional Data (CoDa); adjacency-constrained hierarchical clustering;
CONISS algorithm; Systemic Risk Index (SRISK); weighted centered log-ratios

1. Introduction
Systemic risk has been defined as “the risk of disruption to the flow of financial services

that (i) is caused by an impairment of all or parts of the financial system; and (ii) has the
potential to have serious negative consequences for the real economy” (Financial Stability
Board 2009). Due to linkages within the financial system, all types of intermediaries,
markets, infrastructures, and even whole countries can be systemically at risk or can
potentially become so in specific time periods, depending on the economic environment. As
pointed out by Andrieş et al. (2024), risk at the country level is made up of the aggregation
of firm-level risks, but country-level solvency also has an impact on firm-level risk. Against
this backdrop, a key question relates to where and when potential imbalances between
parts of the system occur or, in other words, which parts of the system dominate the
overall systemic risk in the face of events such as the European Sovereign Debt Crisis (SDC)
or COVID-19.

The European Union is particularly susceptible to systemic risk due to its unique
economic and institutional structure, where banks in one country are heavily exposed to
sovereign debt in others (see, e.g., Acharya et al. 2022; Foglia et al. 2023) and the lack of a
fully integrated fiscal union limits the possibility for member states to address financial
shocks in a coordinated manner (Borri and Di Giorgio 2022; Shambaugh 2012). These

Risks 2025, 13, 21 https://doi.org/10.3390/risks13020021

https://doi.org/10.3390/risks13020021
https://doi.org/10.3390/risks13020021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0003-1914-7777
https://orcid.org/0000-0002-5204-6882
https://doi.org/10.3390/risks13020021
https://www.mdpi.com/article/10.3390/risks13020021?type=check_update&version=1


Risks 2025, 13, 21 2 of 23

fragilities have clearly emerged during the SDC, when financial instability in one country
quickly spread to others through sovereign debt linkages and interbank exposures, with
spillover effects across the entire region (Betz et al. 2016; Bratis et al. 2018; Shahzad et al.
2019). Studies of systemic risk in the Eurozone have often employed network analysis to
investigate the critical role of endogenous complexity and trace contagion patterns within
the EU’s financial framework (see, e.g., Aldasoro and Alves 2018; Paltalidis et al. 2015).

The systemic riskiness of banks and other financial institutions has also been quantified
with different methodologies, ranging from the regulatory framework established by
the Basel Committee on Banking Supervision (https://www.bis.org/basel_framework,
accessed on 13 November 2024) to a variety of academic measures, including—but not
limited to—the distressed insurance premium introduced by Huang et al. (2009), the
marginal expected shortfall and systemic expected shortfall in Acharya et al. (2012), the
Systemic Risk Index (SRISK) from Brownlees and Engle (2017), and the CoVaR in Adrian
and Brunnermeier (2016). See Stolbov and Shchepeleva (2024) for a comprehensive study
on the evolution of systemic risk research during the period 2007–2021. All these methods
have progressively enabled a deeper understanding of shock propagation channels and
policy responses in times of systemic crises.

In addition to the variety of mechanisms and measurement tools investigated in the
literature, in this article, we show that an important dimension of systemic risk in the Euro
area is linked to compositional variation in the relative risk share pertaining to individual
member states. This finding is the outcome of a novel application of Compositional Data
(CoDa) analysis, in which we propose a weighted chronological and geographical clustering
of systemic risk compositions in the Eurozone. In our CoDa analysis, “individuals” (the
single member states) are not considered independently but parts of a “whole” (the EU
financial system), with a focus on risk proportions—rather than monetary, or absolute,
metrics—that distinguishes our article from the vast body of research on the topic.

Despite growing interest in CoDa methods (see, e.g., Coenders et al. 2023; Egozcue
and Pawlowsky-Glahn 2019; Greenacre 2021; Greenacre et al. 2023, and references therein),
only a few studies have applied them to finance and risk management problems so far.
Vega Baquero and Santolino (2022), in particular, constructed a concentration index for the
Colombian banking system via compositional analysis to detect potentially “too big to fail”
financial entities, while Porro (2022) and Fiori and Porro (2023) proposed the adoption of
CoDa visualization tools to explore some regional disparities in the distribution of systemic
risk share. Overall, these works indicate a clear potential of CoDa methods to uncover
some less known aspects of complex financial phenomena thanks to the use of a relative
scale, which prioritizes the information content of the part proportions over their absolute
values or sums.

The present article proposes a new framework to tackle the evolution of systemic risk
in the Eurozone as a compositional time series, with constituent parts corresponding to
the relative risk contributions of individual member states during the period 2009–2022.
To the best of our knowledge, this approach has not been used so far in the literature,
where the time dynamics of systemic risk have been mainly studied regarding monetary
units or scores (see, e.g., Brownlees et al. 2020; Magkonis and Tsopanakis 2020; Stolbov
and Shchepeleva 2018, and references therein) . A relevant concern in the systemic risk
literature is the so-called overshadowing effect of size, meaning that common indicators
are inclined to overstate big financial institutions as risky, while small institutions tend
to be overdefined as safe (Varotto and Zhao 2018). As CoDa analysis operates on relative
information, it can be expected to reveal shifts and co-movements among larger and smaller
risk contributors, which may be masked when focusing solely on absolute metrics (see also
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the discussion on small parts and their role in a composition by Pawlowsky-Glahn et al.
2015, Example 1.2).

Based on adjacency-constrained Ward clustering with the CONstrained Incremental
Sum of Squares (CONISS) algorithm from Grimm (1987), we develop a chronological
clustering approach for CoDa that gives new insights into the time trajectories and turning
points of systemic risk across the Eurozone. To calibrate the influence of low-mean/high-
dispersion parts associated with some peripheral countries (e.g., Ireland or Portugal),
we introduce a system of differential weights for the parts as proposed by Greenacre
(2018) and used by Jofre-Campuzano and Coenders (2022), and we integrate them into
the CONISS algorithm for hierarchical constrained clustering. The outcome of the pro-
posed approach is a structured periodization of relative systemic risk trajectories into five
clearly separated time segments, indicating a progressive shift from Northern Europe to
the Euro-Mediterranean region in the compositions of systemic risk. We show how this
shift matures as a consequence of complex interactions between core and peripheral coun-
tries that the CoDa approach has the merit of detecting and unifying in a self-contained
multivariate framework. Time series classification with the differential weighting of parts
is indeed a key contribution that characterizes the present article and distinguishes it, in
particular, from the graphical CoDa analysis of systemic risk presented in Porro (2022) and
Fiori and Porro (2023).

