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Abstract: To address a key issue in functional time series analysis on testing the randomness
of an observed series, we propose an IID test for functional time series by generalizing
the Brock–Dechert–Scheinkman (BDS) test, which is commonly used for testing nonlinear
independence. Similarly to the BDS test, the proposed functional BDS test can be used to
evaluate the suitability of prediction models as a model specification test and to detect
nonlinear structures as a nonlinearity test. We establish asymptotic results for the test
statistic of the proposed test in a generic separate Hilbert space and show that it enjoys the
same asymptotic properties as those for the univariate case. To address the practical issue
of selecting hyperparameters, we provide the recommended range of the hyperparameters.
Using empirical data on the VIX index, empirical studies are conducted that feature the
applications of the proposed test to evaluate the adequacy of the fAR(1) and fGARCH(1, 1)
models in fitting the daily curves of cumulative intraday returns (CIDR) of the index.
The results reveal that the proposed test remedies some shortcomings of the existing
independence test. Specifically, the proposed test can detect nonlinear temporal structures,
while the existing test can only detect linear structures.

Keywords: BDS test; functional GARCH model; functional autoregressive model;
independence test; VIX index

1. Introduction
Functional time series analysis combines functional data analysis with time series

analysis. Similarly to univariate and multivariate time series, a temporal dependence
structure exists in functional observations, which manifest themselves in a graphical form
of curves, images, or shapes. Typically, functional time series can be classified into two
main categories. Specifically, the first one segments a univariate time series into (sliced)
functional time series. For example, Rice et al. (2023) considered intraday volatility to form

functional time series
[
X1(u),X2(u), . . . ,XN(u)

]
defined for a continuum u ∈ [u1, up]. The

other category is when the continuum is not a time variable, such as age (see, e.g., Shang
et al. 2022) or wavelength in spectroscopy (see, e.g., Shang et al. 2022).

Over the past two decades or so, there have been rapid developments in functional
time series analysis. An important branch of such developments is to extend the main-
stream models and analytical tools in univariate time series to functional cases (see, e.g.,
Kokoszka and Reimherr 2017). To name a few, Kokoszka et al. (2017) and Mestre et al. (2021)
proposed a functional autocorrelation function (fACF) to quantify linear serial correlation
in a functional time series. Huang and Shang (2023) proposed a nonlinear fACF to measure
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nonlinear dependence in a functional time series. Bosq (1991) extended the autoregressive
(AR) model to the functional case, referred to as the fAR model. Since then, a score of
functional time series models have been extended from the fAR model. Some extended
models include, for example, the autoregressive Hilbertian with exogenous variables
model (ARHX) (Damon and Guillas 2002), the Hilbert moving average model (Turbillon
et al. 2007), the functional autoregressive moving average (fARMA) model (Klepsch et al.
2017), the seasonal functional autoregressive model (Zamani et al. 2022), and the seasonal
autoregressive moving average Hilbertian with exogenous variables model (SARMAHX)
(González et al. 2017). For modeling conditional variance, these extensions include the
functional autoregressive conditional heteroskedasticity model (fARCH) (Hörmann et al.
2013), the functional generalized autoregressive conditional heteroskedasticity (fGARCH)
model (Aue et al. 2017), and the fGARCH-X model (Rice et al. 2023).

Functional time series analysis has a wide range of applications, including those in
financial risk management. For example, Tang and Shi (2021) applied a high-dimensional
functional time series method to forecast constituent stocks in the Dow Jones index. Shang
(2017) implemented a functional time series approach to forecast intraday S&P 500 index
returns. Shang et al. (2019a) considered the problem of dynamic updating for intraday
forecasts of the volatility index.

Despite increasing interest and research on functional time series, the existing literature
focuses on the use of measures or tools based on autocovariance and / or autocorrelation to
investigate the underlying structure of observed functional time series (Horváth et al. 2013;
Mestre et al. 2021; Zhang 2016). The independent and identically distributed (IID) test for
functional time series is rather limited, with the exception of Gabrys and Kokoszka (2007b),
García-Portugués et al. (2019), and Kim et al. (2023). These exceptions only captured
the linear temporal structure. Except for nonlinear fACF in Huang and Shang (2023), a
relatively little attention has been given to studying the nonlinear temporal structures
within the functional time series literature. Additionally, since linear structures restrict
these tools, they cannot test all possible deviations from randomness. Therefore, a robust
model specification test is required to evaluate the adequacy of functional time series
models. In a function-on-function regression, Chiou and Müller (2007) developed a set
of diagnostic tools based on residual processes. The latter are defined by subtracting
the predicted functions from the observed response functions. This residual process is
expanded into functional principal components and their scores. A randomization test
is developed based on these scores to examine whether the residual process is related to
the covariate, as an indication of lack of fit of the model. However, these diagnostic tools
cannot be extended to functional time series due to temporal dependence.

In this paper, we extend the BDS test of Brock et al. (1987) to a functional time se-
ries. As in the univariate case, the proposed test can be used as an IID test on estimated
residuals to evaluate the adequacy of the fitted model and as a nonlinearity test on resid-
uals of functional time series after removing linear temporal structures exhibited in the
investigated data.

The BDS test proposed by Brock et al. (1996) is the most widely used nonlinearity test
and model specification test in univariate time series analysis. In empirical studies, the BDS
test is often used on financial time series residuals after fitting an ARMA or ARCH-type
model to test for the presence of chaos and nonlinearity (Lee et al. 1993; Mammadli 2017;
Small and Tse 2003). The reason behind its popularity is mainly twofold:

(1) The BDS test requires minimal assumptions and previous knowledge about the in-
vestigated data sets. When the BDS test is applied to model residuals, the asymptotic
distribution of its test statistic is independent of estimation errors under certain suf-
ficient conditions (see Chan and Tong 2001, Chapter 5). Specifically, de Lima (1996)
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showed that for linear additive models or models that can be transformed into that
form, the BDS test is nuisance parameter-free and does not require any adjustment
when applied to fitted model residuals.

(2) The BDS test tests against various forms of deviation from randomness. While the
null hypothesis of the BDS test is that the investigated time series is generated by
an IID process, its alternative hypothesis is not specified. It may be thought of as
a portmanteau test. This implies that the BDS test can detect any non-randomness
exhibited in the investigated time series. Additionally, a fast algorithm exists for
computing the BDS test statistics, which ensures the BDS test’s easy and speedy appli-
cation on empirical applications (LeBaron 1997). Also, the BDS statistic asymptotic
distribution theory does not require higher-order moments to exist. This property is
especially useful in analyzing financial time series since many financial time series
exhibit heavy-tailed distributions whose higher-order moments may not exist.

In the recent literature, Kim et al. (2003) compared the conventional nonparametric
tests and the BDS test for residual analysis. They found that the BDS test is more reasonable
than the conventional nonparametric tests. Caporale et al. (2005) examined the use of
the BDS test when applied to the logarithm of the squared standardized residuals of an
estimated GARCH(1,1) model as a test for the suitability of this specification. Extending
from Brock et al. (1996), Kočenda (2001) removed the limitation of having to arbitrarily
select a proximity parameter by integrating across the correlation integral. Luo et al. (2020)
proposed a modified BDS test by removing some terms from the correlation integral, and
this addresses the weakness of overly rejecting the null hypothesis in the original BDS test.
Escot et al. (2023) recursively applied the BDS test to detect structural changes in financial
time series.

The BDS test has its own weaknesses. Luo et al. (2020) contained a revision about some
of the known problems of this type of test; among others, the sensitivity with respect to the
choice of tuning parameters, low convergence to asymptotic normality, and over-rejection
of the null hypothesis.

The rest of this paper is structured as follows. Section 2 provides the specification
of the functional BDS test. In Appendix B, we provide detailed proof of the asymp-
totic distribution of the test statistics of the functional BDS test. In Section 3, we present
Monte-Carlo experiments on the IID functional time series and simulated fGARCH(1,1)
functional time series to provide the recommended dimension and distance hyperparame-
ters range. In Section 4, the functional BDS test is used to test the adequacy of the fAR(1)
and fGARCH(1, 1) models on the fitted residuals of daily curves of intraday VIX index
returns. Conclusions are given in Section 5, along with some ideas on how the methodology
presented here can be further extended.

