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Abstract: Privacy-preserving computation (PPC) enables encrypted computation of private data.
While advantageous in theory, the complex technology has steep barriers to entry in practice. Here, we
derive design goals and principles for a middleware that encapsulates the demanding cryptography
server side and provides a simple-to-use interface to client-side application developers. The resulting
architecture, “Federated Secure Computing”, offloads computing-intensive tasks to the server and
separates concerns of cryptography and business logic. It provides microservices through an Open
API 3.0 definition and hosts multiple protocols through self-discovered plugins. It requires only
minimal DevSecOps capabilities and is straightforward and secure. Finally, it is small enough
to work in the internet of things (IoT) and in propaedeutic settings on consumer hardware. We
provide benchmarks for calculations with a secure multiparty computation (SMPC) protocol, both for
vertically and horizontally partitioned data. Runtimes are in the range of seconds on both dedicated
workstations and IoT devices such as Raspberry Pi or smartphones. A reference implementation is
available as free and open source software under the MIT license.

Keywords: privacy-preserving computing; cloud computing; federated computing; cryptography;
secure multiparty computation; propaedeutic framework; Python; free and open source software

1. Introduction

Data has been called the “new oil” that fuels the digital future economy. Society
and science need data to make informed decisions, and such information becomes more
reliable when it builds upon independent data sources. Enterprises and consumers begin
to understand the value of their data assets, and again, such data become more valuable
when they are pooled from inaccessible silos into large comprehensive data lakes.

On the other hand, there is a lot of friction in sharing data openly. Companies are
afraid to reveal trade secrets to their competitors. Research and development agencies
closely guard the results of their work. Consumers and citizens are concerned about privacy
and are wary of their data being potentially used to their disadvantage. Data protection and
data security are ubiquitous, and informational self-determination has practically become
a basic human right.

As a consequence, while 84% of companies believe analytics will improve their com-
petitive position somewhat or significantly [1], and 75% of companies would be willing
to share their data [2], only 39% of European companies claim to share data with other
companies [3]. Similarly, 92% of internet users are concerned about privacy [4].

In other words, traditionally, there is a tradeoff between the value of data sharing
and the need for privacy and data protection. Public domain data and open data have the
highest societal and public economy benefits but require participants to relinquish their
rights to their data and do not offer much in terms of ex-post control after consent. The
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middle ground is data sharing and collaboration, subject to licenses and contracts. Due to
the ephemeral nature of data, these are often difficult to control and enforce. Finally, data
may be privately owned with restricted and limited access by other parties.

There have always been attempts to create frameworks for data sharing that would
provide more benefits with fewer downsides. For example, a classic analog example of a
“trusted third party” would be the business consultant who confidentially learns the trade
secrets of a pool of companies and redistributes the information as sanitized benchmarks
and best practices among them.

In the information age, “federated computing” aims to integrate data from heteroge-
neous sources. Results are computed by the involved parties in a distributed fashion. In
particular, privacy-preserving computation (PPC) aims to avoid open data sharing and
safeguard the privacy of data subjects. Some of the more prominent examples include
the following.

Secure multiparty computation (SMPC) [5,6] locally encrypts input data as crypto-
graphic shares and then performs joint computation on those shares in a peer-to-peer
network to derive a result that then becomes known to all involved parties. SMPC is often
seen as a gold standard, potentially providing mathematically proven security, even in
anonymous, trustless settings with some malicious parties that may seek to deviate from
the protocol to discover the other parties’ secret inputs.

Fully homomorphic encryption (FHE) [7,8] locally encrypts input data before sending
them to some public cloud. The cloud then performs computation on encrypted data only.
While simple and powerful, only very few algorithms actually work on encrypted data.

Differential Privacy (DP) [9,10] seeks to limit access to some databases by keeping
track of some “privacy budget”. In particular, researchers are limited in what they may
learn about individual data points in the database. This is useful for scientific computation,
e.g., on medical databases that seek to derive some aggregate statistics.

For an overview of related technologies, see [11]. To some degree, these technologies
all share a common problem. Their power to reconcile data sharing with privacy comes at
the cost of increased computational overhead and operational complexity. For example, in
the case of SMPC, most frameworks aim to provide a monolithic yet universal solution,
replacing basic arithmetic operations with exponentially growing garbled or arithmetic
circuits [12,13] or costly asymmetric encryption [14–16].

There are only a few turn-key solutions commercially available, e.g., Sharemind [17].
Available open source frameworks, on the other hand, are rarely industry-grade. They
rely on complex dependencies and are built on exotic tech stacks that are cumbersome to
develop, operate, and secure. Few are simple to use and explicitly designed to work in
propaedeutic settings, e.g., EasySMPC [18].

Presently, PPC still has several barriers to entry. Some are on the business side (lacking
financial incentives and unproven business models) or are purely historical (lack of visible
role models and successful showcases). These are out of the scope. However, many barriers
are related to technical pain points that render the development, deployment, and operation
of PPC solutions cumbersome and difficult. In particular, potential users and researchers
note the computational overhead (often prohibitive in the case of monolithic universal
solutions), exotic tech stacks and dependencies, the lack of cryptography skills of their
developers, and the lack of pretext and understanding by their data protection officers.
These can and should be addressed by the architecture.