A critical dimension of the European Union is the exposure to geographically asym-
metric shocks and changes in macro-economic conditions that need to be addressed within
a single-currency framework (see, e.g., Shambaugh 2012; and Karimalis and Nomikos
2018). In order to investigate this aspect, we contribute a geographical cluster analysis
of systemic risk compositions combining Ward’s hierarchical procedure with the same
differential weighting of parts. The proposed approach reveals a mix of grouping structure
and country-specific behaviors; while the former captures the relative balance between the
proportional risk contributions of “similar” subsets of countries, the latter underscore the
presence of a few highly volatile parts that tend to drive apart from the rest of the Eurozone.

Whereas a large portion of the literature has focused on the aftermath of the Global
Financial Crisis (GFC) and on specific episodes in subsequent years (e.g., SDC, Brexit, the
Italian banking crisis in 2016–17, the outbreak of the pandemic in 2020), our compositional
time series embraces a longer period—from February 2009 to November 2022—thus en-
abling a comparative investigation of multiple interrelated crises (GFC, SDC, COVID-19,
war in Ukraine) that have challenged the resilience of the EU’s financial system. This
time extension and the considerable heterogeneity between the systemic risk magnitude of
core and peripheral EU countries makes our compositional time series a complex combi-
nation of major and minor constituents, with significant disproportions in their scales of
variation. We show that the application of weighting methods from CoDa in conjunction
with chronological and geographical clustering can be used to identify the time and space
trajectories of systemic risk compositions, highlighting the instability threats posed by
relative imbalances among ratios of major and minor parts in a complex entity such as
the European Union. Our conclusion is that CoDa analysis should be viewed not as a
replacement for other well-established methodologies that have been developed and tested
in the recent literature but as a complementary tool in the study of the multifaceted nature
of systemic risk whenever the research questions concern the distribution of risk among
countries or financial institutions.

The rest of this article is organized as follows. In Section 2, we recall the definition of
the SRISK that will be considered and we describe the aggregation mechanism underlying
the construction of the relative SRISK share for individual countries. Section 3 focuses
on compositional methods, starting with a brief introduction (Section 3.1). Then, we
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present the weighted CoDa clustering procedures for chronological segmentation of a
compositional time series and for the geographical aggregation of its parts in Sections 3.2
and 3.3, respectively. The empirical analysis is contained in Section 4 and followed by a
discussion of the results (Section 5).

2. Systemic Risk Index
The Systemic Risk Index (SRISK) introduced by Brownlees and Engle (2017) is a

monetary indicator of the expected capital shortfall of a financial intermediary, f , at a given
time, i, conditional on a systemic event implying a prolonged market decline. In particular,

SRISK f ,i = k
[

D f ,i + (1 − LRMES f ,i)W f ,i

]
︸ ︷︷ ︸

Required Capital

− (1 − LRMES f ,i)W f ,i︸ ︷︷ ︸
Available Capital

, (1)

where k is a prudential capital ratio established by regulatory authorities, D f ,i and W f ,i

denote, respectively, the book value of total liabilities and the market value of equity, and
LRMES is the Long-Run Marginal Expected Shortfall, which corresponds to the expected
drop in equity value that the firm would experience if the global equity market were to
decline by more than 40% within the next six months. This distress scenario is indeed
consistent with historical data. In particular, during the dot-com bubble burst and the
subprime crisis, the global equity market declined by around 40% (see Engle and Zazzara
2018, and references therein).

As mentioned in the Introduction, a number of well-established metrics for systemic
risk analysis are available in the literature. However, a unique feature of the SRISK is that
the measure is regularly computed and published by The Volatility Institute (https://vlab.
stern.nyu.edu, accessed on 13 November 2024) for more than 1000 financial firms in the
world and by the Center for Risk Management at the University of Lausanne (http://www.
crml.ch/systemic-risks, accessed on 13 November 2024) for European institutions (see also
Engle et al. 2014, for a detailed description of the methodology). Additionally, and more
importantly for the present study, the individual measure (1) can be aggregated across all
the undercapitalized firms in a country, yielding a nationwide SRISK measure:

SRISK(j)
i =

Nj

∑
f=1

max{SRISK f ,i, 0}, (2)

which represents the total amount of capital needed to bail out the national financial system
in a country, j, consisting of Nj institutions, conditional on a crisis scenario. The ratios of
country-level measures (2) to the overall SRISK of a reference financial system represent
the risk share associated with each of the countries (parts), information that can be properly
processed by the compositional methods that we describe in the next section.

It is worth mentioning that the contributions of overcapitalized firms (i.e., those with
a negative SRISK) are not considered in (2) because it is unlikely that surplus capital would
be easily mobilized from prudent to weak firms in the event of a downturn (Brownlees and
Engle 2017; Engle 2018).

3. Compositional Analysis
CoDa are a special type of multivariate observations with the peculiarity that rel-

ative rather than absolute information is relevant to the analysis (Filzmoser et al. 2018;
Pawlowsky-Glahn et al. 2015). A specific methodology for CoDa began to emerge in the
1980s, when the pioneering work of John Aitchison was systematized in the monograph
The Statistical Analysis of Compositional Data (Aitchison 1986). Since then, the CoDa ap-

https://vlab.stern.nyu.edu
https://vlab.stern.nyu.edu
http://www.crml.ch/systemic-risks
http://www.crml.ch/systemic-risks
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proach has made substantial progress (see Bacon-Shone 2011, for a historical retrospective)
and is currently regarded as a preferred modeling choice to uncover the relative struc-
ture of multivariate datasets, prioritizing the information content of ratios between their
constituent parts.

3.1. Preliminaries of CoDa Modeling

Let RJ denote the set of all ordered J-tuples of real numbers and RJ
+ the set of J-tuples

with strictly positive elements. Following Egozcue and Pawlowsky-Glahn (2019), the
general concept of CoDa can be formalized as follows.

Definition 1. A compositional vector with J parts, x = [x1, . . . , xJ ], is a J-dimensional (row)
vector with strictly positive elements that carry relative information. Two vectors, x and y ∈ RJ

+,
are compositionally equivalent if there exists a positive constant, λ, such that y = λx. A J-part
composition is therefore an equivalence class of proportional vectors with positive elements.

The closure operation,

C(x) =

 x1

∑J
j=1 xj

, . . . ,
xJ

∑J
j=1 xj

, (3)

converts a compositional vector from RJ
+ into its representation in the J-part simplex,

S J =

{
x = [x1, . . . , xJ ] ∈ RJ

+ :
J

∑
j=1

xj = 1

}
, (4)

traditionally regarded as a natural sample space for Compositional Data. Log-transformed
ratios of parts (log-ratios) are fundamental to map Compositional Data to real vectors for
which the usual Euclidean structure is suitable (e.g., Pawlowsky-Glahn et al. 2015). Among
various families of log-ratios, the following is particularly useful in our analysis.

