
risks

Article

Nonparametric Estimation of Extreme Quantiles with
an Application to Longevity Risk

Catalina Bolancé and Montserrat Guillen *

����������
�������

Citation: Bolancé, Catalina, and

Montserrat Guillen. 2021.

Nonparametric Estimation of Extreme

Quantiles with an Application to

Longevity Risk. Risks 9: 77. https://

doi.org/10.3390/risks9040077

Academic Editor: Mogens Steffensen

Received: 4 March 2021

Accepted: 12 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department Econometrics, Riskcenter-IREA, Universitat de Barcelona, 08007 Barcelona, Spain; bolance@ub.edu
* Correspondence: mguillen@ub.edu; Tel.: +34-934-037-039

Abstract: A new method to estimate longevity risk based on the kernel estimation of the extreme
quantiles of truncated age-at-death distributions is proposed. Its theoretical properties are presented
and a simulation study is reported. The flexible yet accurate estimation of extreme quantiles of
age-at-death conditional on having survived a certain age is fundamental for evaluating the risk of
lifetime insurance. Our proposal combines a parametric distributions with nonparametric sample
information, leading to obtain an asymptotic unbiased estimator of extreme quantiles for alternative
distributions with different right tail shape, i.e., heavy tail or exponential tail. A method for estimating
the longevity risk of a continuous temporary annuity is also shown. We illustrate our proposal with
an application to the official age-at-death statistics of the population in Spain.
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1. Introduction

Longevity risk, the possibility that individuals die much later than the theoretical
average, is covered by a range of insurance products. A primary example is lifetime
annuities, which pay a guaranteed income even if individuals live longer than expected
and exhaust their own savings. Measuring longevity risk in lifespan products of this
type requires establishing assumptions or, at least, choosing a specific loss variable and a
concrete risk measure, such as value-at-risk (VaR).

Here, we propose a flexible nonparametric estimator that is used to measure longevity
risk with the (extreme) quantile of the age-at-death distribution. Our nonparametric ap-
proach is a generalization of the proposal by Alemany et al. (2013) that was based on
only two given transformations. Alemany et al. (2013) proposed the transformed kernel
estimation of the cumulative distribution function and the quantile. In order to transform
the data, a parametric distribution function was proposed and then the bias and variance
of the transformed kernel estimator were obtained. The general result established that with
the transformed kernel estimation approach, the variance of the estimator diminishes at the
cost of increasing its bias. Alemany et al. (2013) argued that, since the transformed variable
follows a uniform distribution, then boundary bias emerges naturally. To reduce the bias,
they proposed a second transformation based on the inverse Beta distribution. However,
they did not study how this second transformation affects the bias and variance of the trans-
formed kernel estimator. Here, we start from the initial results by Alemany et al. (2013)
and analyze the role of the second transformation. Furthermore, we have deduced the
properties of the estimator and have proved that the second transformation can increase or
decrease the bias associated with the first transformation that will be able to be selected
between alternative families of distributions. We argue that by doing so, we are able
to reduce the model selection problem and, thus, eliminate the need to choose a specific
parametric model which may be too restrictive for older ages, that is, “rare longevity events”
corresponding to individuals that live much longer than the rest.

In Section 2, the literature on longevity risk is gathered. In Section 3, the estimator
of the conditional quantile and its properties are shown. In Section 4, we describe our
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proposed transformed kernel estimator of the cumulative distribution function and present
interesting findings about its performance and about the smoothing parameter. Addition-
ally, basic notions about the empirical distribution and kernel estimation are outlined. In
Section 5, we estimate conditional quantiles for each of the years in the period 2011–2017
for the population aged 65 and over and apply these results to split the price of an annuity
into two segments: that is, the price up to the longevity risk age and the price beyond that
age. By so doing, we express the age risk measure in terms of an annuity price in monetary
units. Our conclusions are outlined in Section 6. Proofs of the asymptotic properties of
our estimator and the results of a simulation study analyzing finite sample properties are
presented in the Appendix, along with a table showing the results of the application to the
pricing of a single annuity.

2. Longevity Risk

Longevity risk, as a broad concept, has been widely studied at the aggregate level and
has been associated with the forecasting of such demographic variables as life expectancy
and mortality. Stallard (2006) differentiated between aggregate and individual longevity
risk and proposed approaching the latter using individual survival functions, given a
set of covariates related to the factors that affect mortality and life expectancy; however,
implementing this proposal is far from straightforward as individual information on habits
and health is generally unavailable. Denuit (2009) proposed estimating aggregate longevity
risk from an extreme quantile of the life expectancy distribution which can be deduced
from the Lee–Carter model (see Lee and Carter 1992). Basellini and Camarda (2019) pro-
posed a parametric model to forecast the age-at-death of the adult population in Japan,
considering ages from 30 to 110 and beyond. More recently, using compositional data,
Shang and Haberman (2020) forecast the whole age-at-death distribution and used these
results to obtain the t year survival probabilities at age x (tPx), as well as evaluating the
“single-premium temporary immediate annuity”. Here, we show that, using the forecast
distribution, our nonparametric estimator can also be used to obtain a smooth estimation
of these probabilities. In short, all these perspectives, in estimating longevity risk for popu-
lations at retirement age, convey just how important it is for public and private institutions
alike to establish reserves for lifetime contracts and guarantee the sustainability of public
and private pensions, and other health and long-term care systems.

Unlike the studies cited above, our aim is to obtain a longevity risk measure that can
be expressed as a value in years and which corresponds to an advanced age, above which
the probability of death is low or very low. In line with our definition, the higher this
“longevity risk age” value, the greater the risk, since it can be interpreted directly as an age
that a given fraction of individuals will survive. For example, if our quantile level is fixed
at 99% and the measure of longevity risk equals 101 years, then this means that 1% of the
population will survive beyond the age of 101.

Typically, the number of observations in this range of older ages is small and disperse,
i.e., we have very few data. To address this, we propose an estimator for this extreme
quantile that adapts to a situation in which statistical information is scarce in the right
tail of the distribution. It should be noted, at this point, that in finance and insurance, the
notion of the extreme quantile and VaR are used interchangeably.

Chen and Cummins (2010) argued that some events can be extremely rare and extreme
value distributions are necessary to model the improvement in mortality rates. However,
the use of these distributions on the whole domain of the variable to estimate the VaR of the
age-at-death distribution can give longevity risk values of over 150 years. An alternative
is to focus on the extreme ages to fit the shape of the tail of the distribution based on the
Generalized Pareto Distribution (GPD). Coles et al. (2001) described the semiparametric
method based on the Mean Residual Life plot to obtain a threshold and then estimate shape
and scale parameters for the GPD. However, catastrophic events can cause major changes in
the shape of the age-at-death distribution, so that distributions that have provided a good
fit over a long period of time stop doing so. An example is found in the current COVID
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pandemic. The proposed nonparametric estimator can easily be adapted to changing
longevity scenarios.

Based on the shape parameter of the GPD, Rootzén and Zholud (2017) analysed
if age-at-death could be a limit or not (see Rootzén and Zholud 2018, for discussion).
Here compare results obtained with semiparametric GPD for extreme ages, the Gompertz
distribution, the generalized Gompertz distribution and our proposal to estimate extreme
quantiles. We think that a nonparametric approach constitutes a suitable alternative; yet,
given the small number of advanced ages observed, the direct implementation of basic
nonparametric methods may not be efficient. Thus, we develop a procedure based on both
parametric and kernel estimation methods to evaluate longevity risk using the cumulative
distribution function of the age-at-death variable. We show that our proposal improves
the inefficiency of using the empirical distribution or the classical kernel estimator, while
coping with the bias of choosing possibly inadequate parametric distributions.

Specifically, we employ the conditional quantile because we estimate longevity risk
from an extreme quantile of the age-at-death variable for a given population that has
already survived to age a. This is the most common situation in the case of insurance
products covering lifetime resources after retirement, which usually means after the age
of 65. Stallard (2006) explained that at the individual level “longevity risk refers to the
possibility of living longer than assumed in financial planning for the retirement of a single
individual”. It is upon this idea that the conditional extreme quantile is based. Conditional
extreme quantiles are convenient to evaluate the effect of longevity risk on the unitary price
of a lifetime and temporary annuities, where the former consider individuals throughout
their lifespan for the probabilities that, at a certain age, they live t ≥ 0 more years and
the latter depend on a threshold (the maturity) from which the probability of living is
assumed to be zero (see Bowers et al. 1997; Dickson et al. 1997, for a review in relation
to life insurance). As we show in the last section of this paper, relating maturity to the
conditional extreme quantile allows us to quantify and interpret longevity risk in lifetime
annuities.