2. BDS Test for Functional Time Series
The BDS test uses “correlation integral”, a popular measure in chaotic time series

analysis. According to Packard et al. (1980) and Takens (1981), the method of delays can
embed a scalar time series {xi : i = 1, 2, ..., N} into a m-dimensional space as follows:

x⃗i = (xi, xi+1, ..., xi+m−1), x⃗i ∈ Rm. (1)

Accordingly, x⃗i is called m-history of xi. Grassberger and Procaccia (1983) proposed corre-
lation integral as a measure of the fractal dimension of deterministic data since it records
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the frequency with which temporal patterns are repeated. The correlation integral at the
embedding dimension m is given by

C(m, N, r) =
2

M(M − 1) ∑
1≤i<j≤M

Θ(r − ∥x⃗i − x⃗j∥), r > 0 (2)

Θ(a) = 0, if a ≤ 0 (3)

Θ(a) = 1, if a > 0 (4)

where N is the size of the data sets, M = N − m + 1 is the number of embedded points in
m-dimensional space, r is the distance used for testing the proximity of the data points,
and ∥ · ∥ denotes the sup-norm.1

In essence, C(m, N, r) measures the fraction of the pairs of points x⃗i, i = 1, 2, . . . , M,
the sup-norm separation of which is less than r.

Brock (1987) showed that under the null hypothesis {xi : i = 1, 2, ..., N} are IID with a
non-degenerated distribution function F(),

C(m, r) := lim
N→∞

C(m, N, r) (5)

C(m, r) → Cm(1, r) with probability 1. (6)

According to Brock et al. (1996), the BDS statistic for m > 1 is defined as

BDS(m, M, r) =
√

N
σ

[C(m, N, r)− Cm(1, r)] (7)

where M = N − m + 1,

σ2 = 4

(
Km + 2

m−1

∑
j=1

Km−jC2j + (m − 1)2C2m − m2KC2m−2

)
, (8)

C =
∫
[F(z+ r)− F(z− r)]dF(z) and K =

∫
[F(z+ r)− F(z− r)]2dF(z). Note that C(1, N, r)

is a consistent estimate of C, and K can be consistently estimated by

6
M(M − 1)(M − 2) ∑

1<t<s<u<M
Θ(r − ∥x⃗t − x⃗s∥)Θ(r − ∥x⃗s − x⃗u∥). (9)

Under the IID hypothesis, BDS(m, M, r) has a limiting standard normal distribution as
M → ∞.

The above specification of the BDS test is for scalar time series. When the object is a
functional time series, one needs to adjust the computation of sup-norm separation of the
m-histories in (2) and (9).

Given a functional time series X (u) = {Xt(u); u ∈ [u1, up], t = 1, 2, . . . , N}, the
m-history of Xi(u) is constructed by its m neighbouring observations, namely

−−−→
Xi(u) = [Xi(u),Xi+1(u), ...,Xi+m−1(u)]. (10)

The sup-norm of two sets of m functions can be measured by taking the maximum distance
between the corresponding curves. Specifically, if we use L2 norm as the distance measure
between two curves,

∥
−−−→
Xi(u)−

−−−→
Xj(u)∥ = max(∥Xi(u)−Xj(u)∥2, . . . , ∥Xi+m−1(u)−Xj+m−1(u)∥2). (11)
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Since we adjust the specification of the BDS test statistic to be adaptive to the functional
case, to determine the critical value of the BDS test after the adjustment, one needs to derive
its asymptotic distribution under the null hypothesis. In Appendix B, we prove that the
asymptotic normality for the univariate BSD test statistic is also valid for the functional case.
Indeed, the asymptotic normality result presented in Theorem 1 of Appendix B is versatile.
It holds for any norm || · ||H on a separable Hilbert space H, which is more general than
the L2-norm.

The L2 norm is not the only distance measure of two functions. Other common
choices include L1 norm and L∞ norm. All of them, including other norms, can be used for
computing the sup-norm of m-histories of functional time series. However, the choice for
the distance measure determines the recommended range for the distance hyperparameter
r as well as the speed of convergence of the test statistic and the power of the test. In
Section 3, we present power and size experiments on random and structured functional
time series when L1, L2 and L∞ are selected as the distance measure inside the sup-norms.

3. Monte-Carlo Simulation Study
We conduct Monte-Carlo experiments on simulated IID and structured functional

time series to provide the recommended range of hyperparameters of the functional BDS
test, namely m, r, and the preferred norms inside the sup-norms.

We use three metrics to evaluate the selection of the hyperparameters and the norms:
(1) the resemblance of normality of the test statistics on the IID process; (2) the size of the
test at 1%, 5% and 10% nominal levels; and (3) the power of rejecting H0 on a structured
process. To compare the performance of the functional BDS test with the existing method,
the same power experiment is also conducted on the GK independence test proposed by
Gabrys and Kokoszka (2007b), a commonly used independence test in the functional time
series domain.

For the resemblance of normality, we simulated 200 paths of 500 IID functional
time series and computed the BDS test statistic on each path with m = (2, 3, . . . , 10) and
r = (0.25 s.d., 0.5 s.d. . . . , 2 s.d.), where s.d. denotes the standard deviation of the residual
process. Computationally, the standard deviation of the residual process can be computed
by the sd.fts function in the ftsa package (Hyndman and Shang 2024). Table 1 provides the
p-value of the Kolmogorov–Smirnov (KS) test for each combination of m and r when L2 is
selected as the norm inside the sup-norms. Since different types of norm focus on different
error loss functions, the respective tables with L1 and L∞ being selected as the norms inside
the sup-norms are provided in Table A1 in Appendix A.

The KS test examines against the null hypothesis that the computed functional BDS
test statistic is from a standard normal distribution. A p-value less than 0.025 (highlighted
in bold) indicates the rejection of H0, which means the generated BDS test statistics cannot
be assumed to follow a standard normal distribution. On the contrary, the higher the
p-value is, the closer the BDS test statistics are to a standard normal distribution.

From the results in Tables 1 and A1, we can see that the functional BDS test with a
moderate m (2 ≤ m ≤ 7) and a sufficiently large r (r ≥ s.d.) ensures that the respective test
statistics have distributions sufficiently close to a standard normal distribution under the
null hypothesis. The (L1, L2, L∞) metrics are different ways of quantifying distances. For
example, from the perspective of statistical estimation, the L1-norm corresponds to the least
absolute deviation and gives an least-absolute-deviation estimator if it is used as a criterion
for estimation, while the L2-norm corresponds to the least square deviation and gives a
least-square estimator if it is used as a criterion for estimation. The L∞-norm corresponds
to a maximum deviation and gives rise to a (robust) minimax estimator if it is used as a
criterion for estimation. Based on the data sets we used, it is found that the different criteria
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do not influence the calculation of p-value shown in Table 1 in the main manuscript and
Table A1 in Appendix A. However, at an intuitive level, it seems that the L∞-norm may
give rise to the most conservative result among the three criteria considered as far as the
detection of nonlinear patterns in different types of functional time series is concerned.
Indeed, the theoretical results, particularly the asymptotic results, in our paper apply to a
general norm on a separable Hilbert space. It is flexible to accommodate different criteria
and facilities for the study of the impacts of the choices of different norms on the detection
of nonlinearity in different classes of functional time series models.

Table 1. The p-value of the KS test on functional BDS test statistics with L2 norm computed on
200 paths of 500 simulated IID functional time series. A p-value less than 0.025 is highlighted in
bold, indicating the generated BDS test statistics cannot be assumed to follow a standard normal
distribution at the 5% significance.

m
r 2 3 4 5 6 7 8 9 10

0.25 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 s.d. 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.75 s.d. 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.00

s.d. 0.84 0.63 0.06 0.00 0.26 0.01 0.00 0.00 0.00
1.25 s.d. 0.69 0.52 0.19 0.88 0.10 0.03 0.01 0.00 0.02
1.5 s.d. 0.56 0.44 0.38 0.03 0.00 0.23 0.60 0.03 0.94
1.75 s.d. 0.34 0.37 0.33 0.14 0.19 0.22 0.07 0.06 0.06
2 s.d. 0.27 0.00 0.29 0.93 0.01 0.33 0.52 0.02 0.02

To examine the size of the test, we compute the probability of falsely rejecting the null
hypothesis using the same simulated IID functional time series in the normality resemblance
experiments. We conduct the size experiments with a nominal test level at 1%, 5%, and 10%
significance levels. Table 2 reports the size of the test with L2 norm at a nominal level of
1% when a different combination of the hyperparameters m and r is selected. The results
of the size experiments at the nominal levels of 5% and 10% will be provided in Table A2
in Appendix A. We highlight the cells in bold when the actual sizes of the test exceed the
nominal level by 3% or more. The results from the size experiments are consistent with
those of the normality resemblance experiments. From Table 2, a moderate m (2 ≤ m ≤ 7)
and a sufficiently large r (r ≥ s.d.) ensure an appropriate size of the functional BDS test at
the 1% nominal level. However, the results at the nominal levels of 5% and 10% presented
in Table A2 appear less conclusive.