Definition 2. The centered log-ratio (clr) of a J-part composition, x = [x1, . . . , xJ ], is a vector in
RJ defined by

v = clr(x) = [clr1(x), . . . , clrJ(x)] =
[

log
x1

g(x)
, . . . , log

xJ

g(x)

]
, (5)

where g(·) denotes the geometric mean of parts:

g(x) =
J

∏
j=1

x1/J
j = exp

(
1
J

J

∑
j=1

log xj

)
. (6)

This transformation establishes an isometry between S J and the (J − 1)-dimensional
subspace V =

{
v ∈ RJ : v1 + . . . + vJ = 0

}
, enabling the computation of compositional

distances through standard Euclidean distances between clr-vectors.

Definition 3. Let x = [x1, . . . , xJ ] and x′ = [x′1, . . . , x′J ] denote two compositional vectors in SJ .
The Aitchison distance between x and x′ is the Euclidean distance between the clr-transformed
compositions:

da
(
x, x′

)
= de

(
clr(x), clr(x′)

)
=

√√√√ J

∑
j=1

[
clrj(x)− clrj(x′)

]2. (7)
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3.2. Weighted Chronological Clustering

In this section, we propose a new combination of hierarchical clustering and weighting
methods from CoDa analysis that will be instrumental in identifying relevant time trajecto-
ries and turning points of systemic risk in the Euro area. The special nature of CoDa and
the principles of Aitchison’s geometry on the simplex (see Pawlowsky-Glahn and Egozcue
2001) guide our formulation of the weighted chronological clustering algorithm.

Chronological clustering generally refers to the segmentation of a time series into a
sequence of consecutive sub-periods (clusters), which are intended to detect significant
change points in the evolution of the underlying phenomenon. Unlike ordinary cluster
analysis, this problem requires that only time-adjacent samples are considered for merging,
provided that they fulfill a reasonable similarity criterion with other observations in the
same group. The task can be performed by adjacency-constrained Ward clustering, using
the CONstrained Incremental Sum of Squares (CONISS) algorithm, originally introduced
for the stratigraphical classification of zones in the geosciences (Grimm 1987; see also
Di Donato et al. 2009). The method is agglomerative and hierarchical, joining elements in
accordance with Ward’s criterion of the minimization of the total within-cluster dispersion
while taking into account contiguity information along the series.

We propose here an implementation of adjacency-constrained clustering to the com-
positional time series of the systemic risk share X1, . . . , XJ (corresponding to J different
countries), additionally allowing for the differential weighting of parts associated with
minor and major contributors. A compositional time series with J parts, X1, . . . , XJ , is
usually represented as a matrix, X(I×J), where each row, xi = [xi1, . . . , xi J ] ∈ S J , is a (closed)
CoDa sample of J parts observed at a specific time point, i = 1, . . . I. The CoDa literature
has repeatedly reported imbalance in the contribution of parts when some very large parts
coexist with very small ones, the latter tending to have a disproportionate effect on the
clustering solution. Unlike standard cluster analysis, compositional cluster analysis does
not make variable standardization possible, but column weighting can be used instead.
As recommended by Greenacre (2018, 2021); Greenacre and Lewi (2009), we introduce a
weighting scheme based on the arithmetic means of the closed parts:

wj =
1
I

I

∑
i=1

xij, for j = 1, . . . , J, with
J

∑
j=1

wj = 1. (8)

Following Jofre-Campuzano and Coenders (2022) and Dao et al. (2024), we adopt the
following definition of weighted clr-transformation:

Definition 4. Consider a compositional time series, X(I×J), and a set of positive real numbers, wj,

for j = 1, . . . , J, such that ∑J
j=1 wj = 1. For each row, xi = [xi1, . . . , xi J ], of X, the part-weighted

(or column-weighted) clr-coefficients are defined as

clr(w)(xi) = [clr(w)
1 (xi), . . . , clr(w)

J (xi)]

=

[√
w1 log

xi1

g(w)(xi)
, . . . ,

√
wJ log

xi J

g(w)(xi)

]
,

(9)

where g(w)(xi) = ∏J
j=1 x

wj
ij is the weighted geometric mean of parts in xi, for i = 1, . . . , I.

Other weighting schemes are possible, for instance, based on inverse clr variances
(Hron et al. 2017). These weights were compared in a financial context with those suggested
in Greenacre (2018, 2021); Greenacre and Lewi (2009) by Jofre-Campuzano and Coenders
(2022) and no significant differences were found in the analysis results.
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The definition of Aitchison’s distance (7) between compositional vectors is easily
modified to account for variable weights.

Definition 5. The column-weighted compositional distance between two samples, xi, x′i, in a
compositional time series, X(I×J), is defined as the Euclidean distance between their respective
weighted clr-transformations:

d(w)
a (xi, xi′) = de

(
clr(w)(xi), clr(w)(xi′)

)
=

√√√√ J

∑
j=1

[
clr(w)

j (xi)− clr(w)
j (xi′)

]2
. (10)

We introduce the following version of the CONISS algorithm for a compositional time
series with weighted parts. The procedure begins with each CoDa sample in a separate
cluster and a dissimilarity matrix,

D =
{

d(i, i′) = d(w)
a (xi, xi′) : i, i′ = 1, . . . , I

}
, (11)

consisting of weighted compositional distances (10) between all CoDa samples (rows)
in X. The matrix (11) is searched for a minimum between adjacent periods, say, d(p, q),
and the corresponding samples are merged into a new cluster, C{p,q}. This reduces the
total number of clusters by one, and all dissimilarities involving either the element p
or q have to be updated. In each successive stage, a general scheme for evaluating the
dissimilarity between a newly formed cluster, C{p,q}, and any other cluster, Cr, is given by
the updating equation:

d(Cr, C{p,q}) =
(nr + np)d(Cr, Cp) + (nr + nq)d(Cr, Cq)− nrd(Cp, Cq)

nr + np + nq
, (12)

where nk is the number of elements in Ck, for k = r, p, q (see Grimm 1987, for details). The
process is iterated until all samples are found in a unique group of the size I.

Whereas conventional (unconstrained) cluster analysis searches the entire dissim-
ilarity matrix for a minimum in each stage, the chronological CONISS method allows
only time-adjacent elements to be considered for joining. The final outcome is a sequence
of hierarchically nested partitions, which can be displayed in the well-known form of a
clustering tree (dendrogram) preserving the natural order of samples in the compositional
time series.