In this work, we present an architecture that alleviates several of the perceived “pain
points” and provides a simple yet effective framework to employ different PPC technologies.
The goal is to separate the complexity of cryptographic protocols from business logic
concerns. The minimalistic solution should be useable by small teams without a background
in cryptography. Multiple topologies between data owners, processing nodes, and data
consumers should be feasible. Developers should not be forced to use any particular
language or libraries. Data flow should be transparent and straightforward to secure.
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Finally, the solution should be lightweight enough to work in IoT settings and scale to
potentially large networks.

2. Materials and Methods
2.1. Pain Points and Design Goals

The following pain points are recurring topics in the literature, have been encountered
in interviews with prospective early adopters, or have been experienced firsthand by the
authors. Each has led to the formulation of a specific design goal addressing those concerns
(see Table 1).

Table 1. Pain points and derived design goals.

Pain Points Design Goals
related to capabilities (C)
front-end and business logic developers rarely
have any expert knowledge of PPC

provide high-level computing routines that
hide low-level cryptography protocols (C1)

PPC is inaccessible to marginal groups lacking
computing and personal resources

build a minimalistic solution that can be run by
a single developer on a Raspberry Pi [19] (C2)

PPC is difficult to teach and experience in the
limited time frame of a typical lesson

provide a propaedeutic solution that works in
a school or university teaching setting (C3)

related to development (D)
PPC often appears as the core functionality, so
far as to even require to be a main routine

PPC should be a network-level concern,
separated from high-level concerns (D1)

introducing PPC functionality to a business
logic often requires a complete rework

enable piecewise introduction of PPC into an
existing legacy business logic codebase (D2)

PPC frameworks require a specific tech stack
and introduce a lot of dependencies

client side and the core of the server side
should be free of any dependencies (D3)

coding for any particular PPC framework locks
the developer to a specific language

let client-side developers freely choose their
language or keep the legacy one (D4)

related to security concerns (S)
some PPC frameworks are developed by
non-experts in cryptography and are unsafe

do not reinvent the wheel; make use of existing
and proven PPC frameworks (S1)

PPC involves sensitive data that should not be
visible to the front end or the outside

enable topologies with data flow confined to
trusted machines on the backend (S2)

many PPC use cases involve a third-party
researcher who must be able to run analyses

enable topologies with control flow coming
from an external researcher (S3)

every PPC calculation requires a complete
re-evaluation by data security officers

separate topology, protocol, and function so
they can be assessed independently (S4)

related to deployment and operation (O)
PPC often requires all parties to agree on the
exact same tech stack and IT environment

enable joint computation between parties using
different hardware or software (O1)

without a lot of experience, it is often unclear
which PPC framework is best suited for a task

frameworks should be replaceable without the
need to rewrite business logic (O2)

universal PPC solutions often have enormous
overhead in terms of space and processing

provide “small and fast” solutions that cater to
the most often encountered tasks (O3)

2.2. Resulting Architecture

At its highest level, the architecture is dictated by a twofold separation: Business logic
needs to be disentangled from cryptography protocols (separation of concerns, dependency
inversion). And data flows of different data owners need to be separated from one another
until they hit the underlying cryptography layer (privacy).

The first point is conveniently solved by a client/server architecture. Providing server-
side PPC protocols through microservices and a web API to the client-side business logic
addresses several of the above design goals.

However, if clients are to be entirely free of any cryptography concerns, they cannot
send cryptographic shares to the server but need to be able to send raw data in the clear.
This is also true because the client should be agnostic as to which particular PPC protocol
is run by the server, as different protocols require quite different generations of shares.
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Favoring minimalistic lean clients and simplicity of the client side over other consider-
ations, we thus make the uncommon decision that every data owner runs their own server.
In PPC lingo, we have as many compute nodes as there are input/data nodes, and they
might coincide.

The resulting design decisions are listed in Table 2.

Table 2. Design decisions and their rationale.

Design Decision Rationale and Addressed Design Goals

client–server architecture

• offload computationally expensive cryptography to the
server (D1)

• separate business logic concerns (client-side) from
cryptography concerns (server side) (C1, D1, O2)

one dedicated server per client

• allows clients to remain lightweight and generalist API
wrappers without specific encryption logic (D3)

• servers can be trusted by their own client/data owner
(S2, S3)

• for less attack surface, it is possible to keep data entirely
server side with only control flow coming from the client
(S2, S3)

• easy to analyze and straightforward to secure (S4, S2)
• easy to explain and understand in a propaedeutic

setting (C3)

solution should be
a middleware

• encapsulate low-level cryptographic scripts and provide
them to the client as high-level macros (C1, D1)

• provide the same macros for different PPC backends
(O2, S4)

• hosting one or several established PPC frameworks (S1)

provide microservices

• rebuild business logic piecewise in a privacy-friendly
fashion (D2)

• provide highly optimized microservices for specific
business problems instead of slow universal monoliths
(O3, C2)

provide RESTful API

• easy to provide API wrapper in any programming
language (D4)