Table 2. The size of the functional BDS test with L2 norm at 1% nominal level computed on 200 paths
of 500 simulated IID functional time series. The cells with size of the test exceeding the nominal level
by 3% are highlighted in bold.

m
r 2 3 4 5 6 7 8 9 10

0.25 s.d. 59% 100% 100% 100% 62% 8% 1% 0% 0%
0.5 s.d. 10% 23% 51% 94% 100% 88% 18% 1% 0%
0.75 s.d. 2% 3% 6% 13% 24% 47% 96% 56% 5%

s.d. 2% 4% 1% 3% 5% 4% 11% 18% 26%
1.25 s.d. 1% 2% 3% 4% 3% 4% 2% 3% 0%
1.5 s.d. 2% 1% 0% 2% 1% 2% 1% 1% 2%
1.75 s.d. 1% 2% 1% 1% 1% 2% 2% 2% 3%
2 s.d. 1% 3% 2% 2% 1% 2% 3% 1% 1%
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For the power test, we simulated 200 paths of an fGARCH(1, 1) process proposed
by Aue et al. (2017). In each path, we generate 500 observations, and each functional
observation is formed by 100 equal-spaced points within (0,1). A sequence of random
functions (Xt : t ∈ Z) is called a functional GARCH process of order (1,1), abbreviated as
fGARCH(1, 1), if it satisfies the equations

Xt = σtεt, (12)

σ2
t = δ + αX 2

t−1 + βσ2
t−1, (13)

where δ is a non-negative function, the operators α and β map non-negative functions to
non-negative functions, and the innovations εt are iid random functions. Our simulated
fGARCH processes inherit the format of the simulated fGARCH process in Aue et al. (2017).
We set

δ(u) = 0.01, u ∈ [0, 1], (14)

and the integral operators α and β to be

α(u, ν) = β(u, ν) = Cu(1 − u)ν(1 − ν), u, ν ∈ [0, 1]. (15)

where C is a constant. The innovations (εt : t ∈ Z) are defined as

εt(ν) =

√
ln 2

2200ν
Bt

(
2400ν

ln 2

)
, u ∈ [0, 1], (16)

where (Bt : t ∈ Z) are IID standard Brownian motions. We specifically choose a small
constant C = 6 in (15), so the generated process has relatively weak temporal structures.

After simulating 200 paths of the fGARCH(1, 1) process, we compute the functional
BDS test statistic on each simulated functional time series. Table 3 presents the probability
the functional BDS test successfully rejects the IID hypothesis on a structured process when
L2 is selected as the norm. Table A3 in Appendix A provides the respective tables with L1

and L∞. A value of 100% indicates that the BDS test made correct inferences at all simulated
paths, whereas a value less than 100% suggests it failed to distinguish a structured process
from a random one at certain paths. The same statistics of the power experiment on GK
test is provided in Table 4. The GK independence test requires two hyperparameters, p and
H, since it is based on the lagged cross-covariances of the projected principal components
of the functional time series. The hyperparameter p represents the number of retained
principal components in the dimension reduction step, and H denotes the maximum lagged
cross-covariances considered in computing the test statistics.

Table 3. The successful rejection rate of the functional BDS test on 200 paths of the simulated
fGARCH(1, 1) process of 500 observations with L2 being used as the norm inside the sup-norms and
different choices of m and r.

m
r 2 3 4 5 6 7 8 9 10

0.25 s.d. 77% 100% 73% 3% 0% 0% 0% 0% 0%
0.5 s.d. 98% 100% 96% 91% 86% 77% 68% 87% 91%
0.75 s.d. 96% 97% 92% 92% 92% 87% 77% 76% 69%

s.d. 92% 89% 87% 91% 77% 79% 72% 72% 67%
1.25 s.d. 83% 87% 87% 80% 74% 76% 73% 75% 64%
1.5 s.d. 83% 80% 78% 79% 76% 74% 64% 62% 58%
1.75 s.d. 71% 73% 74% 75% 66% 61% 63% 54% 57%
2 s.d. 64% 63% 62% 65% 66% 60% 62% 59% 68%
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Table 4. The successful rejection rate of the GK test on 200 paths of the simulated fGARCH(1, 1)
process of 500 observations with different choices of H and p.

H p = 3 p = 4 p = 5 p = 8 p = 10

1 10% 9% 7% 5% 6%
10 5% 5% 7% 4% 5%

In Tables 3 and A3, the results of the power experiments indicate the BDS test attains
the highest successful rejection rate when m is between 2 and 7 and r is between 0.5 s.d. and
1.5 s.d. Additionally, the functional BDS test demonstrates clear superiorities compared to
the GK test in identifying temporal structures, especially when the temporal dependence is
nonlinear.

For the robustness experiments, we randomly replaced 1% of the simulated IID
functional time series to have a distinctive higher mean than the rest of the observations
and then repeated the normality resemblance experiments. Table A4 presents the p-values
of the KS test for L1, L2, and L∞ metrics. The results showed that including random outliers
does not impair the convergence to normality for the functional BDS test when L1 and
L2 are used as the norm inside the sup-norms. However, when L∞ is used inside the
sup-norms, the test is significantly affected by the outliers. The presence of outliers makes
the generated test statistic fail the KS test for most of the combinations of m and r when L∞

is chosen as the norm inside the sup-norm.
Lastly, we performed an experiment to guide the preferred length of the functional

time series so that the BDS test has satisfactory performance. We repeat the normality
resemblance experiment and the power test with m = 3 and r = s.d. where the selected
m and r are within the recommended range as indicated by our previous normality re-
semblance experiments and power test. The simulated functional time series length is
100, 250, 500, 750, or 1000. The result of the normality resemblance experiment is presented
in Table 5, and the power test result is given in Table 6. The experiment indicates that with
an appropriate selection of m and r, the functional BDS test has satisfactory performance
for functional time series with a length greater than 250.

Table 5. The KS test p-value of the functional BDS test statistic on IID functional time series with
various lengths. A p-value less than 0.025 is highlighted in bold, indicating the generated BDS test
statistics cannot be assumed to follow a standard normal distribution at the 5% significance.

KS Test p-Value (m = 3, r = s.d.) n = 100 n = 250 n = 500 n = 750 n = 1000

L1 0.00 0.10 0.13 0.01 0.43
L2 0.00 0.50 0.43 0.81 0.81
L∞ 0.06 0.00 0.01 0.43 0.13

Table 6. The successful rejection rate of the functional BDS test on simulated fGARCH(1,1) process
with various lengths. The rejection rates that are less than 95% are highlighted in bold.

Rejection Rate (m = 3, r = s.d.) n = 100 n = 250 n = 500 n = 750 n = 1000

L1 49% 81% 99% 100% 100%
L2 50% 85% 99% 100% 100%
L∞ 61% 87% 99% 100% 100%

To conclude, to ensure the convergence of normality, appropriate size, and the power
of the test, it is recommended that the dimension hyperparameter m is in the range of 2
and 7, and the distance parameter r is recommended to be between s.d and 1.5 s.d. For the
norm inside the sup-norms, we recommend L1 and L2, as they are more robust to outliers.
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Lastly, a functional time series with more than 250 observations is recommended for the
functional BDS test to perform satisfactorily.

4. Evaluation of the Adequacy of the fAR(1) and fGARCH(1,1) Models on
VIX Tick Returns

We depict an empirical application of the functional BDS test to evaluate the adequacy
of the fAR(1) and the fGARCH(1, 1) models in fitting the daily curves of intraday VIX
(volatility) index returns. VIX is a forward-looking volatility measure of the future equity
market based on a weighted portfolio of 30-day S&P 500 Index option prices. The VIX
index is a key measure of risk for the market. It is considered a fear index in the finance
literature. Therefore, accurately predicting the VIX index is essential in risk management,
especially for hedge and pension funds. Specifically, predictions of the VIX index may
be used as a (forward-looking) risk indicator of the equity market. The information from
the predictions may be used by banks, financial institutions, and insurance companies to
evaluate portfolio’s risk and diversification, as well as to construct investment strategies.