3.3. Weighted Clustering of Parts

A critical dimension of the European Union is exposure to geographically asymmetric
shocks, which cause significant imbalances in systemic risk proportions across different
countries. We here propose a weighted compositional clustering of parts in order to
investigate the existence of grouping structures and country-specific behaviors in the
multivariate distribution of the systemic risk share Xj, j = 1, . . . , J, associated with EU
member states. This clustering problem concerns the columns of a compositional time
series, X(I×J). This involves transposing the data matrix. For coherence, the weights in
Section 3.2 have to be applied to the rows of the transposed matrix and the definitions of
the clr-coefficients and compositional distance need to be reformulated accordingly.

Definition 6. Consider a CoDa matrix, X(I×J), and its transpose, Y = X(t), where each row,
yj = [yj1, . . . , yjI ], contains I observations of the j-th part Xj, for j = 1, . . . , J.
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• The columnwise clr-coefficients of X are defined as

clr(t)(yj) = [clr(t)1 (yj), . . . , clr(t)I (yj)] =

[
log

yj1

g(t)(yj)
, . . . , log

yjI

g(t)(yj)

]
, (13)

where g(t)(·) denotes the geometric mean of samples:

g(t)(yj) =
I

∏
i=1

y1/I
ji = exp

(
1
I

I

∑
i=1

log yji

)
. (14)

• The compositional distance between any two parts in X can be defined as the Euclidean distance
between their columnwise clr-coefficients:

da(yj, yj′) = de

(
clr(t)(yj), clr(t)(yj′)

)
=

√√√√ I

∑
i=1

[
clr(t)i (yj)− clr(t)i (yj′)

]2
. (15)

The compositional clustering of parts can now be performed with the agglomerative
hierarchical procedure described in Greenacre (2018), which takes differential weighting of
variables into account during the aggregation process. The initial input to the clustering
algorithm is the colunmwise dissimilarity matrix:

D(t) =
{

da(yj, yj′), j, j′ = 1, . . . , J
}

, (16)

where (15) is used to compute the distance between pairs of variables, Xj and Xj′ , in the
original CoDa set, X, now associated with the columnwise clr-vectors yj and yj′ in the
transposed matrix Y. The partitioning process begins by joining the two variables Xp and
Xq that minimize the weighted Ward criterion:

wjwj′

wj + wj′
d2

a(yj, yj′), (17)

where j and j′ are any two columns in the CoDa matrix and wj and wj′ > 0 are the respective

weights, with ∑J
j=1 wj = 1. The resulting group, C{p,q}, appears as a new column variable

with clr-coefficients,
wpclr(t)(yp) + wqclr(t)(yq)

wp + wq
, (18)

and the associated weight w{p,q} = wp + wq. The dissimilarity matrix, D(t), is updated
by recomputing the columnwise compositional distances (15), and the process is iterated
by searching, in each stage, for the minimum of (17), until all elements are grouped into
one all-encompassing cluster. Further insights into the hierarchical clustering of variables
for CoDa and relationships to the particular geometry of the simplex can be found in
Martín-Fernández et al. (2024), who do not differentially weight the points.

4. Empirical Analysis
Based on the methodology described in the previous Section, we investigate the com-

positional structure of systemic risk in the Euro area using country-level SRISK measures
for each of the founding member states, namely, Austria (AT), Belgium (BE), France (FR),
Germany (DE), Ireland (IE), Italy (IT), the Netherlands (NL), Portugal (PT), and Spain (ES).
Greece (EL), which joined the Euro area in January 2001, is also included in our dataset in
view of the key role it played in the so-called ‘diabolic loop’, as Brunnermeier et al. (2016)
labeled the dangerous nexus between sovereign and bank credit risk that characterized the
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escalation of the SDC in the Euro area. Finland and Luxembourg, in spite of being initial
Eurozone members, are excluded due to limited data availability.

From the website of the Center for Financial Risk Management at Lausanne (2023)
(http://www.crml.ch/systemic-risks, access on 13 November 2024), we collected monthly
SRISK measures covering the period from February 2009 to November 2022. The website
includes a specific section with the latest systemic risk measures for individual institutions
and countries in Europe. By selecting a given country, it is possible to visualize the temporal
evolution of the corresponding variables, including numerical values of monthly SRISK
measures expressed in billions of EUR. This information was used to define a compositional
time series of J = 10 parts (countries) with I = 166 monthly observations, represented in
the CoDa matrix X(I×J) where each row,

xi = [xi1, . . . , xij, . . . , xi J ], for i = 1, . . . , I, (19)

is a (closed) compositional sample with J variables, corresponding to the SRISK share of
Eurozone countries:

xij =
SRISK(j)

i

∑J
j=1 SRISK(j)

i

, for j = 1, . . . J. (20)

Figure 1 shows the time dynamics of country-level SRISK measures both in their absolute
scale (billions of EUR, top panel) and in percentage compositions (bottom panel). The
compositional display highlights a peculiarity of the group formed by Greece–Ireland–
Italy–Portugal–Spain (GIIPS), which was at the epicenter of the European financial crisis.
Although the SRISK share of these countries appears remarkably lower in comparison with
core Euro members like Germany and France, they are characterized by higher volatility
with frequent spikes. This combination underscores the relevance of compositional variabil-
ity in uncovering the threats of potential instability posed by smaller SRISK contributors
within the Euro area.

Figure 1. Cont.

http://www.crml.ch/systemic-risks
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Figure 1. Time series of monthly SRISK in Eurozone countries; monetary values, in billions of
EUR (top), and percentage compositions (bottom). Country codes: AT (Austria), BE (Belgium), DE
(Germany), EL (Greece), ES (Spain), FR (France), IE (Ireland), IT (Italy), NL (Netherlands), and PT
(Portugal).

4.1. Data Pre-Processing and Weighting

The compositional time series contained 14 samples (8.4% of the total) that had zero
values in the SRISK part pertaining to Ireland and thus were not directly amenable to
the log-ratio transformations required for CoDa analysis. Following Palarea-Albaladejo
and Martín-Fernández (2008), we implemented a zero replacement strategy using the
Expectation–Maximization (EM) imputation algorithm. Zero values were not missing at
random and, accordingly, the algorithm constrained replaced values to be below a certain
limit. We specified the limit as 0.002473%, corresponding to the minimum value of positive
SRISK parts observed for Ireland. The EM algorithm adapted to Compositional Data is
available in the Rpackage zCompositions (Palarea-Albaladejo and Martín-Fernández 2015).