• client remains free of any PPC-specific
dependencies (D3)

represent server-side objects 1:1
client-side

• make client-side code easy to read and write (D1,
C1, C3)

• allow the client to remain lightweight yet powerful (D3,
C2, C3)

• allow server-side-only data flow (S2, S3, S4)

implement server middleware
in Python (optional)

• core middleware can be implemented in pure Python
without any additional dependencies except for a
webserver (D3)

• Python is available on most any platform (O1, C2)
• Python is popular in propaedeutic settings and data

science (C3)
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2.3. Overall Concept of Federated Secure Computing

Federated Secure Computing connects heterogeneous systems (federation) through
privacy-preserving computing protocols (secure computing), Figure 1.
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It achieves this as a middleware between client-side business logic and server-side
cryptography backends. It encapsulates the secure computing functionality through specific
microservices and exposes them to the clients through an easy-to-use API, Figure 2.
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2.4. Client–Server Topologies

While the decision to have exactly one server per data owner seems to be quite strong,
there really is no restriction on the actual topology of the PPC protocols employed in
the backend.

In PPC lingo, there are data nodes (providing input data), compute nodes (running
the protocols), and researcher nodes (providing control flow and receiving results). Here,
we have server nodes and client nodes, which may or may not coincide with data, compute,
and/or researcher nodes.

2.4.1. Example 1: Clients Act as Data and Researcher Nodes and Servers Act as
Compute nodes

This topology is suitable when there are several equal and simultaneously active
researchers in a symmetric peer-to-peer network.

Clients send unencrypted input data and control flow to their respective servers.
Servers host the PPC protocol and thus act as compute nodes. They break the input data
into cryptographic shares and inject it into the protocol. They execute the protocol on
encrypted shares and send the result back to their clients, Figure 3.
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The propaedeutic protocol Simon (SImple Multiparty computatiON) uses this topology
and is provided with the reference implementation as a working example.

2.4.2. Example 2: Servers Act as Data and Compute Nodes, and a Single Client Acts as
Researcher Node

The difference to Example 1 is that data are hosted on the server, not on the client.
This is a more likely case in institutions where data are not supposed to be seen even by
their own clients and researchers.

In this case, there is no need for more than one researcher (of course, having one
researcher per server is still a perfectly viable option). The single researcher may send
control flow to all servers (rendering synchronization trivial) and receive only the result of
the computation (but has no access to input data on the servers), Figure 4.

Using server-side object representation, it is possible to write wrappers for server-side
database handles and access them through the client. In this case, care must be taken to
properly secure the API, in particular by object-level authorization.

This topology is suitable if there is a privileged researcher and a number of indepen-
dent contributors. For example, a university hospital researching the data of teaching
hospitals; a government agency using data of regional bodies; a parent company analyzing
subsidiaries; an industry association providing benchmarks to their member companies; etc.
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2.4.3. Example 3: Servers Run Middleware Only, and Additional Compute Nodes Are in
the Backend

Some PPC protocols might require a certain compute cluster of their own. For example,
some SMPC protocols use three independent compute nodes, irrespective of the number of
data nodes. In this case, the role of the Federated Secure Computing servers is “only” to act
as a gateway hosting a translatory middleware, Figure 5.
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The middleware receives input data and translates them into cryptographic shares
according to the protocol of the compute cluster; the middleware receives control flow from
the client and accordingly instructs the compute cluster.

This topology is useful if one wants to combine the client-side simplicity of Federated
Secure Computing with a more mature and complete solution to run the actual computa-
tions on the backend. For example, a Carbyne Stack (Robert Bosch GmbH, 2022, Stuttgart,
Germany) compute cluster would be a useful backend.

2.4.4. Example 4: DataSHIELD

DataSHIELD [20,21] is a popular PPC solution in academic and data science settings. It
features a central compute node that receives aggregated data from data nodes, aggregates
it further, and forwards the summary statistics to the researcher.
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If one should want to capsulate the DataSHIELD server behind a Federated Secure
Computing middleware, the topology will look like Figure 6.
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In a way, this is a combination of Example 2 (a single researcher) and Example 3 (pure
middleware functionality of Federated Secure Computing).

It might be useful if one wants to use client-side languages other than R to develop
scripts, or it might be convenient to include DataSHIELD for its statistical power to pro-
cess, e.g., metadata of data that are analyzed in full by other protocols such as secure
multiparty computation.

2.4.5. Heterogeneous Networks

Finally, the architecture is able to accommodate mixed topologies.
In Example 1 above, it may be that some sites keep their data on the client side (as

shown in Figure 3) while others retain their databases on the server side (as shown in
Figure 4). Then, the sites simply need different data input instructions in their respective
client-side code.

In Examples 1 and 2 above, it may be that some sites have their dedicated researcher
(as shown in Figure 3) while some of them form—potentially multiple—pools overlooked
by a central researcher. Layered topologies are also feasible where the output of one layer
of federated computation becomes input to the next layer.

The only practical restriction is that all parties within one layer or federated cloud
need to agree on the same cryptographic protocol to be used and run server-side.

Finally, it could even be that some parties use middleware while others natively run
their frameworks as long as the cryptographic communication is compatible.