Most existing studies that attempted to model and predict the VIX index treat it as
a discrete time series. To name a few, Konstantinidi et al. (2008) used an autoregressive
fractionally integrated moving average (ARFIMA) model, and Fernandes et al. (2014)
employed a heterogeneous AR model to predict future values of the VIX index. Recently, the
functional time series model has provided new alternatives to extract additional information
underlying the VIX dynamics and potentially provides more accurate forecasts for market
expectations about equity risk in the future (see, e.g., Shang et al. 2019a).

The data set we considered comprises the 15-second interval observations of the
VIX index from 19 March 2013 to 21 July 2017, where 15-second is the highest frequency
available for the VIX index (Chicago Board Options Exchange). Some of its derivatives
may trade at a higher frequency, but the index value is only recalculated and released on a
15-second basis. Consequently, to provide us with the most current information and the
highest level of granularity to model its evolution, we use these 15-second VIX. The VIX
index of the investigation period is plotted in Figure 1. From the figure, it can be observed
that there are several spikes or peaks of the VIX index. Specifically, the highest peak occurs
around the time point 10× 105 at which the VIX index jumps to 50%. This indicates a highly
volatile market as expected by market participants. It is worth noting that the timing of
the first and last VIX records can vary slightly on different trading days. To ensure that the
start time and end time of the daily curves of the VIX records are constant, we use linear
interpolation to fill in missing values (if any) so that the timings of the VIX indexes are the
same for every trading day. After linear interpolation, we have a total of 1095 trading days
(excluding weekends and holidays) in our investigated data set. On each trading day, VIX
indexes take from 09:31:10 to 16:15:00 of a 15-second interval, and the total constitutes 1616
points per day.

Based on the interpolated index, we transformed the non-stationary intraday VIX
index into daily curves of cumulative intraday returns (CIDR). Let Pi(tj) denote the daily
VIX value at time tj (j = 1, . . . , m) on day i (i = 1, . . . , n); CIDRs are computed by

Ri(tj) = 100 ×
[
ln Pi(tj)− ln Pi(t1)

]
, (17)

where ln(·) denotes the natural logarithm and tj−1 and tj are 15-second apart. The daily
curves of the CIDR of the VIX index are the functional time series of interest. Figure 2
plots the functional time series curves of the CIDR VIX index for different trading days.
From the plot, we can see that there are some variations in the curves for the CIDR VIX
index on different trading curves. In fact, on some trading days, the qualitative behaviors
of the curves of the CIDR VIX index are different from those on other trading days. For
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example, the curve of the CIDR VIX index on a trading day between 5 August 2015 and 12
October 2016 exhibits a U-shaped behavior. However, on most of the other trading days,
this U-shaped pattern is absent or not so obvious.
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Figure 1. Plot of 15-second VIX index from 19 March 2013 to 21 July 2017.

Figure 2. Plot of functional time series curves of CIDR VIX index from 19 March 2013 to 21 July 2017.

The candidate models we consider to fit the daily curves of the CIDR VIX index are
the fAR(1) and fGARCH(1, 1) models. We use the R package ’far’ to fit the observed
data to the fAR(1) model. The estimation procedure for fitting the fGARCH model is
described in Rice et al. (2023) via quasi-likelihood. The VIX index returns estimated from
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the fAR(1) model and the fitted σi estimated from the fGARCH(1, 1) model are plotted in
Figure 3. By eyeballing the figure, we see that the fAR(1) model captures some features of
the original functional time series of the curves of the CIDR VIX index. Furthermore, the
estimated conditional standard deviations from the fitted fGARCH(1, 1) model are strictly
increasing on each trading day. This makes intuitive sense for the intraday cumulative
returns considered.

(a) (b)

Figure 3. Plots of fitted functional time series curves of CIDR VIX index from fAR(1) model and
fitted conditional standard deviation (σ̂i) from fGARCH(1, 1) model. (a) A plot of fitted daily CIDR
VIX index curves from fAR(1) model. (b) A plot of fitted conditional standard deviation from
fGARCH(1, 1) model.

To evaluate the adequacy of the fAR(1) model, we apply the functional BDS test on the
residuals between the observed returns curves and the fitted return curves (Ri(tj)− R̂i(tj):
j = 1, . . . , τ; i = 1, . . . , n). Table 7 presents the functional BDS test statistics of the residuals
of the fAR(1) model for a variety combination of hyperparameters m and r. Since most test
statistics exceed the 1% critical value of a standard normal distribution, the functional BDS
test rejects the null hypothesis of IID residuals. In other words, the fAR(1) model cannot
capture all the structures underlying the observed daily curves of VIX returns.

Table 7. The functional BDS test statistics of fAR(1) residuals and fGARCH(1, 1) logarithm squared
standardized returns fitted to daily curves of the CIDR VIX index. * indicates the independent null
hypothesis is rejected at 5% significance, and ** indicates rejection at 1% significance.

m
Model r 2 3 4 5 6 7

fAR(1) s.d. 7.75 ** 9.15 ** 9.52 ** 10.05 ** 10.39 ** 11.11 **
1.25 s.d. 6.26 ** 7.73 ** 8.20 ** 8.57 ** 8.71 ** 9.15 **
1.5 s.d. 5.05 ** 6.67 ** 7.21 ** 7.68 ** 7.76 ** 8.13 **

fGARCH(1, 1) s.d. 1.42 2.06 * 2.77 ** 3.25 ** 3.66 ** 3.93 **
1.25 s.d. 2.32 * 2.69 ** 3.09 ** 3.21 ** 3.47 ** 3.73 **
1.5 s.d. 2.72 ** 3.13 ** 3.42 ** 3.42 ** 3.59 ** 3.75 **

Since the fGARCH(1, 1) is a multiplicative model, we use the standardized returns
(Ri/σ̂i) to evaluate its adequacy. In the univariate case, when evaluating the adequacy of
the GARCH model, if the BDS test is applied directly to the standardized returns Rt/σ̂t,
previous studies (see Brock et al. 1991) suggest that the BDS statistic needs to be adjusted
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to have the right size. Fernandes and Preumont (2012) proposed to apply the BDS test on
natural logarithms of squared standardized residuals [ln(R2

t /σ̂2
t )] so that the logarithmic

transformation casts the GARCH model into a linear additive model. Table 7 records the
functional BDS test statistics of the logarithm of the squared standardized returns. From
the table, we see that the two models, namely fAR(1) and fGARCH(1, 1), are rejected in
most cases

To compare the performance of the functional BDS test with the GK test as a model
specification test in empirical analysis, Table 8 documents the p-value of the GK inde-
pendence test for H = 1, 10 and p = 3, 4, 5, 8, 10 on the fitted residuals after fAR(1) and
standardized returns after fGARCH(1, 1). In Gabrys and Kokoszka (2007b), the authors
investigated the finite-sample performance of the GK independence test with H = 1, 3, 5
and p = 3, 4, 5 and concluded that the test power against the fAR(1) model is very good
if H = 1 is used. Since the optimal parameters of the GK test depend on the underlying
dynamic of the residuals, which is unknown in empirical studies, we also extend the GK
test with relatively larger H and p.

Table 8. The GK test p-value of fAR(1) residuals and fGARCH(1, 1) standardized returns fitted to
daily curves of the CIDR VIX index. ** indicates the independent null hypothesis is rejected at 5%
significance, and ** indicates rejection at 1% significance.

p

Model H 3 4 5 8 10

fAR(1) 1 1 1 1 0.36 1.40 × 10−5 **
10 0.70 0.58 0.29 1.01 × 10−4 ** 6.43 × 10−11 **

fGARCH(1, 1) 1 0.37 0.41 0.60 0.47 0.54
10 0.92 0.81 0.42 0.78 0.55

Comparing the inferences drawn from the functional BDS test and the GK test provides
additional insights into the dynamics of the CIDR VIX functional time series. Based on
the functional BDS test results, both the fAR(1) and fGARCH(1, 1) models are insufficient
to capture the temporal structure exhibited in the daily CIDR curves of the VIX index.
However, the GK test showed evidence of a violation of independence only for the fAR(1)
model when a larger p is selected. This indicates that the fGARCH(1, 1) model better fits the
observed curves compared to the fAR(1) model. Additionally, the seemingly contradictory
conclusions regarding the fGARCH(1, 1) residuals from the functional BDS test and the
GK test indicate a nonlinear structure exhibited in the daily curves of the CIDR VIX index.
Furthermore, the GK test results indicate that the test’s inference can vary based on the
parameters selected, whereas our functional BDS test provides consistent inferences across
different parameter selections. This reliable statistical inference forms the foundation for
modeling and forecasting VIX returns, which play a crucial role in risk management.