Table 1 summarizes the main descriptive statistics for the compositional time series of
the SRISK share. In particular, the “mean” column shows the arithmetic means of parts,
which are the basic ingredients of the weighting scheme described in (8). The reference
measure of central tendency for a CoDa set is the closed geometric mean, calculated
according to (14) and reported in the “center” column in Table 1. France, Germany, and
Italy were the main contributors to the SRISK over the sample period, with respective center
coordinates of 0.4117, 0.1840, and 0.1329 relative to the total SRISK of the Eurozone. Time
discrepancies with respect to the center will be considered in the next section to characterize
the compositional profiles of chronological clusters. The minimum, maximum, and quartile
statistics, also reported in Table 1, suggest considerable variation in the CoDa set. The
interquartile range (IQR = Q3-Q1) is particularly high for Germany, Spain, and France.

Using the R package easyCODA (Greenacre 2018), we estimated the global dispersion
of the CoDa set by its total log-ratio variance,

totvar(X) =
J

∑
j=1

var
[
clr(w)

j (X)
]
, (21)
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assuming first an equally weighted scheme, wj = 1/J, for all j = 1, . . . , J and then using
the set of differential weights specified in (8). As shown in Table 2, the equally weighted
clr-variances and their percentage contributions to totvar(X) are largely dominated by
Ireland, which combines near-zero SRISK proportions in several years with high dispersion
relative to all other parts. This situation is indeed common in complex CoDa sets including
major and minor elements, where the variation in the latter is amplified by the relative
scale of the data (Greenacre et al. 2023). The analysis with unequal weights resulted in
a more balanced decomposition of totvar(X), attenuating the clr-variance contribution of
Ireland from 63.71% to 21.14% and underscoring the relevance of Spain with a weighted
clr-variance contribution of 37.69%. The contributions of Germany and France were also
rescaled in accordance with their relative SRISK magnitude, respectively, from 2.60% and
2.39% (unweighted) to 10.80% and 5.74% (weighted). The adoption of a differential weighting
scheme for parts thus appeared to be a reasonable choice to describe the interplay between
larger and smaller SRISK contributors while simultaneously controlling for possible distortion
effects induced by extreme variation in the rarer parts (cf. Dao et al. 2024; Jofre-Campuzano
and Coenders 2022).

Table 1. Descriptive statistics for the compositional time series of the SRISK share. Country codes: AT
(Austria), BE (Belgium), DE (Germany), EL (Greece), ES (Spain), FR (France), IE (Ireland), IT (Italy),
NL (the Netherlands), and PT (Portugal).

Country Mean Center Min. Q1 Median Q3 Max. IQR

AT 0.0138 0.0131 0.0001 0.0107 0.0137 0.0161 0.0243 0.0054
BE 0.0413 0.0395 0.0191 0.0280 0.0335 0.0517 0.0899 0.0237
DE 0.1840 0.1859 0.1070 0.1635 0.1864 0.2057 0.3010 0.0422
EL 0.0225 0.0221 0.0064 0.0171 0.0234 0.0271 0.0434 0.010
ES 0.0965 0.0849 0.0079 0.0584 0.0951 0.1355 0.2088 0.0771
FR 0.4117 0.4243 0.2852 0.3908 0.4136 0.4375 0.5004 0.0467
IE 0.0057 0.0029 0.0000 0.0025 0.0052 0.0076 0.0162 0.0051
IT 0.1329 0.1350 0.0713 0.1168 0.1349 0.1500 0.1864 0.0332
NL 0.0860 0.0873 0.0514 0.0709 0.0864 0.1007 0.1243 0.0298
PT 0.0056 0.0049 0.0003 0.0036 0.0047 0.0081 0.0123 0.0045

Table 2. Percentage clr-variance contributions by country, with equal weighting (left side) and with
differential weighting based on the arithmetic means of the closed parts in the mean column in Table 1
(right side). Country codes: AT (Austria), BE (Belgium), DE (Germany), EL (Greece), ES (Spain), FR
(France), IE (Ireland), IT (Italy), NL (the Netherlands), and PT (Portugal).

wj clr-Variance Contrib. (%) wj clr-Variance Contrib. (%)

AT 0.1 5.84 0.0138 4.23
BE 0.1 3.23 0.0413 6.65
DE 0.1 2.60 0.1840 10.80
EL 0.1 3.86 0.0225 2.46
ES 0.1 8.48 0.0965 37.69
FR 0.1 2.39 0.4117 5.74
IE 0.1 63.71 0.0057 21.14
IT 0.1 2.20 0.1329 4.73
NL 0.1 2.00 0.0860 4.46
PT 0.1 5.60 0.0056 2.11

4.2. Weighted Chronological Clustering

Integrating the set of differential weights reported in Table 2 and the weighted dis-
tances in (10) into the CONISS algorithm available in the R package rioja (Juggins 2023),
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we implemented the proposal outlined in Section 3.2 for a weighted chronological cluster-
ing of the SRISK compositions. A preliminary analysis was carried out to verify that the
time series of the weighted clr-coefficients associated with each part were not influenced
by seasonal factors which might have induced similarities between non-adjacent CoDa
samples. The analysis was performed with a seasonal and trend decomposition using
locally estimated scatterplot smoothing. The corresponding measures of seasonal strength
available in the R package tsfeatures (Hyndman et al. 2023) confirmed the absence of
seasonal components in all the series.

The CoDa dendrogram in Figure 2 provides a structured periodization of relative
SRISK trajectories in the Eurozone and an insightful view of when the major turning
points occurred. To determine the number of contiguous clusters that could be reasonably
distinguished in this representation, we compare the decrease in the within-cluster sum of
squares (WSS) associated with each stage, k ≥ 2, of the partition to that obtained from a
broken stick model representing a random distribution of k sub-periods within the time
sequence (see, e.g., Bennett 1996). As shown in Figure 3, splits for the first twelve clusters
account for WSS reductions that exceed those expected from the broken stick model, while
splits for all subsequent clusters lead to WSS reductions that are lower than in the broken
stick model. We thus have an indication that twelve is the maximum number of reliably
recognizable clusters based on the structure in the CoDa set. However, after the fifth split,
the pattern of decrease in the WSS becomes very similar between CONISS clustering and
the broken stick model. Therefore, we retain a five-group periodization as a reasonable
compromise between statistical significance and the complexity of the clustering solution.

Figure 2. Weighted chronological clustering of SRISK compositions in the Eurozone, with a five-
group partition.