2.5. Client-Side Stack
2.5.1. Representation of Server-Side Objects

Our design goal is to render client-side business logic development as simple as
possible. We do not want any specific dependencies on the client side, and we would like
to go through the API as transparently as possible. Hence, we would like to be able to write
client-side code like this (Listing 1):
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Listing 1. Example of how client-side code should interact with server-side objects.

import federatedsecure.client

# connect to the server, return API handle
api = federatedsecure.client.connect(“https://my.server”)

# find a microservice that matches some requirements
microservice = api.create(functionality = “can do some stuff”})

# connect to some specific server-side database
database = api.create(connector = “myconnector”, version = “1.2.3”)

# fetch input data
data = database.get_handle().query(row = 2, column = 5)

# do some server-side computation
result = microservice.compute(data)

# download and output the result
print(api.download(result))

There are two functions that translate between the server side and the client side:
api.create returns a handle to a top-level server-side object, typically a microservice.

Some arguments are provided that describe the desired microservice.
api.download serializes the server-side data belonging to some handle and returns

them to the client.
This means that all the other variables in above pseudocode (microservice, database,

data, and result) are simply handles for the server-side objects. The client can access them
through the API and trigger server-side behavior without any client-side dependencies.
We achieve this by using a wrapper class called Representation.

As its name implies, it represents server-side objects. It stores a pointer to the API (so
it can trigger requests to the API) and a unique identifier (UUID) of the server-side object.
Access to member variables and functions can then be reflected on the API by passing
the UUID.

In Python, this is particularly straightforward (Listing 2):

Listing 2. Representation class (simplified).

Class Representation:

def __init__(self, api, uuid):
self.api = api
self.uuid = uuid

def __getattr__(self, member_name):
return self.api.attribute(self.uuid, member_name)

def __call__(self, *args, **kwargs):
return self.api.call(self.uuid, *args, **kwargs)

For example, database.get_handle().query(row = 2, column = 5), in fact, cre-
ates four (!) representations: (1) of the member function get_handle, (2) of the result of
invoking that member function without arguments, (3) of that result’s member function
query, and (4) of the result of query with some arguments.

Note that such nice syntactic sugar is not available in all programming languages. For
example, in R, the same code would read as follows (Listing 3):

https://my.server
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Listing 3. In some languages, client code will be more verbose than in Python.

source (“. . ./federatedsecure/client.r”)

# connect to the server, return API handle
api <- Api(“https://my.server”)

# find a microservice that matches some requirements
microservice <- api$create(kwargs = list(
functionality = “can do some stuff”))

# connect to some specific server-side database
database <- api$create(kwargs = list(
connector = “myconnector”, version = “1.2.3”))

# fetch input data
func_handle <- database$attribute(“get_handle”)
handle <- func_handle$call()
func_query <- handle$attribute(“query”)
data <- func_query$call(list(row = 2, column = 5))

# do some server-side computation
func_compute <- microservice$attribute(“compute”)
result <- func_compute$call(list(data = data))

# download and output the result
print(api$download(result))

2.5.2. API Wrapper

By using Representation, the entire API traffic can be routed through very few
RESTful endpoints (see Table 3).

Table 3. API endpoints.

Verb Endpoint Server-Side Effect and Response

GET /representations • list of top-level microservices

POST /representations • finds matching top-level microservice
• returns uuid representing the microservice

PUT /representations • upload data and store them on the server side
• returns uuid representing the data

PATCH /representation/{uuid}
• calls server-side function represented by uuid
• stores the return value on the server side
• returns uuid representing the return value

GET /representation/{uuid}/{attr}

• gets attribute (e.g., child variable, member
function) of object represented by uuid

• stores the pointer on the server side
• returns uuid representing the attribute

GET /representation/{uuid} • serializes the object represented by uuid
• returns the serialized data

DELETE /representation/{uuid} • deletes the object represented by uuid

In these terms (Listing 4), it is easy to implement api.create, api.download, api.call,
and api.download as used in the main routine and in Representation above.

https://my.server
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Listing 4. Api class (simplified).

class Api:

def __init__(self, url):
self.http = HttpInterface(url)

def list(self):
return self.http.GET('representations')

def create(self, *args, **kwargs):
response = self.http.POST('representations',
body = {'args': args, 'kwargs': kwargs})
return Representation(self, response['uuid'])

def upload(self, *args, **kwargs):
response = self.http.PUT('representations',
body = {'args': args, 'kwargs': kwargs})
return Representation(self, response['uuid'])

def call(self, uuid, *args, **kwargs):
response = self.http.PATCH('representation', uuid,
body = {'args': args, 'kwargs': kwargs})
return Representation(self, response['uuid'])

def attribute(self, uuid, attr):
response = self.http.GET('representation', uuid, attr)
return Representation(self, response['uuid'])

def download(self, representation):
response = self.http.GET('representation',
representation.uuid)
return response['object']

def release(self, uuid):
self.http.DELETE('representation', uuid)
return None

2.5.3. Client Design Considerations

Programming language—At the time of writing, there are API wrappers in Python, R,
and JavaScript. As the client is very thin and only contains the classes Api and Representa-
tion and an HTTP interface, it is easy to develop API wrappers in other languages. And in
principle, curl would suffice.