We illustrate the methodology with official micro-data containing the dates of birth and
death of the deceased population in Spain between 2011 and 2017. The study is conducted
differentiating by gender. In general, women have greater longevity than men, although
these differences may disappear with age in some countries. For example, drawing on
data from England and Wales, Mayhew and Smith (2014) showed that the gap between
the life expectancy of men and women tends to close. Earlier, basing their arguments on
reliability theory, Gavrilov and Gavrilova (2001) explained why relative differences in the
mortality rates of populations within the same species and, hence, differences in their life
expectancies, tend to disappear with age. From an empirical perspective, Waldron (1993),
Gjonça et al. (2005) and Glei and Hirouchi (2007) analyse the gender gap between life
expectancies in different periods. These authors show that there are countries in which
the gender longevity gap narrowed and others in which it widened, depending on the
period under analysis (see also Mayhew and Smith 2011). The results presented here focus
on Spain’s older population from 2011 to 2017 and show that the gap between male and
female longevity risk exists and does not fade until a very advanced age is reached.

3. The Conditional Quantile and Longevity Risk

Let X be a continuous random variable with probability density function (pdf) fX
and cumulative distribution function (cdf) FX. In this paper, X refers to the age-at-death
of an individual in a given population. In such cases, X takes positive values. Given a
subpopulation with an age of death equal to or greater than a, we propose a longevity risk
measure obtained from the truncated cdf, which is equal to the conditional quantile (CQ)
and is defined as:

CQpa(X|X ≥ a) = inf
{

x : FX|X≥a(x|X ≥ a) ≥ pa

}
= xpa , (1)
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where a is a threshold and pa ∈ (0, 1) is the conditional confidence level. The truncated
cdf is:

FX|X≥a(x|X ≥ a) =
FX(x)− FX(a)

1− FX(a)
, x ≥ a. (2)

To estimate the CQ defined in (1) the theoretical truncated cdf needs to be replaced by
an estimator. Given that we need to focus on the quantile at confidence level
pa = Fx|X≥a

(
xpa |X ≥ a

)
, with this aim in mind, we can relate the probability associated

with the truncated cdf with the probability associated with the untruncated cdf:

FX(x) = FX|X≥a(x|X ≥ a)[1− FX(a)] + FX(a). (3)

Thus, from expression (3) and given a known confidence level pa:

p = pa[1− FX(a)] + FX(a), (4)

where p ≥ pa. In addition to this empirical approach, alternative kernel estimators (KEs)
of p are analysed, with the aim of finding the simplest and most efficient proposal.

To obtain the CQ, our strategy involves estimating FX(a), calculating the unconditional
probability p, and deriving the quantile using the untruncated cdf. In practice, since p ≥ pa,
this requires estimating an extreme quantile. Furthermore, this strategy is easily applicable
if, as we propose in this paper, the quantile estimator is obtained by inverting an estimator
of the cdf.

The probability p expressed in (4) is obtained by replacing FX(a) with the empirical
distribution or a KE, i.e.,

p̂ = pa

[
1− F̂X(a)

]
+ F̂X(a), (5)

where F̂X may be the empirical distribution, the KE (see Azzalini 1981) or a transformed
KE (TKE) (see Alemany et al. 2013; Bolancé et al. 2003; Swanepoel and Van Graan 2005;
Wand et al. 1991, for a review on transformed kernel estimation).

Proposition 1. The expected value of p̂ is:

E( p̂) = p + (1− pa)Bias
[

F̂X(a)
]

and the variance is:
V( p̂) = (1− pa)

2V
[

F̂X(a)
]
,

where Bias
[

F̂X(a)
]

and V
[

F̂X(a)
]

are those of the corresponding nonparametric estimator.

The proof of Proposition 1 is in Appendix A. This proposition shows how the bias
and variance of p̂ are proportional to those of the estimator used for the unconditional cdf
evaluated at a, FX(a).

Furthermore, given the properties of the KE (which we show in the following section),
as n→ ∞, then Bias

[
F̂X(a)

]
→ 0 and, asymptotically,

p̂ ∼ Normal
(

p, (1− pa)
2V
[

F̂X(a)
])

and, therefore, CQpa(X|X ≥ a) is normally distributed (see, for example, Reiss 1981).
The CQ provides us with a value of the age-at-death from which there is a probability

(1− pa) that this age is higher. This allows us to evaluate the risk for a life insurance
product, with a confidence level pa, once a given age has been reached.



Risks 2021, 9, 77 5 of 23

4. Estimators of the Unconditional cdf

Let X1, ..., Xn be a sample of independent and identically distributed data observations
of the continuous random variable X with cdf FX . Now, we summarise the main properties
associated with the empirical distribution and the KE. The empirical distribution is:

F̂n(x) =
1
n

n

∑
i=1

I(Xi ≤ x), (6)

where I(·) is an indicator function that takes a value of 1 if the condition between paren-
theses is true and 0 otherwise. The bias of F̂n is zero and its variance is:

V
[

F̂n(x)
]
= FX(x)[1− FX(x)]/n. (7)

We note that the empirical distribution is only defined in the observed values in the
sample.

The usual expression for the KE of a cdf is (see Azzalini 1981; Reiss 1981, for a first
deffinition):

F̂X(x) =
1
n

n

∑
i=1

K
(

x− Xi
b

)
, (8)

where the function K is a cdf associated with a kernel pdf k. Examples of such functions are
the Epanechnikov and the Gaussian kernels (Silverman 1986). The parameter b > 0, known
as the bandwidth or smoothing parameter, controls the smoothness of the estimation. Thus,
the higher the value of b, the smoother the resulting function. However, obtaining an
optimal value for this smoothing parameter is one of the greatest difficulties posed by
kernel estimation.

Note that the classical kernel estimation of cdf defined in (8) bears many similarities
to the expression of the well-known empirical distribution in (6). In (8), K

(
x−Xi

b

)
has to

be replaced by I(Xi ≤ x) to obtain (6). Focusing on the second-order properties, it has
already been noted by Reiss (1981) and Azzalini (1981) that, when b→ 0 as n→ ∞, fX is
continuous and f ′X exists, the asymptotic bias and variance of (8) are (see also Hill 1985):

E
[

F̂X(x)
]
− F(x) =

1
2

b2 f ′X(x)
∫ 1

−1
t2k(t)dt + o

(
b2
)

, (9)

and

V
[

F̂X(x)
]
=

FX(x)[1− FX(x)]
n

− fX(x)
b
n

∫ 1

−1
K(t)[1− K(t)]dt + o

(
b
n

)
. (10)

The KE of the cdf has less variance than that of the empirical distribution, but it has
some bias which tends to zero as n→ ∞.

When the distribution is right-skewed, at the extreme quantile with p near 1 the
variance of the KE tends to the variance of the empirical quantile.

Let T(·) be a continuous and monotonic non-decreasing transformation, Y = T(X) is
the transformed random variable and Yi = T(Xi), i = 1 . . . n, are the transformed data, the
TKE of FX(x) is:

F̂T
X(x) = F̂T(X)[T(x)] =

1
n

n

∑
i=1

K
(

T(x)− T(Xi)

b

)
=

1
n

n

∑
i=1

K
(

y−Yi
b

)
= F̂Y(y). (11)

In practice, the estimator defined in (11) consists of transforming the data and obtain-
ing the KE of the transformed variable. The smoothing parameter in the TKE is the same as
that in the KE of the cdf associated with the transformed data. To calculate the KE, we need
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to determine the kernel function K and the value of the smoothing parameter b. For the
former, we use the Epanechnikov kernel (K(t) = 1

4 (2− t)(t + 1)2), although alternative
kernels, such as the Gaussian, hardly affect the estimator properties. In the case of the latter,
there are alternative methods that can be employed to calculate the smoothing parameter b.
For instance, cross-validation and plug-in methods are common (see, for example, Altman
and Léger 1995; Bowman et al. 1998). However, they require considerable computational
effort in large data sets and do not perform particularly well when there are parts of the
distribution domain for which data are scarce.

Many studies propose transformations in the context of the transformed kernel es-
timation of the pdf (see Bolancé 2010; Bolancé et al. 2003, 2008; Buch-Larsen et al. 2005;
Ruppert and Cline 1994; Wand et al. 1991); however, only a few analyse the transformed
kernel estimation of the cdf and quantile (see Alemany et al. 2013; Swanepoel and Van
Graan 2005). These transformations can be classified into those that are a cdf and those that
do not correspond to a specific cdf. However, if a cdf transformation is used, the theoretical
properties of the estimator can be analyzed in terms of the differences between a true cdf
and those used as the transformation.

Assume that T(·) is continuous and that its first two derivatives exist. Then, from
Theorem 1 in (Alemany et al. 2013), it follows that (′ indicates first derivative):

E
[

F̂T
X(x)

]
− F(x) =

1
T′(x)

1−
fX(x)
f ′X(x)
T′(x)
T′′(x)

(1
2

f ′X(x)
∫ 1

−1
t2k(t)dt

)
b2 + o

(
b2
)

(12)

and

V
[

F̂T
X(x)

]
≈ FX(x)[1− FX(x)]

n
− fX(x)

T′(x)
b
n

∫ 1

−1
K(t)[1− K(t)]dt + o

(
b
n

)
, (13)

where o(·) is an asymptotic term that tends to zero with its argument.
If b → 0 when n → ∞, then the TKE in (11) is a consistent estimator of FX(x).