According to the database of financial crises developed by the European Systemic
Risk Board (see Lo Duca et al. 2017 for the methodology; the database is accessible at
https://www.esrb.europa.eu/pub/financial-crises/html/index.en.html, accessed on 13
November 2024), cluster I in our CoDa dendrogram covers the initial spread of the GFC to
Europe and the consequent worsening of the European SDC, with a number of countries
beginning to fear the size of their budget deficits (February 2009–June 2011). Interestingly,
the turning point that marks the passage from cluster I to cluster II occurs in July 2011,
concomitant with the publication of results of the first EU-wide stress test executed by
the European Banking Authority and the announcements concerning Italy’s first austerity
package and the second Greek bail-out (see also Cotter and Suurlaht 2019 for a detailed

https://www.esrb.europa.eu/pub/financial-crises/html/index.en.html
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analysis of this period). The time segment that we label cluster II (July 2011–August 2013)
is widely recognized as a phase of great uncertainty for the performance of the European
banking system and the debt situation of some member states, raising real questions about
the survival of the monetary union (Lannoo 2011). The split between clusters II and III,
identified as September 2013 in the CoDa dendrogram, closely follows the announcement
of the official exit of the Eurozone from recession with a 0.3% GDP growth in the second
quarter of 2013 (Le Blond et al. 2013). Then, cluster III (September 2013–January 2016) sees
a consistent decline in interest rates and a progressive improvement in financial stability
in a number of EU countries, as new policy measures were designed and implemented
under the macro-prudential framework of the Single Supervisory Mechanism (Kok et al.
2022; see also Nkwaira and Van der Poll 2023 for a broader discussion of macro-prudential
policies). The transition between clusters III and IV takes place in February 2016, when
the EU Bank Recovery and Resolution Directive and the Single Resolution Mechanism
Regulation had just become fully operational with a complete set of powers, including the
“bail-in-tool”, to ensure the orderly resolution of bank crises in the EU (cf. Philippon and
Salord 2017). Notwithstanding the consolidation of the European Banking Union, cluster
IV (February 2016–August 2020) is marked by a sequence of interconnected stress events
including Brexit and the Italian banking crisis, followed by the outbreak of the COVID-19
pandemic in February–March 2020. Finally, the shift from cluster IV to V coincides with the
second COVID-19 wave in Europe (September 2020). The Russian invasion of Ukraine in
February 2022 and the subsequent energy crisis are the main stress event that characterize
the last cluster (September 2020–November 2022).

Figure 3. The decrease in the WSS (within-cluster sum of squares) at different fusion levels,
k = 2, . . . , 50, for the weighted chronological clustering classification (black line), compared to a
broken stick model of randomly arranged samples (red line).

Table 3 illustrates the evolution—along the time sequence highlighted in the CoDa
dendrogram—of the cluster means of the SRISK compositions:

cen(k)(X) = C[g(k)1 , . . . , g(k)J ], (22)

where g(k)j = ∏nk
i=1 x1/nk

ij is the geometric mean of the j-th part in the k-th cluster, formed by
nk elements, for k = I, . . . , V. This information is complemented by the cluster averages
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of the total SRISK (in billions of EUR), reported in the last column, which highlight the
parallel between compositional shifts and the evolution of the absolute SRISK values in our
time series clustering of systemic risk in the EU.

Table 3. Compositional profiles of chronological clusters based on their center coordinates (closed
geometric means of SRISK parts) and cluster averages of the total SRISK in billions of EUR (last
column). The full series row is the center column in Table 1. Bold type indicates center coordinates
and total SRISK averages that exceed the corresponding values in the full series row. In brackets:
the number of samples for each cluster and for the whole time series. Country codes: AT (Austria),
BE (Belgium), DE (Germany), EL (Greece), ES (Spain), FR (France), IE (Ireland), IT (Italy), NL
(Netherlands), and PT (Portugal).

DE PT AT NL BE FR EL IT IE ES Avg SRISK

Cluster I (29) 0.2340 0.0071 0.0115 0.1096 0.0729 0.3943 0.0176 0.0986 0.0134 0.0411 660.4
Cluster II (26) 0.2002 0.0096 0.0161 0.0886 0.0498 0.3789 0.0274 0.1276 0.0069 0.0950 808.9
Cluster III (29) 0.2066 0.0052 0.0158 0.0953 0.0396 0.4529 0.0240 0.1171 0.0001 0.0434 527.9
Cluster IV (55) 0.1743 0.0029 0.0096 0.0684 0.0277 0.4170 0.0191 0.1576 0.0036 0.1199 559.3
Cluster V (27) 0.1185 0.0041 0.0164 0.0864 0.0289 0.4247 0.0246 0.1461 0.0050 0.1453 747.6

Full series (166) 0.1859 0.0049 0.0131 0.0873 0.0395 0.4243 0.0221 0.1350 0.0029 0.0849 641.2

To gain a deeper insight into these aspects, we also investigated the interdependence
among the Eurozone countries using an empirical measure of commonality derived from
weighted Principal Component Analysis (PCA) of the SRISK compositions (see, e.g., chap.
5 in Greenacre 2018, for the methodology). In Figure 4, we display the proportions of
the total log-ratio variance (21) which are explained by eigenvalues associated with the
first three principal components (labeled PC1, PC2, PC3) in each chronological cluster.
According to Billio et al. (2012), periods in which the first few eigenvalues capture a large
portion of total volatility may be considered indicative of increased interconnectedness in
the system, which is often associated with times of distress and crisis.

 
 

 

 

 

 

 
 

Figure 4. Percentage contributions of weighted CoDa principal components to the total log-ratio
variance of the SRISK compositions in the Eurozone, by chronological clusters.

Integrating the information displayed in Figure 4 with the description of cluster cen-
ters and average SRISK totals in Table 2, we arrive at the following characterization of
cluster profiles from a compositional perspective. In cluster I, the first principal component
accounts for more than 80% of the total log-ratio variance, reflecting the progressing path
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of the financial and sovereign debt crises towards a truly systemic dimension across the Eu-
rozone. At the same time, the (closed) geometric means of the SRISK share associated with
Germany, the Netherlands, Belgium, and Ireland assume their maximal values, indicating
a significant contribution from Northern Europe to SRISK compositions in the immediate
aftermath of the GFC. In cluster II, the SRISK proportions of Portugal and Greece reach their
maxima, and remarkable growth is also observed for Spain and Austria. These elements
signal a progressive displacement of systemic imbalances towards different areas of the
Eurozone, concomitant with a sharp rise in the total SRISK and persistent commonality
in the compositional variation. In cluster III, the average share of France is maximal and
the SRISK parts associated with Germany, Portugal, Austria, the Netherlands, Belgium,
and Greece persist above the corresponding full-series averages. However, compared to
the previous phase, both the total SRISK and the percentage variance explained by PC1
appear considerably lower. Indeed, as shown in Table 3, a number of countries begin to
display a gradual decrease in their SRISK contributions, unraveling some discrepancies
among individual EU members along the recovery path from the SDC. Clusters IV and V
exhibit an important shift in the CoDa center towards Southern EU countries (particularly
Italy, Spain, and Greece, but also France and Austria) and Ireland. In cluster IV, this shift
appears a likely consequence of the Italian banking crisis and the post-Brexit scenario,
resulting in renewed concern about the future of the Eurozone and increased volatility
in financial markets. In cluster V, the redistribution of the SRISK share possibly reflects
the vulnerability of Southern Europe to the severe consequences of COVID-19, the rise
in inflation, and the shock to energy prices following the Russian invasion of Ukraine.
Interestingly, these events triggered the return of the total SRISK to above its GFC average
level but did not induce a corresponding increase in commonality in the compositional
variation; in cluster V, in particular, the proportion of the total log-ratio variance associated
with the first eigenvalue drops below 50%, and three principal components are required to
capture the same proportion of variance explained by PC1 in cluster I.