Thin client—One should keep the client as thin as possible. We want client-side
developers to be free in their choice of language, so any functionality that we introduce in
one language’s API wrapper we would have to introduce in each. Also, we want the client
to be small (read: kilobytes) so it can be used in IoT settings.

Macros should be on the server side—The last point implies that any macro function-
ality should not be written on the client side. For example, if you want to combine several
steps like connecting to a database, getting a handle, reading data, and storing it into a
single line of client code, then you should write a small server-side extension for that. This
way, the functionality will be available to all clients, and this eliminates several potentially
slow and payload-heavy API calls.

Securing the API—This is mainly a server-side concern, but one would probably have
to account for authentication and authorization on the client side, too. Federated Secure
Computing is designed for propaedeutic settings, but if it were used in production, this
would have to be adapted to the organization’s specific security implementation.
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Full RPC framework—Our implementation above is minimalistic and propaedeutic.
It is a lean way to interact with server-side objects in a generic way. In a production
setting, you might want to employ a more complete and stable framework for remote
procedure calls.

2.6. Server-Side Stack
2.6.1. Registry, Discovery, and Bus

The core middleware consists, at the minimum, of a registry of server-side objects, a
bus to access them, and a discovery mechanism to register top-level objects.

The registry holds pairs of top-level microservices and their description. At the
minimum, it offers functionality to register another microservice and its description, list all
registered microservices, or fetch a specific object that matches the requested description.
This description is the abstraction that both the registry and the microservice depend upon,
such that their implementation is decoupled (dependency–inversion principle).

The discovery mechanism scans for available microservices at startup and exposes
the registry to them so that they may register themselves. In this way, one can add new
microservices without modifying the server (open–closed principle).

The bus exposes server-side objects to the API and to one another. These objects may
be microservices from the original registry but also any number of classes and instances
that are created, modified, and discarded during runtime.

2.6.2. OpenAPI 3.0

The API is defined by an OpenAPI 3.0 [22] compliant description.
For example, the PATCH endpoint reads as follows (Listing 5).

Listing 5. Open API 3.0 definition (excerpt).

/representation/{representation_uuid}:
patch:
summary: call a server-side object
description: call a server-side object such as a static
function, a member function, or in case of a class, its
constructor
operationId: call_representation
parameters:
- in: path
name: representation_uuid
required: true
schema:
type: string
format: uuid
requestBody:
$ref: '#/components/requestBodies/ArgsKwargs'
responses:
'200':
$ref: '#/components/responses/ResponseOk'
'default':
$ref: '#/components/responses/ResponseError'

2.6.3. Representation of Server-Side Objects

At the minimum, the bus offers functionality to create representations of registered
microservices, create representations of directly uploaded data, create representations of
member variables and member functions of represented objects, call a represented function,
download the content of a representation, and release a representation.

Figure 7 provides a visual look at the life cycle of server-side object representation:
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At startup, microservices are discovered and announce themselves and their function-
ality to the registry.

The client requests a microservice with certain abilities, and if a matching microservice
is found in the registry, a pointer/handle is stored on the bus, and a UUID of that handle is
returned to the client.

In subsequent calls, the client refers to the microservice by that UUID. It may request
attributes of that microservice. For example, if the microservice is represented by a class,
that attribute may be a member function. Again, a pointer/handle to the attribute is stored
on the bus, and another UUID is handed to the client. This process may repeat iteratively.

If a handle represents a callable function, the client may call that function with ad-
ditional arguments. Again, the result of the function call is not directly returned to the
client but stored on the bus, and yet another UUID is returned to the client. A minimal
implementation of this functionality may be illustrated as follows (Listing 6):

At some point, the result of the computation is reached. In this case, the client would
like to download the result itself instead of a mere representation. The server serializes the
result and returns it as a normal response body.

• Security consideration: The client should not be able to access any data on the server.
This can be solved by restricting the download functionality to certain objects labeled
as output. Proper object-level authorization is thus required in production settings.

Finally, the client may release any representation that it does not need anymore. If
those representations point to temporarily stored objects, those objects may be deleted. If
the representation is of a static microservice or the like, only the representation on the bus
is discarded.
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Listing 6. Server-side implementation of calls to server-side objects (simplified).

def call_representation(self, representation_uuid, body):

args, kwargs = self.get_arguments(body)
pointer = self.lut_uuid_to_repr[representation_uuid]
result = pointer(*args, **kwargs)

if result is None:
return None

uuid = str(uuid.uuid4())
self.lut_uuid_to_repr[uuid] = result
return uuid

• Best practice: The client should send appropriate delete requests to the server when-
ever client-side representations are discarded or going out of scope. This prevents
a buildup of obsolete representations on the bus and memory leakage on the server.
As the server cannot control the graceful termination of client-side scripts, additional
garbage collection mechanisms may be a good idea. For example, automatic removal
of unused representations after a certain grace period.

• Best practice: The server may keep look-up-tables for the representation of commonly
used objects instead of issuing new UUIDs every time.