Furthermore, in the case where FX(x) = T(x), fX(x) = T′(x) and f ′X(x) = T′′(x), then the
bias of TKE (12) is zero.

If the transformed random variable Y follows a Uniform(0, 1) distribution then
F′′Y (y) = f ′Y(y) = 0 and, therefore, any results based on a second-order approach like
(12) and (13) cannot be obtained. We propose to choose T so that the distribution of the
transformed variable is different from the Uniform(0, 1) distribution and so that it can
be easily estimated using the KE. Alemany et al. (2013), following (Bolancé et al. 2008;
Buch-Larsen et al. 2005), propose using a first transformation equal to the modified Cham-
pernowne distribution (see Buch-Larsen et al. 2005) and a second transformation equal to
the inverse of a given Beta(3, 3) distribution.

The proposal of (Alemany et al. 2013) is presented as a particular case of the TKE with
double transformation. However, these authors do not analyze the influence of the second
Beta(3, 3) transformation on the resulting estimation. Here we generalize this TKE and
obtain the theoretical properties of this new estimator of the cdf. These new results are
shown below.

The procedure is based on the expression of bias of the KE shown below in (9) which
squared and integrated is:

∫ ∞

0

{
E
[

F̂X(x)
]
− F(x)

}2
dx =

1
4

b4
∫ ∞

0

[
f ′X(x)

]2dx
(∫ 1

−1
t2k(t)dt

)2

+ o
(

b4
)

. (14)

Expression (14) depends on the shape of the density through
∫ ∞

0 [ f ′X(x)]2dx. Terrell (1990)
proved that the density that minimises this integral belongs to the Beta distribution family
with pdf (see Johnson et al. 1995):
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(x− θ)α−1(θ + D− x)β−1

B(α, β)Dα+β−1 , θ ≤ x ≤ θ + D, (15)

where θ ≥ 0 is a location parameter, D > 0 is a scale parameter, α > 0 and β > 0
are shape parameters, B(α, β) = Γ(α)Γ(β)/Γ(α + β) and Γ(·) is Euler’s Gamma function.
Terrell (1990) proved that the pdf expressed in (15) with θ = −1, D = 2 and α = β = 3
is equal to the Beta(3, 3) which takes the smallest value of

∫ ∞
0 [ f ′X(x)]2dx among all the

distributions with domain [−1, 1] and the same variance; therefore, given b and k, it takes
the smallest value of the integrated bias defined in (14). Previously, Terrell and Scott (1985)
deduced that when θ = −1/2, D = 1, α = β = 2 the density minimises

∫ ∞
0 [ f ′X(x)]2dx for

all distributions with a domain [−1/2, 1/2] and the same variance.

Definition 1. Let T(·) be a first transformation coinciding with a cdf and M(·) be the Beta(3, 3)
cdf of the second transformation; then the Beta Transformed Kernel Estimator (BTKE) of the original
cdf is defined as:

F̂BT
X (x) = F̂M−1[T(X)]

{
M−1[T(x)]

}
=

1
n

n

∑
i=1

K
(

M−1[T(x)]−M−1[T(Xi)]

b

)
, (16)

where the cdf associated with the Beta(3, 3) is:

M(y) =
3

16
y5 − 5

8
y3 +

15
16

y +
1
2

, −1 ≤ y ≤ 1. (17)

The BTKE has suitable properties to estimate the extreme quantile because, among
other characteristics (see Bolancé et al. 2020), as we describe in Section 4.1, an optimal
smoothing parameter based on the Beta(3, 3) distribution can be found.

Theorem 1, whose proof is given in Appendix A, gives expressions for the asymptotic
bias and variance of the BTKE in (16).

Theorem 1. Let fX(x) be the true pdf that is continuous and has at least one continuous derivative,
T(x) be a cdf with continuous pdf and at least two continuous non-null derivatives and, for
y = T(x), m(y) = 15

16
(
1− y2)2,−1 < y < 1 be the pdf of M(y) defined in (17), then the

asymptotic bias of BTKE of the true cdf FX(·) is:

E
[

F̂BT
X (x)

]
− FX(x) (18)

=
1
2

b2

m′
{

M−1[T(x)]
}

m{M−1[T(x)]}
fX(x) +

f ′X(x)
T′(x)

m
{

M−1[T(x)]
}1−

fX (x)
f ′X (x)
T′(x)
T′′(x)

 ∫ 1

−1
t2k(t)dt + o

(
b2
)

and its variance is:

V
[

F̂BT
X (x)

]
=

FX(x)[1− FX(x)]
n

− fX(x)
T′(x)

m
{

M−1[T(x)]
} b

n

∫ 1

−1
K(t)[1− K(t)]dt + o

(
b
n

)
. (19)

From the results of Theorem 1, we can analyze the bias and variance of the BTKE and
obtain Proposition 2, whose proof is direct and, hence, is not given.

Proposition 2. If the generating process or the distribution of the data is known and the first
transformation T(·) can be estimated so that E

[
T̂(·)

]
= FX(·) or, at the point evaluated x,

fX(x) = E
[
T̂′(x)

]
and f ′X(x) = E

[
T̂′′(x)

]
, the bias of the BTKE for a given smoothing parameter

b and kernel k is:
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E
[

F̂BT
X (x)

]
− F(x)

=

(
m′
{

M−1[T(x)]
}

m{M−1[T(x)]}
b2

2

∫ 1

−1
t2k(t)dt

)
fX(x) + o

(
b2
)

(20)

and the variance is:

V
[

F̂BT
X (x)

]
=

FX(x)[1− FX(x)]
n

−m
{

M−1[T(x)]
} b

n

∫ 1

−1
K(t)[1− K(t)]dt + o

(
b
n

)
. (21)

From Proposition 2, we can see that in the best case our estimation has some bias
that tends to zero as n → ∞; however, this bias can be compensated by a low variance,
especially in the most extreme quantiles. Alternatively, Swanepoel and Van Graan (2005)
and Alemany et al. (2013) proved that the TKE is unbiased when T(·) = FX(·); so, given the
difficulties associated with the kernel estimation of the Uniform(0, 1) distribution function,
the TKE based on a parametric or nonparametric cdf transformation cannot be used to
estimate extreme CQs.

If the first transformation T(·) is not equal to the true FX(·) or, at the extreme quantile
evaluated, x = F−1

X (α), fX(x) 6= T′(x) and f ′X(x) 6= T′′(x), we obtain that the sign of the
bias in (19) depends on: 1−

fX(x)
f ′X(x)
T′(x)
T′′(x)

. (22)

For extreme quantiles, the value of (22) will be positive or negative depending on
whether the distribution used as the first transformation has a heavier or lighter tail than
the true distribution. In this way we obtain two different results:

• If T(·) is the cdf of a heavier tailed distribution than FX(·) the bias is the sum of two
negative terms. The results are greater than the CKE overestimation of the quantile.

• If T(·) is the cdf of a lighter tailed distribution than FX(·) the bias is the sum of a
negative term and a positive term associated with the positive sign of (22). In this
case, we could overestimate or subestimate the quantile; even, the two terms can be
compensated.

For the variance, if T(·) is the cdf of a lighter tailed distribution than FX(·), so fX(x)
T′(x) ≥ 1

and the variance of BTKE will be smaller than the variance of KE. Alternatively, if T(·)
is the cdf of a heavier tailed distribution than FX(·), so 0 < fX(x)

T′(x) ≤ 1 and the result will
depend on this quotient, the less it is the greater the variance is.

4.1. Smoothing Parameter of BTKE

If we assume FX(·) = T(·), the transformed data in the BTKE follow the Beta(3, 3)
distribution; then, the optimal bandwidth can be obtained by minimizing the asymptotic
MSE, that is equal to the sum of the variance and the squared bias of the KE of the
transformed variable, eliminating the asymptotic order terms:

A−MSE
[

F̂M−1[T(X)]

{
M−1[T(xp

)]}]
=

1
4

b4
[

m′
{

M−1[T(xp
)]} ∫ 1

−1
K(t)[1− K(t)]dtt2k(t)dt

]2

(23)

+
FM−1[T(X)]

{
M−1[T(xp

)]}[
1− FM−1[T(X)]

{
M−1[T(xp

)]}]
n

− m
{

M−1[T(xp
)]} b

n

∫ 1

−1
K(t)[1− K(t)]dt.
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The resulting smoothing parameter is:

bp =

m
{

M−1[T(xp
)]} ∫ 1

−1 K(t)[1− K(t)]dt(∣∣m′{M−1
[
T
(
xp
)]}∣∣ ∫ 1

−1 t2k(t)dt
)2


1
3

n−
1
3 , (24)

where | · | is absolute value.
The smoothing parameter bp in expression (24) minimises the MSE of the BTKE of

the quantile xp if the true cdf fulfills FX(xp) = T(xp). However, if FX(xp) 6= T(xp) then, as
we show in Remark 1, the bandwidth expressed in (24) could be lower or higher than the
optimal.