5. Conclusions
In this paper, we extended the BDS test to functional time series. Just like the BDS

test in the univariate case, the functional BDS test enjoys some key desired properties,
making it a plausible candidate for testing model specification and nonlinearity. Those
advantages include a minimal requirement of prior assumptions and knowledge and the
capacity to detect linear and nonlinear structures. We proved that the asymptotic normality
previously held for the test statistics under the null hypothesis in the univariate case remains
valid after extending the test statistics to the functional case. Additionally, we conducted
Monte-Carlo experiments on the functional BDS test to provide the recommended range
of its hyperparameters and data length. Outside our recommended ranges, the functional
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BDS test results can be sensitive to the choices of hyperparameters. This aligns with the
findings of the conventional BDS test. We showed that with appropriate selection of the
hyperparameters, the functional BDS test only required the data to be of length 250 to
ensure that they converge to normality and has a 100% correct rate in terms of detecting
predictability in a simulated functional time series with a relatively weak temporal structure.
Moreover, if either L1 or L2 is selected as a distance measure inside the sup-norms, the
function BDS test is also robust to outliers. The code for the functional BDS test is available
at https://github.com/Landy339/functional_BDS_test (accessed on 12 December 2024).

We illustrate the significance of our research in an empirical analysis, where we used
the functional BDS test to evaluate the adequacy of the fAR(1) model and the fGARCH(1, 1)
model in terms of fitting a functional time series to the CIDR VIX index. After fitting the
candidate models, we applied the functional BDS test to detect the remaining structures in
the residuals. The test rejects the independence null hypothesis and thus concludes that
both fAR(1) and fGARCH(1, 1) models are insufficient to capture the temporal structures
exhibited in the observed curves fully. In addition, our test showed added sensitivity in
detecting predictability, particularly for the nonlinear structure, compared to the existing
independence test in functional time series. We compared the results from the functional
BDS test with those from the GK test, an existing linear independent test in the domain of
functional time series. The results showed that our newly proposed functional BDS test
provides a remedy to the weakness of the GK test by detecting the nonlinear structure in
the fGARCH(1, 1) residuals that the GK test neglects. With the new tool, one could be
aware of the existing independence test that the fGARCH(1, 1) is an adequate model for
the observed data and overlook its nonlinear temporal structures.

The functional BDS test is the first nonlinearity test and the first model specification
test proposed in functional time series. However, the major limitation of the proposed
test is that it can only detect the remaining structures in the residuals. Unfortunately, it
cannot indicate the form of the detected structures. Consequently, if a model is deemed
insufficient, practitioners have no guidance on what models can fully capture the structures
in the observed data.

We conclude by highlighting several potentially interesting issues that may be consid-
ered by extending the results obtained in this paper. (1) We provide a range of plausible
tuning parameters, with the identification of optimal parameters for specific data sets left as
future work. (2) Although our study demonstrated that with the proper selection of norms,
the functional BDS test is robust to outliers, future research can examine its behavior on
non-stationary functional time series, which frequently arise in real-world data. (3) The
current study focused on univariate functional time series. Future work could investigate
the extension of nonlinearity tests to multivariate functional time series while accounting
for potential correlations among the variables. (4) Since our empirical analysis indicates the
existence of nonlinearity in financial functional time series, it is hoped that the proposed
test and the respective results will inspire further research into the dependence structure
of functional time series, particularly in analyzing, modeling, and forecasting nonlinear
functional time series. (5) We demonstrated the use of the BDS test via the 15-second VIX
data. We could apply the functional BDS test to other climate or biomedical data sets.

The functional BDS test proposed in this paper provides market practitioners in banks,
financial institutions, insurance companies, and regulatory bodies with a theoretically
sound and practically feasible way to detect nonlinearity in financial data and model
building relevant to risk management. Specifically, we illustrate, using empirical data on
the VIX index, how the proposed functional BDS test may be used to detect nonlinearity
in the VIX index data and model building for a (forward-looking) risk indicator. The
proposed test provides market professionals with a rigorous way to assess the suitability

https://github.com/Landy339/functional_BDS_test
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and reliability of their models in managing portfolio risk and diversification, as well as in
constructing investment strategies.
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Appendix A. Additional Monte-Carlo Simulation Results
In Table A1, we present the p-value of the KS test on the functional BDS test statistics

computed on simulated IID functional time series with L1 norm and L∞ norm being used
as the distance measure inside the sup-norms.

Table A1. The p-value of the KS test on functional BDS test statistics with L1 norm and L∞ norm
computed on 200 paths of 500 simulated IID functional time series. A p-value less than 0.025 is
highlighted in bold, indicating the generated BDS test statistics cannot be assumed to follow a
standard normal distribution at the 5% significance.

m
Metric r 2 3 4 5 6 7 8 9 10

L1 0.25 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 s.d. 0.00 0.46 0.04 0.00 0.00 0.00 0.00 0.00 0.00
s.d. 0.78 0.55 0.14 0.04 0.08 0.17 0.03 0.03 0.00

1.25 s.d. 0.89 0.19 0.94 0.26 0.00 0.03 0.00 0.00 0.00
1.5 s.d. 0.78 0.15 0.03 0.03 0.22 0.01 0.03 0.00 0.00

1.75 s.d. 0.24 0.30 0.74 0.15 0.00 0.57 0.08 0.02 0.27
2 s.d. 0.54 0.09 0.21 0.09 0.01 0.10 0.01 0.22 0.03

L∞ 0.25 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 s.d. 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 s.d. 0.10 0.19 0.29 0.01 0.00 0.00 0.00 0.00 0.00
s.d. 0.00 0.53 0.82 0.20 0.03 0.03 0.00 0.00 0.00

1.25 s.d. 0.41 0.83 0.98 0.58 0.01 0.11 0.00 0.34 0.00
1.5 s.d. 0.72 0.29 0.72 0.17 0.12 0.25 0.09 0.02 0.01

1.75 s.d. 0.86 0.03 0.53 0.40 0.22 0.02 0.35 0.11 0.00
2 s.d. 0.00 0.16 0.29 0.13 0.91 0.17 0.22 0.93 0.00

In Table A2, we present the size of the functional BDS test at 5% and 10% nominal
levels when L2 is selected as the norm.
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Table A2. The size of the functional BDS test with L2 norm at 5% and 10% nominal levels computed
on 200 paths of 500 simulated IID functional time series. The cells with size of the test exceeding the
nominal level by 3% are highlighted in bold.

Nominal m
Level r 2 3 4 5 6 7 8 9 10

5% 0.25 s.d. 71% 100% 100% 100% 97% 53% 12% 2% 0%
0.5 s.d. 19% 33% 61% 97% 100% 100% 83% 28% 3%

0.75 s.d. 7% 11% 16% 26% 38% 57% 97% 100% 70%
s.d. 3% 10% 6% 10% 10% 10% 19% 30% 43%

1.25 s.d. 6% 9% 9% 7% 6% 8% 7% 7% 13%
1.5 s.d. 4% 6% 5% 4% 3% 5% 5% 7% 4%

1.75 s.d. 5% 11% 11% 6% 5% 9% 6% 5% 9%
2 s.d. 5% 9% 7% 10% 9% 6% 9% 8% 5%

10% 0.25 s.d. 76% 100% 100% 100% 100% 84% 37% 6% 1%
0.5 s.d. 24% 41% 67% 97% 100% 100% 99% 69% 18%

0.75 s.d. 14% 19% 23% 33% 47% 61% 98% 100% 98%
s.d. 8% 14% 9% 15% 18% 18% 28% 39% 53%

1.25 s.d. 12% 13% 14% 17% 9% 14% 12% 14% 17%
1.5 s.d. 8% 12% 9% 9% 9% 10% 12% 13% 7%

1.75 s.d. 10% 18% 15% 12% 11% 14% 11% 9% 12%
2 s.d. 13% 16% 15% 18% 15% 13% 17% 16% 11%

In Table A3, we present the probability that the functional BDS test successfully rejects
the IID hypothesis on a structured process when L1 and L∞ are selected as the norms.