• Best practice: Implementation of microservices needs to balance the overhead of
creating representations with microservice design. Few objects with many prop-
erties/methods each require fewer representations. Deeply nested object hierar-
chies, on the other hand, would lead to more intermediate handles being gener-
ated. Similarly, structures instead of many small arguments save representations:
somemicroservice.somefunction(someargument) creates 3 representations while
somemicroservice.somemodule.somesubmodule.somefunction(argument1, argument2,
argument3) creates 7 representations. In particular, loops over function calls may cre-
ate potentially very many representations, while calling a single function with a table
or array would not.

2.6.4. Microservices

The architecture is not opinionated on what kind of microservices might be hosted.
In the context of privacy-preserving computation (PPC), at least the following types of
microservices will most probably be implemented:

• (Required): One or more PPC protocols. These microservices will, at the minimum,
provide functionality to build peer-to-peer networks with other servers, accept input
data and generate cryptographic shares, and execute the PPC protocol. They may
interact with their peers through the bus and the API or through their own third-
party networks;

• (Probably required): Some basic microservices for synchronization, e.g., to broad-
cast public parameters of calculations to other nodes or to control the joint flow of
computation through semaphores and other signals;

• (Optional): Helper microservices facilitation server-side integration into the non-
cryptographic infrastructure. This includes interfaces to database prompts or interfaces
to IoT data acquisition.

2.6.5. Webserver and API

The server will expose the public functionality of the bus to the client through an API.
A regular webserver will be needed.
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• Security consideration: In a production setting, all the usual best practices of securing
a webserver and API should be followed. In particular, user authentication and proper
object-level authorization.

2.6.6. Programming Language

There is no particular programming language required for the implementation of
a Federated Secure Computing server. The propaedeutic reference implementation (see
below) is in Python, though. If need be, different microservices may be implemented in
different languages and communicate through the API with one another.

3. Results
3.1. Implementation
3.1.1. Namespaces

The following namespaces are used or are reserved for future use (see Table 4).

Table 4. Namespaces.

Language Namespace Structure

Python

• federatedsecure
• federatedsecure.client
• federatedsecure.server
• federatedsecure.services
• federatedsecure.services.<name>.* (see below)
• federatedsecure.services.<category>.<name>.* (see below)

Java • com.federatedsecure.*

3.1.2. Packages

The following packages are available (see Table 6).

Table 5. Packages.

Repository Packages

PyPI
• federatedsecure-client
• federatedsecure-server
• federatedsecure-simon

3.1.3. Repository Structure

At the time of writing, the following repositories are public on GitHub (see Table 6).

Table 6. GitHub repository structure and contents.

Repository Contents

github • top-level README.md of the organization

api • OpenAPI 3.0 specification used by both client and server

client-<language>

• client libraries providing API wrappers in multiple
languages

• top-level directory may contain “src”, “test”, “docs”, etc.
• examples beyond a simple hello world should go with the
• services’ repositories and should work with multiple clients
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Table 6. Cont.

Repository Contents

server

• core middleware as importable library (without
webserver runtime)

• implemented in Python only (no top-level
language directories)

• top-level directory contains “src”, “docs”, “examples”,
and “pypi”

• the “pypi” directory contains the Python Package
Index manifest

service-<name>

• larger, complex microservices
• typically, PPC protocols and interfaces to 3rd party

PPC backends
• e.g., “service-simon” (SImple Multiparty computatiON) is a

simple, propaedeutic secure multiparty computation
(SMPC) protocol

• e.g., “service-datashield” would be an interface
to DataSHIELD

utility-<category>-<name>

• smaller, helper microservices
• e.g., “utility-database-mysql” could expose mysql.connector

from the mysqlclient package by wrapping it into a
small microservice

webserver-<name>

• premade webserver runtimes
• e.g., “webserver-connexion” or “webserver-django”
• further webserver stubs can be generated
• by the Swagger utilities from the API definition

whitepaper • this whitepaper

3.1.4. Correspondence

Namespaces, PyPI packages, and repositories relate as follows (see Table 7).

Table 7. Relation between namespaces, packages, and GitHub repositories.

Python Namespace PyPI Package GitHub Repository
federatedsecure.client federatedsecure-client client-python
federatedsecure.server federatedsecure-server server
federatedsecure.services.
<name>

federatedsecure-
<name> service-<name>

federatedsecure.services.
<category>.<name>

federatedsecure-
<category>-<name> utility-<category>-<name>

3.1.5. Code Availability and Licensing

The software is available, free, and open source at https://github.com/federatedsecure
(accessed on 23 August 2023).

All public repositories under this GitHub organization come with the MIT license.