Remark 1. Let M be the Beta(3, 3) cdf and b∗p the optimal bandwidth when FX(xp) = T(xp) and
let xp be the pth quantile of the random variable X, then:

• If T is heavier tailed than FX then T(xp) ≤ FX(xp), M−1[T(xp)
]
≤ M−1(p) and bp ≥ b∗p.

• If FX is heavier tailed than T then T(xp) ≥ FX(xp), M−1[T(xp)
]
≥ M−1(p) and bp ≤ b∗p.

A higher bp provides a higher estimated quantile and vice versa. In practice, Remark 1
implies that the difference between FX and T increases the bias when T(xp) < FX(xp) and
increases the variance when T(xp) > FX(xp), although both tend to zero as n→ ∞.

In Appendix B, we present a simulation study comparing the MSE of the estimated
CQpa based on the empirical distribution, the KE and the BTKE. We simulated alternative
distributions with different tail shapes: a long-tail with an exponential and subexponential
decrease (Weibull and Lognormal, respectively) and a heavy tail with a power decrease
(Pareto).

5. Data Analysis

We analyze the longevity risk of the population aged over 65 in Spain from 2011 to
2017. For this population, we fit the distribution of the age-at-death in months and we
estimate extreme quantiles and conditional extreme quantiles with pa = 0.99, pa = 0.995
and pa = 0.999, which we also denominate as VaR at pa × 100 confidence level. Since we
have a large number of observations, we can estimate quantiles based on the BTKE with pa
very close to 1 quite accurately.

The data were provided by the Spanish National Institute of Statistics (INE—Instituto
Nacional de Estadística) and contain information about the gender, the year and month of
birth and the year and month of death of the population aged over 65. The information
available allows us to obtain the age-at-death in months but, for ease of interpretation, the
results are shown in years.

In Table 1 we present the mortality rates and the basic descriptive statistics for the
population aged over 65, differentiated by gender. It is can be seen that, in aggregate terms,
for all years, female mortality rates are lower than those for men and, inversely, the average
age-at-death for women is higher. However, if we focus on the maximum age-at-death
values, the results are not so clear.

The first step in calculating the longevity risk is to fit alternative parametric distribu-
tions to our data. We obtain results for Lognormal, Weibull, Gamma, Generalised Pareto
Distribution (GPD) and modified Champernowne, the best fit being provided by this last
distribution. Not to confuse the reader, the parameters associated with the first transforma-
tion cdf, are not shown here, they are available from the authors. We observe that the three
parameters of the modified Champernowne distribution endow this model with more
flexibility near the minimum age (65 years) and in the tail of the distribution. However, if
we use this distribution to estimate the CQs, in the more extreme cases, we obtain highly
unlikely ages-at-death of over 150 years. For this reason, we use the BTKE to correct these
unlikely values.
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By way of illustration, and using the data analyzed for the year 2015, considering that
we have more than 170,000 data items for men and women, in Figure 1 we plot the CQs at
the 99.9% level that were estimated using the empirical distribution, the KE and the BTKE.

Table 1. Descriptive statistics of age-at-death (in years) for the population aged 65 or over in
Spain (2011).

Gender Year Population Deaths Rate Min. Mean Max. Variance

2011 3,768,467 157,757 0.042 65 81.34 111.17 62.22
2012 3,717,697 164,281 0.044 65 81.62 112.17 62.89
2013 3,676,272 159,705 0.043 65 81.64 109.08 63.93

Men 2014 3,613,455 162,066 0.045 65 81.80 109.33 65.47
2015 3,565,325 173,472 0.049 65 82.09 109.75 65.92
2016 3,510,560 169,414 0.048 65 82.13 114.75 67.21
2017 3,449,614 175,086 0.051 65 82.38 109.50 68.20

2011 4,995,737 168,547 0.034 65 85.58 111.33 60.62
2012 4,940,008 177,790 0.036 65 85.84 111.42 59.59
2013 4,897,713 171,411 0.035 65 85.87 111.08 60.78

Women 2014 4,828,972 175,202 0.036 65 86.03 112.83 60.96
2015 4,770,536 189,889 0.040 65 86.36 111.17 60.35
2016 4,711,636 182,392 0.039 65 86.39 114.50 61.78
2017 4,995,737 190,600 0.038 65 86.64 116.17 62.06
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Figure 1. CQpa for the year 2015 of the age-at-death variable for the population in Spain estimated
from the Beta Transformed Kernel Estimator (BTKE), kernel estimator (KE) and empirical distribution,
for men (a) and women (b).

Figure 1 emphasises the smoothed behavior of the estimation based on the BTKE
compared to the respective shapes of those based on the empirical distribution and the KE,
which are more strongly influenced by the scarce data observed for the largest values of
the variable; this captures, perfectly, how the variance of the BTKE is lower than that of the
KE, which is very similar to the variance of the empirical distribution.

The Gompertz and the Gompertz-G distributions (see Alizadeh et al. 2017) improve
the fit of the modified Champernowne, the improvement is greater for Gompertz-G. The
Gompertz has traditionally been used in demography for fitting age-at-death distributions
(see, for example, Preston et al. 2001); the Gompertz-G is a generalization where a first cdf
G is applied to the data. A particular case is G equal to the log-logistic distribution. In
fact, the modified Champernowne distribution defined in expression (A1) with c = 0 is
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the log-logistic distribution. Therefore, there is a parallelism between our BTKE and the
Gompertz-G distribution; both start from similar cdf transformations.

Using the inverse of the estimated cdf, given a probability p̂ = pa
[
1− F̂X(a)

]
+ F̂X(a),

we have estimated the VaR for a grid of values for a between the ages of 65 and 100 and at
99, 99.5 and 99.9% confidence levels, for each year from 2011 to 2017. To compare the results
obtained with the BTKE, we consider GPD using the semiparametric estimates described
in (Coles et al. 2001), we also consider Gompertz and Gompertz-G, with parameters
estimated by maximum likelihood To carry on this comparison, we estimate CQpa(X) and
we obtain its empirical significance level, which should be similar to the theoretical (1− pa).
The quotients between the empirical vs. the theoretical significance levels are shown in
Tables A4 and A5 of Appendix C. The results in Table A4 indicate that the BTKE provides
the best fit. Results with GPD do not provide good fits. Some years the shape parameter
takes a negative value (2013, 2014 and 2015 for men and 2011, 2012 and 2015 for women).
In the other years, the parameter is positive although lower than 0.25. In general, the GPD
procedure tends to underestimate the conditional quantiles more extreme (quotients greater
than 1). In contrast, in Table A5 we show as the Gompertz distribution under-estimates
the longevity risk (quotients greater than 1) while the Gompertz-G distribution greatly
over-estimates the risk in most cases for men (quotients lower than 1) and provides highly
unstable results for women. Some values of the quotient are equal to zero. They are
obtained with the BTKE and the Gompertz-G parametric distribution and they indicate
that there are no observations larger than the estimated CQpa(X). With BTKE this only
occurs in the most extreme quantiles for men, i.e., in years 2012, 2013 and 2014, when
a = 100 and confidence level 0.999. With Gompertz-G this also occurs for men but in lower
confidence levels.

A summary of the CQpa(X) obtained with the BTKE is shown in Figure 2 and in
Tables 2 and 3. Specifically, in Figure 2 we plot these VaRs between 2011 and 2017, differen-
tiating by gender. In general, we observe that the VaR has a slight tendency to increase over
the years, disappearing for men beyond age 80, approximately, at confidence levels 99%
and 99.5%, and beyond age 90 at confidence level 99.9%. Furthermore, CQ for women are
higher than for men in almost all values of a and pa, although these differences tend to nar-
row with increasing age. In order to analyse the statistical significance of these differences
during the period 2011–2017, in Tables 2 and 3 we present the results for a = 65, 75, 85, 95
with the bootstrap confidence intervals (CIs) at 90% based on a Normal distribution. We
generate 1000 bootstrap samples with replacement and test how the estimated values in
this sample follow a Normal distribution.

Focusing on Tables 2 and 3, where we show the estimated CQpa , differences between
men and women are observed in all cases, except for the most extreme age and quantile,
i.e., a = 95 and pa = 0.999.