4.3. Weighted Geographical Clustering

Based on the set of differential weights reported in Table 2 and the Ward clustering pro-
cedure for parts described in Section 3.3, we performed a weighted geographical clustering
of the SRISK compositions in the transposed data table. The corresponding CoDa dendro-
gram, illustrated in Figure 5, shows a hierarchical grouping structure in which the strongest
similarity is found in a cluster of countries from continental Europe (Austria, Belgium, the
Netherlands, and Germany) plus Portugal; a second and distinct SRISK profile is associated
with a smaller group of Euro-Mediterranean countries (France, Greece, and Italy). Finally,
Ireland and Spain exhibit country-specific behaviors, with larger dissimilarities in their
relative SRISK patterns compared to the rest of the Eurozone.

In order to investigate the links between chronological and geographical CoDa clus-
tering results, we simplified the multivariate structure of the SRISK compositions by
amalgamating (i.e., merging by summation) some parts in accordance with the partitioning
suggested by the dendrogram in Figure 5 (Greenacre 2020). In particular, we proposed a
three-part amalgamation with the following:

a1 = DE + PT + AT + NL + BE (continental Europe and Portugal),

a2 = FR + EL + IT (Euro-Mediterranean component),

a3 = ES + IE (high-volatility component).

As shown in Table 4, the newly formed composition, C[a1, a2, a3], has center coordinates that
reflect the overall prevalence of the Euro-Mediterranean component (57.72%), followed by
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continental Europe and Portugal (33.13%) and, with a much smaller proportion, by the
high-volatility component including Ireland and Spain (9.15%).

Figure 5. Weighted geographical clustering of SRISK compositions. Country codes: AT (Austria),
BE (Belgium), DE (Germany), EL (Greece), ES (Spain), FR (France), IE (Ireland), IT (Italy), NL
(Netherlands), and PT (Portugal).

Table 4. Compositional profiles of geographical SRISK amalgamations, C[a1, a2, a3], based on their
closed geometric means (center coordinates). The five-cluster segmentation corresponds to the
constrained chronological clustering solution described in Section 4.2.

a1 a2 a3

Cluster I 0.4332 0.5100 0.0568
Cluster II 0.3640 0.5344 0.1017
Cluster III 0.3629 0.5929 0.0443
Cluster IV 0.2844 0.5927 0.1229
Cluster V 0.2554 0.5945 0.1501

Full series 0.3313 0.5772 0.0915

Taking a closer look into the time dynamics of these CoDa centers along the chrono-
logical clusters obtained in Section 4.2, we immediately detect three distinct patterns of
evolution. The (closed) geometric means of a1 and a2 show opposite trends, as the reduc-
tion in the SRISK proportion of continental Europe and Portugal progresses in parallel
with a consistent increase in the relative share of the Euro-Mediterranean part. The highly
volatile component a3 exhibits peculiar dynamics, evolving from a center coordinate of
5.68% in cluster I to a maximum of 15.01% in cluster V, with considerable variation during
intermediate time segments.

As a robustness check, we repeated both the chronological and geographical cluster-
ings without two outliers identified with the Mahalanobis distance and corresponding to
March 2015 and January 2018. The turning points for the five chronological clusters and
the country classification into three clusters remained unaltered.

5. Discussion
This article proposed a new framework for tackling the evolution of systemic risk in the

Eurozone as a compositional time series with multiple parts, corresponding to the relative
SRISK contributions of different constituent members. In CoDa analysis, “individuals”
(here, the single member states) were not considered independently but parts of a “whole”
(the Eurozone financial system), so the focus was on relative information (percentage
SRISK shares) rather than absolute measures expressed in monetary units. This approach
is inherently consistent with the global nature of systemic risk, which arises from the
combination of multiple interrelated sources. Compared to Porro (2022) and Fiori and
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Porro (2023), which are—to the best of our knowledge—the only articles that have applied
CoDa analysis to systemic risk so far, the novelty of the present study consists in proposing
a compositional time series classification that not only detects groups of similarly behaved
countries but also identifies turning points in the SRISK distribution over time.

Based on adjacency-constrained Ward clustering and adapting the CONISS algorithm
of Grimm (1987) to a compositional time series with weighted parts, we indeed identified
some important trajectories and shifts in the compositions of systemic risk in the EU.
To control for possible distortion effects associated with extreme variation in one or few
components (e.g., Ireland), we preliminarily introduced a system of differential weights
that calibrated the influence of low-proportion/high-dispersion parts on the classification
results. This approach, recommended in recent research of the compositional classification
of financial distress profiles (Dao et al. 2024; Jofre-Campuzano and Coenders 2022), yielded
a well-balanced decomposition of the compositional time series variance (Table 2), in which
Ireland and Spain appeared as the main sources of compositional fluctuation, as opposed
to much lower contributions from Greece and Portugal. These findings are rather new
and different from the existing literature as they go beyond the traditional view of Greece–
Ireland–Italy–Portugal–Spain (GIIPS countries) as a unified group of highly vulnerable
entities and suggest distinct mechanisms in their relative SRISK trajectories. The weighting
structure introduced in this paper additionally allowed the inclusion of smaller countries
that were not analyzed in Fiori and Porro (2023). Based on the mean country contributions
to the SRISK of the Eurozone, the differential weighting scheme shown in Table 2 assigns
a higher weight to France (0.4117) compared to Germany (0.1840). Indeed, the French
financial system has a relatively high risk concentration in few key institutions which have
led market capital shortfall measures, both in absolute EUR amounts and relative to the
country’s GDP (Acharya et al. 2014; Engle et al. 2014). On the other hand, the German
financial system is more diversified and includes a non-negligible fraction of unlisted
banks, for which market-based measures of systemic risk cannot be computed (Engle
2018). Furthermore, following the outbreak of the SDC, German banks restructured their
sovereign bond portfolios, reducing the exposure to peripheral Eurozone debt and, as a
result, lowering their systemic risk (Buch et al. 2016).