3.2. Installation
3.2.1. Server-Side Installation

First, install a webserver to host the API. Flask plus Connexion is a puristic option
with minimal overhead. Django is a more complete alternative. Both are provided as
premade stubs.

https://github.com/federatedsecure
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git clone https://github.com/federatedsecure/webserver-connexion
cd webserver-connexion
pip install -r requirements.txt

Next, install the code server middleware and any additional protocols you might want
to use, e.g.,

pip install federatedsecure-server
pip install federatedsecure-simon

The middleware will automatically discover the plugin, so there is no more additional
setup. Run the server by, e.g.,

python ./src/__main__.py --port = 55500

You can check that the server is running by browsing to

curl http://localhost:55500/representations

3.2.2. Client-Side Installation

Client-side installation is likely a single command:

pip install federatedsecure-client

On machines where pip is not readily available as a command line tool (e.g., Android),
the following workaround works directly in Python:

import pip
pip.main([‘install’, ‘federatedsecure-client’])

3.3. Benchmarks

The following benchmarks give an indication of the performance one may expect from
a secure multiparty computation (SMPC) backend with task-specific microservices. Here,
we are using the propaedeutic Python package “Simon” (SImple Multiparty computatiON).
Monolithic universal SMPC solutions like garbled circuits would generally be slower.
Optimized implementations in a compiled language would be faster. Methods other than
SMPC (e.g., fully homomorphic encryption or trusted computing like DataSHIELD) might
have different performance characteristics altogether. The performance of various methods
and algorithms has been studied extensively in the literature. The following is rather to
be understood as evidence that basic calculations of average-size problems may easily be
performed with little overhead by the presented middleware.

3.3.1. Impact of Server Hardware

The overwhelming share of computational cost is incurred on the server side. In
the following benchmark, two or three servers and two or three clients, respectively, are
simultaneously running on the same local host machine, Table 8.

The workstation was able to handle the tasks in about a second on average. The laptop
took about two to three times as long. This reflects the lower CPU and RAM clocks and
the fact that it was in energy conservation mode and simultaneously loaded with typical
office tasks.

Perhaps most impressively, the Raspberry Zero, a device priced at five USD, is suf-
ficient to run three Federated Secure Computing servers and clients in parallel. The
BCM2835-based system-on-a-chip is an order of magnitude slower than the larger ma-
chines but still might be useful in propaedeutic or internet of things applications.

https://github.com/federatedsecure/webserver-connexion
http://localhost:55500/representations
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Table 8. Speed benchmarks depending on server hardware (seconds).

Task Workstation 1 Laptop 2 Raspberry Zero 3

horizontally partitioned data (without record linkage)
floating point
additions 4 0.10 ± 0.01 0.26 ± 0.01 6.8 ± 1.3

matrix
multiplications 6 0.26 ± 0.02 0.64 ± 0.24 7.7 ± 0.2

histograms 5 0.25 ± 0.04 0.59 ± 0.10 16.4 ± 0.3
contingency tables 5 0.38 ± 0.07 1.00 ± 0.12 27.8 ± 0.6
univariate statistics 5 0.64 ± 0.05 1.71 ± 0.18 52.4 ± 0.5
bivariate statistics 5 1.93 ± 0.05 5.70 ± 0.11 155.7 ± 1.7
set intersections 5 0.57 ± 0.06 1.30 ± 0.07 35.7 ± 0.5
set intersection size 5 0.48 ± 0.08 1.18 ± 0.10 35.9 ± 0.7
vertically partitioned data (with record linkage)
contingency tables 5 1.33 ± 0.16 3.29 ± 0.35 84.3 ± 2.1
OLS regression 6 0.86 ± 0.01 0.24 ± 0.01 5.8 ± 0.2

1 Intel Core i7-9700K, 3.6 GHz, 96 GB DDR4-3600. 2 Intel Core i5-6200U, 2.3 GHz, 8 GB DDR4-2133. 3 Broadcom
BCM2835, 1.0 GHz, 512 MB LPDDR2-SDRAM. 4 M = 3 parties; N = 100 data samples each. 5 M = 2 parties;
N = 100 data samples each. 6 M = 2 parties; N = 100 elements in 10 × 10 matrix.

3.3.2. Impact of Server–Server Connectivity

Most secure multiparty computation protocols engage in multiple rounds of commu-
nication between the servers. Consequently, the network overhead is expected to have a
significant influence on computing time.

The following benchmark connects two servers through different means with varying
network latency. The baseline is the workstation, as above, hosting both servers. The
internal latency is way below 1 millisecond and essentially zero. In the second case,
the workstation, as above, and the laptop, as above, are connected by ethernet cables,
respectively, WLAN through a router with 2 milliseconds latency. In the third case, another
fast server is connected to the workstation over public internet with 28 milliseconds of
latency. See Table 9.

Table 9. Speed benchmarks depending on server connectivity (seconds).

Task Localhost 1

(<1 ms ping)
LAN/WLAN 2

(2 ms ping)
Internet 3

(28 ms ping)
horizontally partitioned data (without record linkage)
floating point
additions 4 n/a 0.50 ± 0.02 2.5 ± 0.7

matrix
multiplications 5 0.26 ± 0.02 0.81 ± 0.22 2.7 ± 0.8

histograms 4 0.25 ± 0.04 1.72 ± 0.05 9.4 ± 2.0
contingency tables 4 0.38 ± 0.07 3.12 ± 0.13 16.1 ± 4.2
univariate statistics 4 0.64 ± 0.05 4.10 ± 0.74 22.3 ± 4.5
bivariate statistics 4 1.93 ± 0.05 11.14 ± 0.54 59.2 ± 5.3
set intersections 4 0.57 ± 0.06 1.50 ± 0.27 4.0 ± 0.6
set intersection size 4 0.48 ± 0.08 1.30 ± 0.06 3.1 ± 0.5
vertically partitioned data (with record linkage)
contingency tables 4 1.33 ± 0.16 4.78 ± 0.25 14.9 ± 1.9
OLS regression 5 0.86 ± 0.01 0.52 ± 0.07 2.3 ± 0.4