Table A3. The successful rejection rate of the functional BDS test on 200 paths of the simulated
fGARCH(1, 1) process of 500 observations with L1 and L∞ being used as the norm inside the sup-
norms and different choices of m and r. NA indicates the select r is too small which leads to every
term in (8) being equal to zero, hence the zero denominator in the computed BDS test statistics.

m
Metric r 2 3 4 5 6 7 8 9 10

L1 0.25 s.d. NA 74% 61% NA 59% NA 52% 1% NA
0.5 s.d. 97% 85% 80% 100% 97% 21% 0% 0% 0%

0.75 s.d. 99% 98% 97% 89% 77% 71% 71% 94% 91%
s.d. 95% 95% 91% 91% 82% 80% 74% 68% 70%

1.25 s.d. 93% 92% 90% 82% 82% 82% 68% 66% 59%
1.5 s.d. 89% 88% 84% 77% 73% 74% 71% 64% 59%

1.75 s.d. 81% 78% 81% 76% 77% 74% 69% 63% 61%
2 s.d. 82% 81% 82% 74% 72% 62% 60% 65% 57%

L∞ 0.25 s.d. NA NA NA NA NA NA NA NA NA
0.5 s.d. 100% 99% 27% 3% 0% 0% 0% 0% 0%

0.75 s.d. 97% 90% 77% 100% 95% 11% 1% 0% 0%
s.d. 100% 100% 98% 93% 88% 84% 79% 94% 77%

1.25 s.d. 100% 100% 99% 98% 99% 97% 94% 93% 86%
1.5 s.d. 100% 100% 99% 98% 98% 96% 97% 92% 91%

1.75 s.d. 99% 100% 100% 98% 97% 93% 93% 95% 91%
2 s.d. 99% 98% 99% 98% 96% 94% 94% 92% 90%
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Table A4 stores the p-value of the KS test on the functional BDS test statistics computed
on simulated IID functional time series with 1% random outliers when L1, L2, and L∞ are
used as the norm inside the sup-norms.

Table A4. The p-value of the KS test on functional BDS test statistics with L1, L2, and L∞ norms
computed on 200 paths of 500 simulated IID functional time series with 1% random outliers. A
p-value less than 0.025 is highlighted in bold, indicating that the generated BDS test statistics cannot
be assumed to follow a standard normal distribution at the 5% significance.

m
Metric r 2 3 4 5 6 7 8 9 10

L1 0.25 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 s.d. 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 s.d. 0.33 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s.d. 0.68 0.25 0.39 0.25 0.03 0.00 0.00 0.00 0.00

1.25 s.d. 0.36 0.37 0.02 0.16 0.03 0.17 0.02 0.12 0.00
1.5 s.d. 0.80 0.12 0.93 0.09 0.15 0.43 0.98 0.02 0.09

1.75 s.d. 0.40 0.70 0.76 0.16 0.85 0.21 0.49 0.42 0.01
2 s.d. 0.83 0.17 0.13 0.02 0.28 0.05 0.26 0.67 0.08

L2 0.25 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 s.d. 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 s.d. 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s.d. 0.67 0.30 0.08 0.00 0.00 0.00 0.00 0.00 0.00

1.25 s.d. 0.62 0.23 0.10 0.23 0.15 0.00 0.00 0.00 0.00
1.5 s.d. 0.57 0.95 0.07 0.15 0.35 0.05 0.00 0.11 0.00

1.75 s.d. 0.18 0.35 0.49 0.19 0.01 0.31 0.03 0.01 0.23
2 s.d. 0.01 0.16 0.16 0.03 0.02 0.19 0.33 0.26 0.01

L∞ 0.25 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 s.d. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 s.d. 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s.d. 0.71 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.25 s.d. 0.47 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.5 s.d. 0.03 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.75 s.d. 0.17 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 s.d. 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Appendix B. Asymptotic Normality for the BDS Test Statistic and Its Proof
In Section 2, we adjust the specification of the BDS test statistic to be adaptive to the

functional case. We prove that the asymptotic normality for the univariate BSD test statistic
holds for the functional case. Firstly, we shall provide some mathematical preliminaries
relevant to the asymptotic normality result. Then, the BDS test statistic is related to a
generalized U statistic with order 2. Finally, the asymptotic normality result and its proof
are presented. It is worth noting that the following proof is not restricted by any distance
measure when computing sup-norms.

Appendix B.1. Mathematical Preliminaries

The notation and definitions to be presented here follow those in Bosq (1999). Let H
be a separable Hilbert space with the inner product ⟨·, ·⟩H and the norm || · ||H . We equip
H with its Borel σ-field B(H). Since H is a linear metric space with a countable basis, it is
a topological space with a countable basis for its topology. By Proposition 3.1 of Preston
(2008), since B(H) is the Borel σ-field of H generated by Borel subsets of H, the measurable
space (H,B(H)) is countably generated. Let (Ω,F ,P) be a complete probability space.
We consider a discrete-time functional time series {Xt}t∈Z on (Ω,F ,P) with values in the
countably generated measurable space (H,B(H)), where Z is the set of integers. Note
that the condition that the state space of a stochastic process is a countably generated
measurable space was imposed in Denker and Keller (1983), in which some asymptotic
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normality results for U-statistics were presented. We shall use the asymptotic results for
U statistics to prove the asymptotic normality of the BDS test statistic here. Consequently,
we also impose the condition that {Xt}t∈Z takes on values in the countably generated
measurable space (H,B(H)). As in the univariate case of Brock et al. (1996), it is assumed
that {Xt}t∈Z is a strictly stationary stochastic process. Let µXt be a measure on (H,B(H))

which is induced by the random element Xt, (i.e., an H-valued random variable), under
the measure P. That is, for any B ∈ B(H),

µXt(B) := P(X−1
t (B)), (A1)

where X−1
t (B) := {ω ∈ Ω|Xt(ω) ∈ B} ∈ F . Note that µXt is also called an image measure

of P under the measurable map Xt : Ω → H (see, e.g., Prakasa Rao 2014).
Under the assumption that {Xt}t∈Z a strictly stationary stochastic process, the

image measure µXt is time-invariant. Therefore, we write µX for µXt . Let Xm
t :=

(Xt, Xt+1, . . . , Xt+m−1) ∈ Hm. Note that Xm
t is a generalization of the m-history in Brock

et al. (1996) from the univariate case to the functional case. When {Xt}t∈Z are independent
under the measure P, we consider the m-product to be a countably generated measurable
space (Hm,B(H)⊗m). In this case, the image measure µXm

t
of P under Xm

t on (Hm,B(H)⊗m)

is given as follows:

µXm
t
(B1 × B2 × · · · × Bm) =

m

∏
i=1

µX(Bi), (A2)

for any B1 × B2 × · · · × Bm ∈ B(H)⊗m. Since µXm
t

is time invariant, we write µXm for µXm
t

.
For each i, j = 1, 2, · · · with i < j, let Gi,j be the P-augmentation of the σ-field generated

by the set of H-valued random elements σ(Xi, Xi+1, · · · , Xj). Then, according to Volkonski
and Rozanov (1961), Grassberger and Procaccia (1983), and Brock et al. (1996), the H-valued
stochastic process {Xt}t∈Z is said to be absolutely regular if

β(k) := sup
n∈N

{
E
[

sup
{
|P(G|G1,n)− P(G)|

∣∣∣∣G ∈ Gn+k,∞

}]}
, (A3)

converges to zero as k → ∞, where N is the set of natural numbers.
For each x ∈ Hm, we consider the max-norm defined by:

||x||m,H := max
k=1,2,··· ,m

{||xi||H}, (A4)

where xi ∈ H and || · ||H is the norm on H. For the numerical implementation of the BDS
test in the functional case, we consider the L2

H(P) space (i.e., the space of square-integrable
H-valued random elements under the measure P). The notation L2