To analyze how the longevity risk increases for men and women the year 2011 is
taken as our reference. Specifically, for each value of a and pa, we compare the upper
limits of that year with the lower limits of the other years. In this way, we can determine
whether or not the CIs overlap and, thus, conclude whether the VaR increases with respect
to 2011 (no overlap of CIs) or not (overlap of CIs). In Tables 2 and 3, some of the CQpa

values corresponding to the intervals do not overlap and they indicate that the longevity
risk increases more quickly for women than it does for men during the period under
consideration (2011–2017).
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Table 2. Results of estimated CQpa and 90% confidence interval based on Beta Transformed Kernel
Estimator (BTKE) for the age-at-death of the population aged over 65 in Spain separately for men
and women and conditional ages of the deceased population (a = 65, 75), from 2011 to 2017.

a = 65 a = 75
pa Year Men Women Men Women

0.990 2011 98.49 101.23 99.08 101.45
(98.40;98.59) (101.15;101.31) (98.97;99.18) (101.37;101.53)

2012 98.57 101.33 99.11 101.53
(98.47;98.66) (101.25;101.41) (99.01;99.21) (101.45;101.61)

2013 98.54 101.40 99.14 101.61
(98.44;98.63) (101.31;101.48) (99.04;99.25) (101.53;101.69)

2014 98.56 101.50 99.14 101.72
(98.47;98.65) (101.42;101.57) (99.04;99.24) (101.64;101.79)

2015 98.74 101.78 99.29 101.98
(98.64;98.83) (101.70;101.85) (99.19;99.38) (101.90;102.05)

2016 98.62 101.76 99.19 101.97
(98.53;98.71) (101.68;101.84) (99.09;99.29) (101.89;102.05)

2017 98.75 101.92 99.31 102.14
(98.66;98.84) (101.84;101.99) (99.21;99.40) (102.06;102.21)

0.995 2011 99.99 102.59 100.49 102.79
(99.87;100.10) (102.48;102.69) (100.37;100.61) (102.69;102.90)

2012 100.04 102.70 100.49 102.89
(99.93;100.15) (102.60;102.79) (100.37;100.61) (102.79;102.99)

2013 100.09 102.81 100.56 103.00
(99.98;100.20) (102.71;102.91) (100.45;100.68) (102.90;103.11)

2014 100.10 102.85 100.62 103.04
(99.99;100.21) (102.75;102.94) (100.50;100.74) (102.95;103.14)

2015 100.24 103.11 100.75 103.31
(100.14;100.35) (103.02;103.21) (100.63;100.86) (103.21;103.40)

2016 100.14 103.13 100.66 103.33
(100.03;100.26) (103.04;103.23) (100.54;100.78) (103.23;103.43)

2017 100.26 103.28 100.76 103.47
CI (100.15;100.37) (103.19;103.38) (100.64;100.88) (103.38;103.57)

0.999 2011 102.89 105.31 103.27 105.47
(102.69;103.09) (105.13;105.50) (103.05;103.49) (105.28;105.66)

2012 102.90 105.44 103.30 105.59
(102.70;103.10) (105.26;105.61) (103.09;103.52) (105.41;105.77)

2013 103.06 105.40 103.46 105.56
(102.86;103.26) (105.21;105.58) (103.24;103.68) (105.37;105.75)

2014 103.16 105.63 103.57 105.82
(102.96;103.35) (105.47;105.80) (103.36;103.78) (105.65;106.00)

2015 103.26 105.89 103.68 106.03
(103.06;103.45) (105.72;106.05) (103.47;103.89) (105.86;106.20)

2016 103.24 105.89 103.67 106.03
(103.04;103.43) (105.72;106.05) (103.46;103.88) (105.86;106.20)

2017 103.19 106.01 103.63 106.16
(102.99;103.38) (105.84;106.18) (103.42;103.85) (105.98;106.33)
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Table 3. Results of estimated CQpa and 90% confidence interval based on Beta Transformed Kernel
Estimator (BTKE) for the age-at-death of the population aged over 65 in Spain separately for men
and women and conditional ages of the deceased population (a = 85, 95), from 2011 to 2017.

a = 85 a = 95
pa Year Men Women Men Women

0.990 2011 100.72 102.35 104.27 105.25
(100.60;100.84) (102.26;102.45) (103.99;104.55) (105.08;105.42)

2012 100.64 102.39 104.57 105.36
(100.52;100.76) (102.30;102.49) (104.29;104.85) (105.20;105.53)

2013 100.68 102.51 104.47 105.30
(100.56;100.80) (102.41;102.60) (104.19;104.75) (105.13;105.48)

2014 100.68 102.52 104.67 105.51
(100.56;100.79) (102.43;102.61) (104.40;104.93) (105.35;105.66)

2015 100.73 102.72 104.73 105.70
(100.62;100.85) (102.63;102.81) (104.47;105.00) (105.54;105.85)

2016 100.59 102.71 104.61 105.65
(100.48;100.71) (102.61;102.80) (104.34;104.89) (105.49;105.81)

2017 100.62 102.84 104.52 105.65
(100.50;100.74) (102.75;102.92) (104.25;104.78) (105.49;105.81)

0.995 2011 101.98 103.66 105.33 106.33
(101.82;102.15) (103.53;103.78) (104.96;105.71) (106.11;106.55)

2012 101.86 103.66 105.95 106.37
(101.71;102.02) (103.55;103.78) (105.57;106.32) (106.15;106.58)

2013 101.95 103.70 105.32 106.31
(101.79;102.11) (103.58;103.83) (104.93;105.70) (106.09;106.54)

2014 102.01 103.78 105.58 106.71
(101.85;102.17) (103.67;103.89) (105.21;105.94) (106.51;106.92)

2015 102.04 104.07 105.58 106.68
(101.88;102.20) (103.95;104.18) (105.22;105.95) (106.48;106.88)

2016 101.96 104.00 105.66 106.63
(101.80;102.12) (103.88;104.11) (105.28;106.04) (106.43;106.84)

2017 101.91 104.10 105.71 106.62
(101.76;102.07) (103.99;104.22) (105.35;106.08) (106.42;106.83)

0.999 2011 104.34 106.19 108.47 108.61
(104.06;104.63) (105.98;106.41) (107.61;109.32) (108.17;109.04)

2012 104.66 106.22 109.40 108.51
(104.37;104.94) (106.01;106.44) (108.56;110.25) (108.07;108.94)

2013 104.46 106.18 107.16 108.09
(104.17;104.75) (105.96;106.40) (106.29;108.03) (107.65;108.52)

2014 104.65 106.55 107.58 109.18
(104.37;104.92) (106.35;106.75) (106.75;108.42) (108.76;109.60)

2015 104.78 106.57 107.37 108.62
(104.50;105.05) (106.37;106.77) (106.53;108.20) (108.21;109.04)

2016 104.68 106.56 107.80 108.89
(104.40;104.96) (106.36;106.76) (107.00;108.61) (108.47;109.30)

2017 104.69 106.62 107.43 108.51
(104.42;104.96) (106.41;106.82) (106.62;108.23) (108.10;108.92)
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Figure 2. CQpa of year 2011 (thin lines) and 2017 (thick lines) of the age-at-death variable estimated
from Beta Transformed Kernel Estimator (BTKE), (a) pa = 0.99, (b) pa = 0.995 and (c) pa = 0.999.

Application to the Annuity Longevity Risk

The actuarial present value of a lifetime annuity for a person of age a is:

ρa =
∫ ∞

0
tPae−rtdt, (25)

where tPa measures the probability of an individual of age a surviving t time longer, r is the
risk-free rate and e−rt is the financial discount. We know that the value of tPa can be expressed
as a function of the age-at-death distribution FX(·) (see Preston et al. 2001, pp. 53–54):

tPa =
1− FX(a + t)

1− FX(a)
=

P(X > a + t)
P(X > a)

.

So, with the BTKE we can obtain smoothed and consistent estimations of tPa, ∀t >= 0
and, therefore, calculate the value of single the premium expressed in (25). In Figure 3, we
show these estimated probabilities for a = 75, 85, 95, 100 with the data for 2017. The values
of ρa calculated using these estimated tPa and with r = 0.2 are shown in Table 4.

Table 4. Estimates of a single annuity premium (ρa) for r = 0.2 and year 2017, at a = 75, 85, 95, 100.
The probabilities tPa are estimated with the Beta Transformed Kernel Estimator (BTKE).

a = 75 a = 85 a = 95 a = 100

Men 4.8854 4.7064 4.2620 4.1138
Women 4.9168 4.7938 4.3975 4.2183

As an alternative to the lifetime annuities, the temporary annuities (see Shang and
Haberman 2020, for the justification for this type of financial contract) depend on a given
maturity or a given age from which the probability of living is assumed to be zero and
which we call w, being, a priori, the same for men and women (see Chen et al. 2018, for an
example of an application in solvency risk). So, in the integral expressed in (25) we can
finally replace the ∞ by w− a.
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Figure 3. tPa for the year 2017 estimated from Beta Transformed Kernel Estimator (BTKE), for men
(solid line) and women (dashed line), with a = 75, 85, 95, 100.