The outcome of our weighted CONISS procedure sheds further light on the SRISK
trajectories, indicating a structured periodization of the compositional time series into
five time segments (chronological clusters) which are clearly recognizable from the CoDa
dendrogram in Figure 2. Interestingly, the turning points that mark the separation between
consecutive clusters have meaningful intersections with the database of financial crises
developed by the European Systemic Risk Board (Lo Duca et al. 2017), as well as with
the alternating sequence of stress events and supervisory responses from EU institutions
presented by Kok et al. (2022).

A peculiar contribution of chronological CoDa clustering relates to the characterization
of compositional profiles associated with the various sub-periods (Table 3). While in the
aftermath of the GFC and the initial phase of the SDC (cluster I) the relative distribution of
SRISK share is mainly centered on Northern Europe, in the last periods extending from
February 2016 to November 2022 (clusters IV and V), the compositional center considerably
shifts towards the Euro-Mediterranean region. This change progressively matures in inter-
mediate clusters, following a sequence of peaks and troughs in the highly volatile SRISK
share of countries like Spain, Ireland, and—to a lesser extent—Greece, in combination
with a neatly decreasing trend for Germany, a notable growth for Italy, and a permanently
relevant contribution for France. The multivariate nature of CoDa methods has the merit of
capturing the complex combination of concurrent elements that determined the displace-
ment of systemic risk from core to peripheral EU countries between 2009 and 2022 and
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summarizing it at a glance. Our work thus supports, unifies, and extends a number of
important findings that have been characterized separately in previous research, including,
in particular, the existence of regional asymmetries in the EU’s response to the GFC-SDC
(Shambaugh 2012), a notable increase in the systemic influence of Italian and Spanish banks
starting from late 2011 (Black et al. 2016), a progressive improvement in the situation in
Germany after the initial susceptibility to spillovers from the US, and a somehow strong
role of Ireland as a financial shock transmitter (MacDonald et al. 2015). Additionally, empir-
ical measures of commonality derived from weighted CoDa PCA (Figure 4) show that the
core–periphery displacement of systemic risk compositions in the EU was accompanied
by a consistent decline in the proportion of the total log-ratio variance explained by the
first principal component (PC1), which dropped from over 80% in cluster I (financial and
sovereign debt crises) to less than 50% in cluster V (during and after COVID-19, until
November 2022). Combined with the results of chronological CoDa clustering, these find-
ings suggest that the core and peripheral EU countries have become less interdependent in
recent years, and the stress conditions following COVID-19 and the war in Ukraine hit the
southern Euro area stronger than the northern area. In particular, the lower importance of
PC1 reflects a progressive increase in the heterogeneity of the SRISK compositions, which
may (in Clusters III and IV) or may not (in Cluster V) be accompanied by a decline in
the magnitude of the average systemic risk measure (Table 3). This finding confirms the
importance of monitoring the fragmentation of interbank and financial markets in the
Eurozone, following the consequences of the SDC (see also Betz et al. 2016).

The above interpretations appear to be confirmed by the results of weighted geograph-
ical CoDa clustering. Based on the CoDa dendrogram in Figure 5, we are able to detect a
grouping structure between two clearly identifiable subsets of parts: the former is centered
in the Euro-Mediterranean region (including France, Italy, and Greece), whose aggregate
SRISK contribution steadily increased post-GFC; the latter, including Portugal and the
continental EU (Austria, Belgium, Germany, and the Netherlands), exhibits an opposite
trend of consistent decline in its systemic relevance over time. Interestingly, the similarity
between Portugal and the continental EU in the recovery path from the GFC-SDC has
not received much attention in the literature, with a notable exception in a recent study
by Alves et al. (2021) who documented the exit of Portugal from the “perfect storm” of
2010 in light of the key role played by the central bank during the liquidity crisis. Ireland
and Spain are somehow excluded from the grouping structure visible in Figure 5, as they
seem to have contributed and reacted to the spread of financial stress with country-specific
behaviors characterized by a highly volatile SRISK share. Since a relative scale can give
better information than an absolute one in the comparison of large and small proportions
(Pawlowsky-Glahn et al. 2015), CoDa methods appear to be particularly effective in detect-
ing not only the recovery paths but also the instability threats associated with larger and
smaller countries in various EU regions.

The results of our weighted CoDa clustering for the SRISK compositions should be in-
terpreted within the context of the vast literature on systemic risk, which has identified and
extensively explored a variety of channels behind contagion mechanisms in the EU. It is im-
portant to remember that systemic risk can propagate through multilayer networks, which
depend on sovereign, banking, and equity sectors’ risk spillovers among countries (Foglia
et al. 2023); macro-uncertainty and financial distress also play different roles (Cipollini and
Mikaliunaite 2020). In particular, the time and spatial structure of our CoDa clusters is
coherent with Cipollini and Mikaliunaite’s (2020) finding that connectedness between core
and periphery EU countries has diminished since the peak of the SDC, with an increasing
role played by peripheral countries. We also observe that the turning points highlighted
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in Figure 2 are quite aligned with the sequence of peaks and troughs in connectedness
measures for the sovereign and banking networks presented by Foglia et al. (2023).

A limitation of standard CoDa analysis is that, by focusing on its distribution, it
ignores the total SRISK. As recommended by Ferrer-Rosell and Coenders (2018), in this
article, we added total risk as an external variable and related it to the clustering in Table 3.
In this manner, clusters were characterized with their overall risk levels besides the risk
share distribution. This approach revealed an interesting parallel between compositional
cluster centers and total SRISK information, shedding light on the reasons why “this time
was different”, as Borri and Di Giorgio (2022) observed in their comparison of the GFC
to the recent COVID-19 shock in Europe. Indeed, the total SRISK was highest both at the
beginning and the end of the period considered, but the compositional centers of gravity
were markedly different. In relation to these aspects, an interesting question for further
research concerns the use of compositional predictors in addition to common indicators
to forecast the future dynamics of systemic risk. This question could be addressed with
compositional regression and other prediction methods, which have been successfully
employed in multiple contexts (see, e.g., Carreras-Simó and Coenders 2021).

Overall, our findings indicate that the composition of systemic risk has considerably
evolved in time and space since the failure of Lehman Brothers plunged the global financial
system into meltdown. The compositional perspective adopted in our work underscores
the importance of continuously monitoring not only the accumulation path of the total
SRISK in the Eurozone but also, and not less importantly, the relative contribution of each
country in proportion to the contributions of other participants to the financial system.
This knowledge is ultimately relevant to the broader scope of macro-prudential policies
(see, e.g., Nkwaira and Van der Poll 2023, for an up-to-date discussion, also in relation
to global challenges posed by climate-related risks), as these policies are designed with
a global perspective to prevent an excessive build-up of total risk in the system but are
implemented at the level of individual contributors to ensure that the regulatory burden is
commensurate with the systemic threats posed by specific risk sources.
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