H(P) follows that in Bosq
(1999). Note that L2

H(P) is the space of H-valued random elements on (Ω,F ,P) with the
following norm:

||X||L2
H(P) :=

( ∫
Ω
||X(ω)||2HP(dω)

) 1
2

=

( ∫
H
||x||2HµX(dx)

) 1
2

. (A5)

In this case, the max-norm in (A4) becomes

||x||m,L2
H(P) := max

k=1,2,··· ,m
{||xi||L2

H(P)}, (A6)

Here, we attempt to prove the asymptotic normality results for the BDS test statistic in the
functional case for the general case of the max-norm in (A4).
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Let IA be the characteristic function of a set A. In particular, when A = [0, ϵ), its
characteristic function is, for simplicity, denoted by Iϵ, for any ϵ > 0. We now extend the
correlation integral in Grassberger and Procaccia (1983) to the case of functional time series.
Specifically, the correlation integral for the functional time series {Xt}t∈Z at embedding
dimension m is defined as follows:

Cm,n(ϵ) :=
1
(n

2)
∑

1≤s≤t≤n
Iϵ(||Xm

s − Xm
t ||m,H). (A7)

As noted in Brock et al. (1996), under the assumption that {Xt}t∈Z is a strictly stationary
stochastic process that is regular, the limit expressed as limn→∞ Cm,n(ϵ) exists, and it is
denoted by

Cm(ϵ) := lim
n→∞

Cm,n(ϵ). (A8)

In the case of the functional time series, the limit in (A8) is given by

Cm(ϵ) =
∫
Hm

∫
Hm

Iϵ(||x − y||m,H)µXm(dx)µXm(dy). (A9)

When {Xt}t∈Z is an independent process,

Iϵ(||x − y||m,H) =
m

∏
i=1

Iϵ(||xi − yi||H). (A10)

Consequently, using (A2) and (A10), (A9) becomes

Cm(ϵ) =
∫
Hm

∫
Hm

( m

∏
i=1

Iϵ(||xi − yi||H)
) m

∏
i=1

µX(dxi)
m

∏
i=1

µX(dyi) (A11)

=
m

∏
i=1

∫
H

∫
H

Iϵ(||xi − yi||H)µX(dxi)µX(dyi) = (C1(ϵ))
m. (A12)

Write C(ϵ) for C1(ϵ). Then, from (A11),

Cm(ϵ) = [C(ϵ)]m. (A13)

Appendix B.2. Generalized U Statistic with Order 2

In the sequel, some concepts of a generalized U statistic with order 2 for the functional
time series are presented. The notion of U-statistic may be dated back to Hoeffding (1948).
Here, we extend the generalized U statistic in Serfling (1980), and Brock et al. (1996) to the
case of functional time series. The expositions here follow those in Denker and Keller (1983)
and Brock et al. (1996).

Since (H,B(H)) is a countably generated measurable space, the (finite) product space
(Hm,B(H)⊗m) is also a countably generated measurable space. Let h : (Hm)2 → ℜ be a
measurable function h(x, y), for x, y ∈ Hm. The measurable function h is called a kernel for
the integral: ∫

Hm

∫
Hm

h(x, y)µXm(dx)µXm(dy), (A14)

if h is symmetric in its arguments x and y. That is,

h(x, y) = h(y, x). (A15)

Then a generalized U-statistic with order 2 is given by
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Un =
1
(n

2)
∑

0≤s≤t≤n
h(Xm

s , Xm
t ), n ≥ 2. (A16)

Note that
Iϵ(||x − y||m,H) = Iϵ(||y − x||m,H). (A17)

Then Iϵ(||x − y||m,H) is a symmetric kernel for the integral in (A9). Consequently, by
taking h(Xm

s , Xm
t ) in (A16) as Iϵ(||Xm

s − Xm
t ||m,H), the correlation integral in (A7) coincides

with (A16). Therefore, the correlation integral in (A7) is a generalized U-statistic with order
2 and symmetric kernel Iϵ(||x − y||m,H). Extending the definition in Brock et al. (1996) to
the case of functional time series, we define

K(ϵ) :=
∫
H

( ∫
H

Iϵ(||x − y||H)µX(dx)
)2

µX(dy) (A18)

=
∫
H

( ∫
H

Iϵ(||y − x||H)µX(dy)
)2

µX(dx). (A19)

The last equality follows symmetry. Then,

Var[E[Iϵ(||Xt − Xs||H)|Xs]]

= E[(E[Iϵ(||Xt − Xs||H)|Xs])
2]− (E[E[Iϵ(||Xt − Xs||H)|Xs]])

2 (A20)

= E[(E[Iϵ(||Xt − Xs||H)|Xs])
2]− (E[Iϵ(||Xt − Xs||H)])2 (A21)

=
∫
H

( ∫
H

Iϵ(||x − y||H)µX(dx)
)2

µX(dy)−
( ∫

H

∫
H

Iϵ(||x − y||H)µX(dx)µX(dy)
)2

(A22)

= K(ϵ)− [C(ϵ)]2. (A23)

Consequently,
K(ϵ) ≥ [C(ϵ)]2. (A24)

Appendix B.3. Asymptotic Normality and Its Proof

To establish the asymptotic normality results for the generalized U statistic with
order 2 in (A16), as in Brock et al. (1996), we focus on the non-degenerate case where
K(ϵ) > [C(ϵ)]2.

To simplify the notation, as in Brock et al. (1996), we write K for K(ϵ) and C for C(ϵ)
unless otherwise stated. Define σ2

m := σ2
m(ϵ) as follows:

σ2
m = 4Km − 4C2m + 8

m−1

∑
i=1

(Km−iC2i − C2m). (A25)

The following theorem gives the first asymptotic normality result, which extends
Brock et al. (1996, Theorem 2.1) to the case of functional time series.

Theorem A1. Suppose that

1. {Xt}t∈Z is a sequence of IID H-valued random elements;
2. K(ϵ) > [C(ϵ)]2.

Then the standardized generalized U statistic with order 2 defined as follows:

√
n
(

Cm,n(ϵ)− (C(ϵ))m

σm(ϵ)

)
(A26)

converges in distribution to N(0, 1), (i.e., a standard normal distribution with zero mean and unit
variance), as n → ∞, where σm(ϵ) is given by (A25).
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Proof. The proof follows from Theorem 1(c) in Denker and Keller (1983) and the proof of
Theorem 2.1 in Brock et al. (1996). Here, we consider the Hm-valued stochastic process
{Xm

t }t∈Z on the probability space (Ω,F ,P). Under Condition 1 that {Xt}t∈T are IID, Xm
s

and Xm
t are independent if |s − t| ≥ m. Then, the two σ-fields G1,n and Gn+k,∞, for k ≥ m,

must be independent. Then, for any G ∈ Gn+k,∞ with k ≥ m,

P(G|G1,n) = P(G). (A27)

Consequently, for each k ≥ m, β(k) in (A3) must be identical to zero. This implies that
{Xm

t }t∈Z is absolutely regular. Since it was assumed that {Xt}t∈Z is a strictly stationary
H-valued process, {Xm

t }t∈Z is an absolutely regular strictly stationary H-valued process.