Usually, the value of w is determined by the mortality rate or its projection. It normally
corresponds to an age at which all individuals have died. Considering that longevity risk
is the estimated CQ xpa at a given confidence level near 1, the integral (25) can be divided
into two parts, from 0 to xpa − a and from longevity risk xpa − a to ∞, i.e.,

ρa =
∫ xpa−a

0
tPae−rtdt +

∫ ∞

xpa−a
tPae−rtdt. (26)

Expression (26) is convenient because it splits the lifetime annuity into two segments;
only a (1 − pa) fraction of the participants will reach age xpa (we call this term “tail
premium”), while a pa fraction will not reach this age. For example, for age 75 with
pa = 0.99, in Table 2 we observe that for men xpa = 99.31 and the single premium in
Table 4 is split as 4.8854 = 4.8503 + 0.0351; for women xpa = 102.14 and this separation is
4.9168 = 4.8959 + 0.0209. These results indicate that when considering longevity risk, the
maturity for women should be longer than for men and, on the contrary, the tail premium
should be lower. The reason is that the tail premium starts later for women than it does for
men and, therefore, covers a shorter period with higher mortality rates. The opposite is true
for men, i.e., maturity should be shorter and the tail premium should be higher. Table A6 in
Appendix D shows the results of the split premiums for each age (a) and quantile level pa.

Our approach helps identify the tail in terms of a percent of the whole distribution.
An alternative approach would be to fix the advanced age, i.e., 100 years and estimate
the proportion of cases above this bound or the annuity from this age. The difference
between our method and this alternative is that, when age is fixed, the size of the tails are
not comparable.

6. Conclusions

We have shown the utility of the kernel estimator for estimating longevity risk. Specif-
ically, we have demonstrated that the beta transformed kernel estimator allows us to
estimate conditional extreme quantiles efficiently when using a large database. Moreover,
this estimator can be easily implemented with real or projected data. Finally, we obtained
smoothed nonparametric estimations of the tPa, ∀t >= 0.

Using the BTKE, we have estimated longevity risk using the conditional extreme
quantile of the age-at-death and we conclude that it is higher for women than it is for men
in almost all the cases analyzed (a = 65, 75, 85, 95 and pa = 0.99, 0.995, 0.999) in Spain.
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Furthermore, the longevity risk age increases across the period 2011–2017, especially in the
case of women.

The method presented in this paper cannot be used with incomplete cohort data,
because information on all ages of death is needed. Longevity cohort analysis, with still-
living individuals, would require projections of mortality and, therefore, a parametric or a
model approach would be better than the model-free kernels.

In short, here, we have proposed a way to measure longevity risk in insurance portfo-
lios. This can be achieved by splitting the unitary lifetime annuity according to a conditional
extreme quantile of the age-at-death distribution in the portfolio that is associated with the
fact that individuals may reach a certain age with a low probability.

As a potential future research outline, it would be interesting to consider conventional
risk factors as the alcohol consumption status or smoking status, alongside health issues
(for example, diabetes or cardiac risk). The proposed methodology standardizes longevity
risk comparison for annuity portfolios in insurance companies.
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Appendix A. Proofs

Proof of Proposition 1. We prove by means of simple calculations that:

E( p̂) = pa − paE
[

F̂X(a)
]
+ E

[
F̂X(a)

]
= pa − pa

{
FX(a) + Bias

[
F̂X(a)

]}
+
{

FX(a) + Bias
[

F̂X(a)
]}

= pa[1− FX(a)] + FX(a) + (1− pa)Bias
[

F̂X(a)
]

= p + (1− pa)Bias
[

F̂X(a)
]

and

V{ p̂) = V
[

pa − pa F̂X(a) + F̂X(a)
]

= V
[

F̂X(a)− pa F̂X(a)
]
= V

[
(1− pa)F̂X(a)

]
= (1− pa)

2V
[

F̂X(a)
]
.

www.ub.edu/rfa/R/BTKE
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Proof of Theorem 1. The proof of Theorem 1 is direct if we consider that the BTKE is the
KE of the double transformed variable, i.e.,

F̂BT
X (x) = F̂M−1[T(X)]

{
M−1[T(x)]

}
.

We obtain expressions (19) by replacing X with the transformed random variable
M−1[T(X)] in the bias and variance of the KE, which will be defined in (9) and (10),
respectively, and by deriving with respect to x, knowing that:

fM−1[T(x)]

{
M−1[T(x)]

}
=

fX(x)
(M−1)′[T(x)]T′(x)

and
(M−1)′[T(x)] =

1
m{M−1[T(x)]}

,

where m(y) = M′(y) = 15
16
(
1− y2)2,−1 < y < 1, is the pdf of the Beta(3, 3).

Appendix B. Simulation Study

The simulation study conducted can be summarised as follows. We compare the
MSE of extreme CQ estimations based on the empirical distribution, KE and BTKE. We
generate 2000 samples of size n = 500 and n = 5000 from each distribution in Table A1
(Weibull, Lognormal and two mixtures of Lognormal and Pareto models, 70–30% and
30–70%, respectively). In all cases, we consider two different combinations of parameters
related to the tail shapes. The Weibull (We) and Lognormal (Ln) are long-tail distributions
and, furthermore, Ln is a subexponential distribution. The composite Lognormal–Pareto
(Ln-Pa) models are heavy-tailed distributions.

Table A1. Distributions in the simulation study.

Distribution cdf Parameters

We 1− e−(
x
λ )

γ

(λ, γ) ∈ {(1, 0.75), (1, 1.5)}

Ln
∫ log x
−∞

1√
2πσ2 e−

(t−µ)2

2σ2 dt (µ, σ) ∈ {(0, 0.5), (0, 1)}

Ln-Pa α
∫ log x
−∞

1√
2πσ2 e−

(t−µ)2

2σ2 dt (α, µ, σ, λ, ρ, c) ∈ {(0.7, 0, 1, 1, 1,−1), (0.7, 0, 1, 1, 1.1,−1)}
Ln-Pa +(1− α)

[
1−

( x−c
λ

)−ρ
]

(α, µ, σ, λ, ρ, c) ∈ {(0.3, 0, 1, 1, 1,−1), (0.3, 0, 1, 1, 1.1,−1)}

Considering the maximum distribution, for those with an exponential tail, we calculate
CQ with a = 0.5, 1 and for those with a heavy tail we calculate it with a = 1, 2. The
conditional confidence levels used are pa = 0.95, 0.99, 0.995. In Table A2, the true values
of these conditional quantiles CQpa defined in (1) are shown; for each a the values were
ordered from the lowest to the highest.

The results of the simulation study are obtained using two alternative cdfs as first
transformation T. The first alternative is the Lognormal distribution, that has tail with
exponential decrease. The second alternative is the cdf of the modified Champernowne
distribution proposed by Alemany et al. (2013), that has tail with power decrease and is
defined as:

T(x) =
(x + c)δ − cδ

(x + c)δ + (M + c)δ − 2cδ
, (A1)

with parameters δ, M > 0 and c ≥ 0, and then applying an optimal second transformation.
Note that when c = 0, the modified Champernowne distribution is also known as a
log-logistic distribution.

Table A3 contains the results of a simulation study for each distribution analysed,
each first transformation T and each value of a, using pa = 0.95, 0.99 for sample size
n = 500 and pa = 0.95, 0.99, 0.995 for sample size n = 5000. In this table, we present the
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ratio between the MSE of the BTKE and KE compared to the MSE of the empirical-based
estimation. These results show that the BTKE performs better than KE when the aim is to
estimate an extreme CQ of a heavy-tailed distribution.

Table A2. Theoretical values of CQpa for each distribution in Table A1, given a and pa.