Since β(k) < ∞, for all k ≤ m, and β(k) = 0, for all k > m, ∑∞
k=1[β(k)]

δ
2+δ < ∞, for some

δ > 0. Note that Iϵ ≤ 1. Then

E[|Iϵ(||Xm
s − Xm

t ||m,H)|2+δ] ≤ 1 < ∞. (A28)

Consequently, the conditions in Denker and Keller (1983, Theorem 1(c)) are fulfilled. This
then establishes the convergence of the standardized generalized U statistic with order 2
in (A26) in distribution to a standard normal distribution. It remains to prove that σm(ϵ) is
given by (A25). Define, for each x ∈ Hm,

h1(x) :=
∫
Hm

Iϵ(||x − y||m,H)µXm(dy)− (C(ϵ))m (A29)

=
m

∏
i=1

∫
H

Iϵ(||xi − yi||H)µX(dyi)− (C(ϵ))m. (A30)

For each i = 1, 2, · · · , m, let Xm
t (i) be the ith component of Xm

t . Under Condition 1,

E[h1(Xm
t )] := E

[ m

∏
i=1

∫
H

Iϵ(||Xm
t (i)− yi||H)µX(dyi)

]
− (C(ϵ))m (A31)

=
m

∏
i=1

E
[ ∫

H
Iϵ(||Xm

t (i)− yi||H)µX(dyi)

]
− (C(ϵ))m (A32)

=
m

∏
i=1

∫
H

∫
H

Iϵ(||xi − yi||H)µX(dxi)µX(dyi)− (C(ϵ))m (A33)

=
m

∏
i=1

C(ϵ)− (C(ϵ))m = 0. (A34)

Using the asymptotic variance from Denker and Keller (1983) and writing σ2
m for σ2

m(ϵ),

1
4

σ2
m = E[(h1(Xm

1 ))2] + 2 ∑
t>1

E[h1(Xm
1 )h1(Xm

t )]. (A35)

From (A29),

(h1(Xm
t ))

2

=

( m

∏
i=1

∫
H

Iϵ(||Xm
t (i)− yi||H)µX(dyi)− (C(ϵ))m

)2

(A36)

=

( m

∏
i=1

∫
H

Iϵ(||Xm
t (i)− yi||H)µX(dyi)

)2

− 2
( m

∏
i=1

∫
H

Iϵ(||Xm
t (i)− yi||H)µX(dyi)

)
×(C(ϵ))m + (C(ϵ))2m. (A37)
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Taking expectation in (A36) gives the following:

E[(h1(Xm
t ))2] = E

[( m

∏
i=1

∫
H

Iϵ(||Xm
t (i)− yi||H)µX(dyi)

)2]
−2E

[( m

∏
i=1

∫
H

Iϵ(||Xm
t (i)− yi||H)µX(dyi)

)]
(C(ϵ))m

+(C(ϵ))2m (A38)

=
∫
Hm

( m

∏
i=1

∫
H

Iϵ(||xi − yi||H)µX(dyi)

)2

µXm (dx)

−2
m

∏
i=1

E
[( ∫

H
Iϵ(||Xm

t (i)− yi||H)µX(dyi)

)]
(C(ϵ))m

+(C(ϵ))2m (A39)

=
m

∏
i=1

∫
H

( ∫
H

Iϵ(||xi − yi||H)µX(dyi)

)2

µX(dxi)

−2
m

∏
i=1

E
[( ∫

H
Iϵ(||Xm

t (i)− yi||H)µX(dyi)

)]
(C(ϵ))m

+(C(ϵ))2m (A40)

=
m

∏
i=1

K(ϵ)− 2
m

∏
i=1

C(ϵ)(C(ϵ))m + (C(ϵ))2m

= (K(ϵ))m − (C(ϵ))2m. (A41)

To evaluate E[h1(Xm
1 )h1(Xm

t )], two cases are considered, namely t ≤ m and t > m.
Recall that Xm

1 = (X1, X2, · · · , Xm) ∈ Hm and Xm
t = (Xt, Xt+1, · · · , Xt+m−1) ∈ Hm. Then,

for t ≤ m, the overlapping elements of Xm
1 and Xm

t are (Xt, Xt+1, · · · , Xm) ∈ Hm−t+1. The
non-overlapping elements are as follows:

(X1, X2, · · · , Xt−1) ∈ Ht−1, (A42)

(Xm+1, Xm+2, · · · , Xt+m−1) ∈ Ht−1. (A43)

Consequently, for t ≤ m,

E[h1(Xm
1 )h1(Xm

t )]

= E
[( m

∏
i=1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)− (C(ϵ))m
)

×
( t+m−1

∏
i=t

∫
H

Iϵ(||Xi − yi||H)µX(dyi)− (C(ϵ))m
)]

(A44)

= E
[( m

∏
i=1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)( t+m−1

∏
i=t

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)]
−(C(ϵ))mE

[( m

∏
i=1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)]

−(C(ϵ))mE
[( t+m−1

∏
i=t

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)]
+ (C(ϵ))2m (A45)

= E
[( t−1

∏
i=1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)( m

∏
i=t

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)2

×
( t+m−1

∏
i=m+1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)]

−(C(ϵ))m
m

∏
i=1

E
[ ∫

H
Iϵ(||Xi − yi||H)µX(dyi)

]

−(C(ϵ))m
t+m−1

∏
i=t

E
[ ∫

H
Iϵ(||Xi − yi||H)µX(dyi)

]
+ (C(ϵ))2m (A46)
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Note that

E
[ ∫

H
Iϵ(||Xi − yi||H)µX(dyi)

]
=

∫
H

∫
H

Iϵ(||xi − yi||H)µX(dyi)µX(dxi) = C(ϵ), (A47)

and that

E
[( t−1

∏
i=1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)( m

∏
i=t

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)2

×
( t+m−1

∏
i=m+1

∫
H

Iϵ(||Xi − yi||H)µX(dyi)

)]
(A48)

=
∫
Ht+m−1

( t−1

∏
i=1

∫
H

Iϵ(||xi − yi||H)µX(dyi)

) m

∏
i=t

( ∫
H

Iϵ(||xi − yi||H)µX(dyi)

)2

×
( t+m−1

∏
i=m+1

∫
H

Iϵ(||xi − yi||H)µX(dyi)

)
µXt+m−1 (dx) (A49)

=

( t−1

∏
i=1

∫
H

∫
H

Iϵ(||xi − yi||H)µX(dyi)µX(dxi)

)

×
m

∏
i=t

∫
H

( ∫
H

Iϵ(||xi − yi||H)µX(dyi)

)2

µX(dxi)

×
( t+m−1

∏
i=m+1

∫
H

∫
H

Iϵ(||xi − yi||H)µX(dyi)µX(dxi)

)
(A50)

=

( t−1

∏
i=1

C(ϵ)
)( m

∏
i=t

K(ϵ)
)( t+m−1

∏
i=m+1

C(ϵ)
)

(A51)

= (C(ϵ))t−1(K(ϵ))m−t+1(C(ϵ))t−1 (A52)

= (K(ϵ))m−(t−1)(C(ϵ))2(t−1). (A53)

Therefore, using (A44), (A47) and (A48), for t ≤ m,

E[h1(Xm
1 )h1(Xm

t )] = (K(ϵ))m−(t−1)(C(ϵ))2(t−1) − (C(ϵ))2m. (A54)

For t > m, Xm
1 and Xm

t are independent because they do not have overlapping terms. Using
this fact and (A31),

E[h1(Xm
1 )h1(Xm

t )] = E[h1(Xm
1 )]E[h1(Xm

t )] = 0. (A55)

Consequently, using (A35), (A38), (A54), and (A55),

1
4

σ2
m = E[(h1(Xm

1 ))2] + 2 ∑
t>1

E[h1(Xm
1 )h1(Xm

t )] (A56)

= E[(h1(Xm
1 ))2] + 2

∞

∑
t=2

E[h1(Xm
1 )h1(Xm

t )] (A57)

= E[(h1(Xm
1 ))2] + 2

m

∑
t=2

E[h1(Xm
1 )h1(Xm

t )] (A58)

= (K(ϵ))m − (C(ϵ))2m + 2
m

∑
t=2

(
(K(ϵ))m−(t−1)(C(ϵ))2(t−1) − (C(ϵ))2m

)
(A59)

= (K(ϵ))m − (C(ϵ))2m + 2
m−1

∑
t=1

(
(K(ϵ))m−t(C(ϵ))2t − (C(ϵ))2m

)
(A60)

= Km − C2m + 2
m−1

∑
t=1

(Km−tC2t − C2m) (A61)
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This then gives the asymptotic variance in (A25) and completes the proof.

Note
1 To explain the sup-norm or the L∞-norm, we first need to consider the notion of essential supremum. Let (X,X , l) denote a

measure space, where (X,X ) is a measurable space and l is the Lebesgue measure. Let f denote a real-valued measurable
function on X, say f : X → ℜ. Then, the essential supremum of the function f over the space X is defined by:

ess sup
x∈X

f (x) := inf{k ∈ ℜ | l({x ∈ X| f (x) > k}) = 0}.

That is, f (x) ≤ ess supx∈X f (x) for almost all x ∈ X with respect to the Lebesgue measure l. Then, the sup-norm or the L∞-norm
of a function f , denoted by || f ||∞ is the essential supremum of | f |, (i.e., the essential supremum of the absolute value of f ). In
fact, the sup-norm or the L∞-norm is the Lp-norm when p → ∞. See, for example, Rudin (1987), pages 65–66 therein.
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