Distribution pa = 0.950 pa = 0.990 pa = 0.995

a = 0.5 We(1, 1.5) 2.239 2.908 3.173
Ln(0, 0.5) 3.340 4.372 4.851
We(1, 0.75) 5.498 9.008 10.644
Ln(0, 1) 8.662 15.465 19.281

a = 1 We(1, 1.5) 2.518 3.155 3.411
Ln(0, 0.5) 4.599 5.772 6.317
We(1, 0.75) 6.341 9.957 11.631
Ln(0, 1) 11.156 19.115 23.532
Ln-Pa (0.7, 0, 1, 1, 1.1,−1) 11.248 41.655 78.235
Ln-Pa (0.7, 0, 1, 1, 1,−1) 13.017 59.189 119.030
Ln-Pa (0.3, 0, 1, 1, 1.1,−1) 20.902 92.338 174.248
Ln-Pa (0.3, 0, 1, 1, 1,−1) 27.162 139.003 279.000

a = 2 Ln-Pa (0.7, 0, 1, 1, 1.1,−1) 18.094 73.965 139.512
Ln-Pa (0.7, 0, 1, 1, 1,−1) 22.298 109.790 220.508
Ln-Pa (0.3, 0, 1, 1, 1.1,−1) 33.922 149.225 281.095
Ln-Pa (0.3, 0, 1, 1, 1,−1) 44.732 227.337 455.672

With sample size n = 500 and pa = 0.95, the BTKE performs best for Ln distributions
for a = 0.5, 1 and for Ln-Pa distributions for a = 2; when pa = 0.99, in general, the BTKE
performs best for Ln distributions and for Ln-Pa distributions, with the exception of Ln-Pa
(0.7, 0, 1, 1, 1.1,−1) for a = 2, which, when n = 5000, also become the lowest ratio. In
general, when the sample size is n = 5000, the Weibull results for the BTKE improve but
they are still worse than those of the KE; the results for the Weibull are the worst, given
that the right tail of this distribution is much shorter than that of the Champernowne and
Lognormal and, for the Weibull, the BTKE tends to overestimate the conditional extreme
quantiles analyzed. For the Ln and Ln-Pa distributions, the BTKE results are the best, with
the exception of three cases that are influenced by the specific sample selection and where
the ratio is very near to 1.

If the results obtained with alternative choices of T (Lognormal and Champernowne
cdfs) are compared, we observe that Lognormal first transformation works in general when
an extreme quantile of a heavy-tailed distribution is estimated. This result can be deduced
from Theorem 1 if, for a given extreme value x in the right tail of the distribution, we
observe that in this particular case(

1−
fX
(
xp
)
/ f ′X

(
xp
)

T′
(
xp
)
/T′′

(
xp
)) ≤ 0

and, therefore, the bias of the BTKE is the sum of a negative term and a positive term. In
this case, we could overestimate or underestimate the quantile but the two terms can even
be compensated. Furthermore, the variance of the BTKE is smaller than the variance of
CKE. Furthermore, from Theorem 1 we can deduce that, if the distribution used in the first
transformation is heavier-tailed than the true distribution, the bias for a given extreme
value x in the right tail is the sum of two negative terms and BTKE tends to overestimate
the conditional extreme quantiles.

From the simulation study, we conclude that the BTKE provides the best approach
for heavy-tailed distributions. Indeed, this method overcomes the difficulties involved
in estimating extreme quantiles when the classical nonparametric method is inefficient
and a parametric distribution provides unrealistic results when the aim is to estimate the
extreme quantile.
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Table A3. Ratios between the MSE (Mean Squared Error) of Beta Transformed Kernel Estimator (BTKE) and Kernel
Estimator (KE) of the CQpa and MSE of the estimation based on empirical distribution (Ln-Pa distributions with parameters
(α, σ, λ, ρ), given µ = 0 and c = −1).

n = 500 n = 5000

pa = 0.950 pa = 0.990 pa = 0.950 pa = 0.990 pa = 0.995

CKE BTKE CKE BTKE CKE BTKE CKE BTKE CKE BTKE

a Distribution Ch Ln Ch Ln Ch Ln Ch Ln Ch Ln

0.5 We(1, 1.5) 0.87 0.99 1.52 0.85 1.21 1.48 0.94 0.99 1.15 0.91 1.03 1.16 0.91 1.02 1.08
We(1, 0.75) 0.89 1.27 2.45 0.90 1.43 1.76 0.97 1.03 2.71 0.97 1.11 1.73 0.96 1.13 1.49
Ln(0, 0.5) 0.95 0.92 0.94 0.96 0.76 0.86 0.99 0.98 0.97 0.99 0.95 0.88 1.00 0.92 0.83
Ln(0, 1) 1.00 0.84 0.87 1.05 0.63 0.77 1.00 0.97 0.97 1.01 0.88 0.93 1.02 0.83 0.90

1 We(1, 1.5) 0.82 1.06 1.47 0.73 1.10 1.16 0.92 0.97 1.15 0.91 1.01 1.07 0.91 1.04 1.04
We(1, 0.75) 0.91 1.16 1.43 0.92 1.22 1.13 0.97 1.04 1.18 0.98 1.10 0.17 0.97 1.14 1.09
Ln(0, 0.5) 0.99 0.93 0.96 0.99 0.79 0.87 1.00 0.99 0.99 1.00 0.95 0.97 1.00 0.93 0.96
Ln(0, 1) 1.02 0.84 0.89 1.00 0.57 0.71 1.01 0.96 0.98 1.01 0.88 0.93 1.00 0.83 0.89
Ln-Pa (0.7, 1, 1, 1.1) 0.90 1.01 0.91 1.00 0.74 0.53 0.97 0.94 0.92 0.97 0.89 0.85 0.99 0.95 0.79
Ln-Pa (0.7, 1, 1, 1) 0.86 0.93 0.84 1.00 0.75 0.52 0.97 0.95 0.92 0.98 0.92 0.84 0.99 0.91 0.66
Ln-Pa (0.3, 1, 1, 1.1) 0.90 0.89 0.82 1.00 0.82 0.54 0.98 0.94 0.90 0.98 0.91 0.85 0.96 0.94 0.81
Ln-Pa (0.3, 1, 1, 1) 0.86 0.92 0.84 1.00 1.05 0.72 0.97 0.91 0.89 0.97 0.95 0.86 1.00 1.05 0.85

2 Ln-Pa (0.7, 1, 1, 1.1) 0.95 0.78 0.66 0.99 2.70 59.93 0.98 0.92 0.89 0.97 0.86 0.72 1.00 0.88 0.67
Ln-Pa (0.7, 1, 1, 1) 0.94 0.75 0.63 1.00 0.95 49.04 0.98 0.90 0.87 0.99 0.93 0.69 1.00 0.82 0.74
Ln-Pa (0.3, 1, 1, 1.1) 0.96 0.72 0.72 1.00 0.46 0.46 0.98 0.89 0.86 0.98 0.97 0.84 0.99 1.01 0.79
Ln-Pa (0.3, 1, 1, 1) 0.94 0.39 0.78 1.00 0.70 0.70 0.98 0.90 0.87 0.99 1.00 0.84 1.00 0.90 0.66

BTKE transformations: Champernowne (Ch) or Lognormal (Ln).

Appendix C. Estimated Conditional Significant Levels

Table A4. Quotients between empirical and theoretical (1− pa) significance levels of estimated
CQpa for the age-at-death of the population aged over 65 in Spain, separately for men and women,
from 2011 to 2017, using a Beta Transformed Kernel Estimator (BTKE) or a Generalized Pareto
Distribution (GPD).

BTKE for Each a GPD for Each a

pa Year 65 75 85 95 100 65 75 85 95 100

Men 0.990 2011 1.00 1.01 0.98 0.90 1.03 0.97 0.97 0.98 1.96 14.52
2012 1.00 0.99 0.99 0.98 0.93 1.00 0.99 0.99 1.96 14.19
2013 0.98 1.00 0.98 0.98 0.94 0.98 0.97 0.98 2.22 15.33
2014 1.00 1.00 0.96 0.97 0.82 0.96 1.00 0.96 2.33 16.43
2015 1.01 0.99 1.00 1.01 0.92 0.97 0.99 1.00 1.43 10.42
2016 0.99 0.98 0.97 0.91 0.98 0.99 0.98 1.00 0.91 3.04
2017 1.01 0.99 0.97 0.97 0.69 0.98 0.99 0.97 0.97 1.88

0.995 2011 0.99 1.01 0.97 1.04 1.03 0.99 0.97 0.97 3.92 29.05
2012 0.99 1.00 0.95 1.03 0.93 0.99 0.96 0.95 3.92 28.37
2013 0.97 0.99 0.94 0.99 0.71 0.97 0.99 0.94 4.45 30.66
2014 0.98 0.98 0.96 0.92 0.93 0.98 0.98 1.00 4.66 32.87
2015 1.01 1.01 0.96 0.95 1.02 0.96 0.97 0.99 2.85 20.84
2016 1.00 1.00 0.97 1.04 1.08 0.96 0.96 0.97 0.92 6.07
2017 0.98 0.97 1.01 1.04 0.99 0.98 0.97 0.96 0.96 3.76

0.999 2011 1.00 0.99 0.92 0.87 1.29 0.94 0.99 2.07 19.59 145.24
2012 0.97 0.96 0.97 0.96 0.00 0.97 0.96 2.05 19.58 141.86
2013 0.98 1.00 0.97 1.20 0.00 0.98 1.04 2.21 22.25 153.30
2014 1.00 1.01 0.99 0.99 0.00 1.00 1.12 2.29 23.28 164.34
2015 0.93 0.95 1.00 0.84 1.02 0.93 0.95 1.48 14.27 104.19
2016 1.00 0.96 0.91 0.98 1.08 0.95 0.96 0.95 3.92 30.37
2017 0.95 1.00 0.91 0.60 0.99 0.98 0.93 0.99 2.29 18.81
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Table A4. Cont.

BTKE for Each a GPD for Each a

pa Year 65 75 85 95 100 65 75 85 95 100

Women 0.990 2011 1.00 0.99 0.96 0.92 1.02 0.97 0.99 0.96 1.95 11.38
2012 1.02 0.99 1.00 0.96 0.97 0.98 0.99 0.96 0.96 2.13
2013 1.00 0.98 0.98 0.98 0.90 1.00 0.98 0.98 0.98 1.91
2014 1.00 1.00 0.97 0.95 1.00 0.97 1.00 0.97 0.95 2.77
2015 0.99 1.01 0.98 0.98 0.90 0.99 0.96 0.98 0.98 2.47
2016 0.98 1.00 0.99 0.98 0.93 0.98 1.00 0.99 0.98 0.96
2017 0.98 1.00 0.98 0.98 0.98 0.98 1.00 0.98 0.98 2.42

0.995 2011 0.97 1.00 1.00 0.99 0.85 0.97 1.00 0.95 3.89 22.75
2012 1.00 1.00 1.00 0.95 0.94 1.00 0.95 0.95 0.95 4.25
2013 1.00 0.98 0.98 1.01 0.90 1.00 0.98 0.98 0.89 3.82
2014 0.97 0.99 0.98 1.02 0.86 0.97 0.99 0.98 1.02 5.53
2015 0.99 0.99 0.99 0.95 0.95 0.99 0.99 0.99 0.95 4.94
2016 0.99 1.00 1.01 0.96 1.01 0.99 1.00 0.95 0.96 1.16
2017 0.98 0.99 0.98 0.93 0.91 0.98 0.99 0.98 0.99 4.83

0.999 2011 0.97 0.94 1.01 0.84 0.66 2.06 2.29 3.63 19.46 113.77
2012 1.00 0.97 0.97 1.00 0.89 0.90 0.99 0.97 3.80 21.26
2013 0.99 0.96 0.94 0.81 0.90 0.99 0.96 0.94 3.47 19.11
2014 0.98 0.98 1.00 0.95 1.14 0.98 0.98 0.98 5.11 27.65
2015 0.98 0.96 0.97 1.05 0.95 0.98 0.96 0.97 4.74 24.71
2016 0.99 0.94 0.99 1.06 0.75 0.99 0.94 0.99 1.06 5.78
2017 0.99 1.00 0.93 0.90 0.91 0.99 0.96 1.00 4.35 24.16

The tail shape parameter of the GPD was between 0 and 0.5. So, there are first and second finite moments.

Table A5. Quotients between empirical and theoretical (1− pa) significance levels of estimated CQpa

for the age-at-death of the population aged over 65 in Spain separately for men and women, from
2011 to 2017, using Gompertz and Gompertz-G distributions.

Gompertz for Each a Gompertz-G for Each a

pa Year 65 75 85 95 100 65 75 85 95 100

Men 0.990 2011 1.29 1.33 1.57 2.74 3.47 0.32 0.27 0.14 0.14 0.51
2012 1.25 1.27 1.50 2.57 4.77 0.66 0.53 0.34 0.42 0.93
2013 1.17 1.26 1.49 2.84 3.18 0.40 0.35 0.25 0.14 0.24
2014 1.07 1.15 1.29 2.81 3.61 0.44 0.38 0.28 0.23 0.23
2015 1.08 1.15 1.27 2.59 3.47 0.36 0.36 0.33 0.41 0.51
2016 0.95 1.01 1.09 2.38 4.01 0.30 0.28 0.20 0.21 0.33
2017 0.94 0.95 1.01 1.85 4.26 0.24 0.20 0.12 0.06 0.00

0.995 2011 1.45 1.52 1.83 2.70 4.63 0.22 0.18 0.11 0.21 0.26
2012 1.43 1.43 1.70 3.18 7.44 0.49 0.42 0.28 0.45 1.40
2013 1.41 1.48 1.67 3.42 3.54 0.32 0.29 0.15 0.07 0.00
2014 1.25 1.30 1.56 3.17 4.66 0.35 0.32 0.23 0.23 0.00
2015 1.22 1.29 1.48 3.30 4.70 0.33 0.33 0.32 0.42 0.20
2016 1.09 1.13 1.35 2.86 4.77 0.25 0.23 0.15 0.20 0.43
2017 1.07 1.09 1.19 2.50 5.74 0.17 0.15 0.10 0.05 0.00

0.999 2011 2.10 2.16 2.90 5.20 10.28 0.10 0.08 0.11 0.17 0.00
2012 1.96 2.09 2.53 6.90 16.28 0.35 0.33 0.30 0.96 2.33
2013 2.04 2.18 2.83 4.96 7.08 0.13 0.11 0.03 0.00 0.00
2014 1.82 2.06 2.50 5.12 8.16 0.20 0.18 0.11 0.00 0.00
2015 1.83 2.01 2.34 5.60 6.13 0.28 0.29 0.22 0.14 0.00
2016 1.68 1.74 2.15 5.18 9.76 0.15 0.14 0.10 0.28 2.17
2017 1.48 1.59 1.86 5.18 4.95 0.08 0.04 0.03 0.00 0.00
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Table A5. Cont.

Gompertz for Each a Gompertz-G for Each a

pa Year 65 75 85 95 100 65 75 85 95 100

Women 0.990 2011 1.33 1.37 1.50 2.69 4.26 1.13 1.16 1.06 1.52 2.43
2012 1.40 1.42 1.60 2.88 4.72 0.50 0.47 0.39 0.48 0.59
2013 1.39 1.42 1.56 2.84 4.12 1.04 1.06 1.05 1.48 2.30
2014 1.37 1.42 1.56 2.98 4.87 0.86 0.89 0.81 1.26 2.39
2015 1.44 1.48 1.66 3.29 5.30 1.44 1.48 1.66 3.39 5.94
2016 1.37 1.42 1.57 3.07 5.33 0.59 0.58 0.51 0.69 1.08

0.995 2017 1.37 1.41 1.53 2.95 5.22 1.23 1.27 1.36 2.22 3.53

2011 1.55 1.60 1.84 3.58 6.30 1.20 1.21 1.21 1.53 3.15
2012 1.70 1.73 2.00 3.76 6.32 0.46 0.44 0.37 0.48 0.83
2013 1.70 1.76 2.04 3.62 6.27 1.16 1.23 1.16 1.84 2.57
2014 1.66 1.78 1.95 3.83 7.24 0.93 0.95 0.89 1.53 2.96
2015 1.83 1.84 2.06 4.58 6.89 1.83 1.84 2.06 4.77 7.84
2016 1.71 1.74 1.98 3.79 6.99 0.57 0.57 0.52 0.78 1.31
2017 1.74 1.77 1.95 3.78 7.06 1.46 1.50 1.61 2.69 4.01

0.999 2011 2.71 2.72 3.34 6.11 14.10 1.71 1.70 1.49 3.14 4.59
2012 2.93 2.96 3.57 7.55 13.29 0.42 0.40 0.36 0.69 0.89
2013 2.88 2.84 3.31 7.05 9.56 1.51 1.59 1.59 2.71 4.48
2014 2.92 2.95 3.47 7.64 15.96 1.20 1.28 1.35 2.74 6.27
2015 3.20 3.37 4.12 8.53 15.21 3.33 3.53 4.28 9.80 18.06
2016 2.97 3.15 3.44 7.75 14.07 0.62 0.60 0.58 1.06 2.01
2017 2.97 3.16 3.46 7.75 15.27 2.33 2.31 2.56 4.35 5.70

Appendix D. Split Lifetime Annuities Premiums

Table A6. Temporary annuity premium assuming w = CQpa (upper table) and “tail premium”,
for r = 0.2 and year 2017. The probabilities tPa were estimated with the Beta Transformed Kernel
Estimator (BTKE).

Temporary Annuity Premium

pa a = 75 a = 85 a = 95 a = 100

0.990 Men 4.8503 4.5314 3.7946 3.3886
Women 4.8959 4.6740 3.9961 3.5580

0.995 Men 4.8590 4.5736 3.9088 3.4867
Women 4.9007 4.7025 4.0777 3.6583

0.999 Men 4.8708 4.6315 4.0247 3.6779
Women 4.9074 4.7396 4.1900 3.9485

Tail Premium

pa a = 75 a = 85 a = 95 a = 100

0.990 Men 0.0351 0.1750 0.4674 0.7252
Women 0.0209 0.1198 0.4014 0.6602

0.995 Men 0.0264 0.1328 0.3532 0.6272
Women 0.0161 0.0914 0.3198 0.5600

0.999 Men 0.0146 0.0749 0.2373 0.4360
Women 0.0093 0.0542 0.2075 0.2697
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