1 1× Intel Core i7-9700K, 3.6 GHz, DDR4-3600, running both servers. 2 1× Intel Core i7-9700K, 3.6 GHz, DDR4-
3600, and 1× Intel Core i5-6200U, 2.3 GHz, DDR4-2133, connected by LAN router, 2 ms RTD. 3 1× Intel Core
i7-9700K, 3.6 GHz, DDR4-3600, and 1× Intel Xeon Silver 4310, 2.1GHz, DDR4-2666; connected by internet,
28 ± 1 ms RTD. 4 M = 2 parties; N = 100 data samples each. 5 M = 2 parties; N = 100 elements in 10 × 10 matrix.

In the WLAN setting, networking overhead roughly doubles overall computing time.
In the internet setting, networking overhead increases computing time about fivefold.
Hence, in practical settings, putting servers of the different parties close to each other, e.g.,
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in the same physical data center or hosting them on a common cloud infrastructure, will
be beneficial.

3.3.3. Impact of Client–Server Connectivity

In the final benchmark on speed, the servers are run on the same machine as before,
but the clients connect through different means.

In the baseline, the clients are run on the same physical machine as above. In the
second case, the clients are run on a separate laptop, connected by LAN/WLAN to the
workstation as before. In the third setting, the clients are run on smartphones, dialing up
to the workstation through public mobile internet services. Clients connected through
localhost and LAN/WLAN client were about as fast, but connections over the mobile
network were slower by an order of magnitude due to increased round-trip delays, Table 10.

Table 10. Speed benchmarks depending on client–server connectivity (seconds).

Task Localhost 1 LAN/WLAN 2 Mobile Network 3

horizontally partitioned data (without record linkage)
floating point
additions 4 0.10 ± 0.01 0.26 ± 0.01 6.8 ± 1.3

matrix
multiplications 6 0.26 ± 0.02 0.64 ± 0.24 7.7 ± 0.2

histograms 5 0.25 ± 0.04 0.59 ± 0.10 16.4 ± 0.3
contingency tables 5 0.38 ± 0.07 1.00 ± 0.12 27.8 ± 0.6
univariate statistics 5 0.64 ± 0.05 1.71 ± 0.18 52.4 ± 0.5
bivariate statistics 5 1.93 ± 0.05 5.70 ± 0.11 155.7 ± 1.7
set intersections 5 0.57 ± 0.06 1.30 ± 0.07 35.7 ± 0.5
set intersection size 5 0.48 ± 0.08 0.51 ± 0.14 1.62 ± 0.20
vertically partitioned data (with record linkage)
contingency tables 5 1.33 ± 0.16 3.29 ± 0.35 84.3 ± 2.1
OLS regression 6 0.86 ± 0.01 0.24 ± 0.01 5.8 ± 0.2

1 servers and clients are running in separate CPU cores on same machine. 2 clients on laptop connected through
Intel Dualband-Wireless-AC 8260. 3 clients on three separate mobile phones (2× Samsung SM-G52F/DS “XCover
5”) connecting through 4G network of Telefónica S.A. in Germany. 4 M = 3 parties; N = 100 data samples each.
5 M = 2 parties; N = 100 data samples each. 6 M = 2 parties; N = 100 elements in 10 × 10 matrix.

3.3.4. Code Size Benchmarks

Both the client-side API wrapper and the server-side middleware stub are small,
Tables 11 and 12.

Table 11. Size of client-side API wrapper.

Language Without HTTP Interface With HTTP Interface

Python 2.8 kilobyte 7.4 kilobyte
R 2.1 kilobyte 6.6 kilobyte

Javascript 2.1 kilobyte 3.4 kilobyte

Table 12. Size of server-side API wrapper.

Language Without Webserver With Webserver

Python 12.4 kilobyte 31.6 kilobyte

3.3.5. Setup in IoT Environments

Installation on Raspberry Pi and Raspberry Pi Zero was straightforward, as there are
regular and dedicated Linux distributions available. We tested with Ubuntu LTS 20.04 on
Raspberry Pi 4 Model B and with Raspberry Pi OS on Raspberry Pi Zero. Both distributions
come with an apt package manager, and one may simply install Python and pip as usual.
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Installation on Android smartphones requires a minimal workaround, as apt and
pip are usually not available. We used QPython3, which comes as free and open source
software and can be installed from an Android package (APK) downloaded from GitHub.
Alternatively, the software is available from the usual app stores. Instead of pip on the
command line, one then has to import pip as a Python module and use it to install the
required packages, e.g.,

import pip
pip.main([‘install’, ‘federatedsecure-client’])

After this process, which takes about five minutes, one can develop Federates Secure
Computing apps on Android quite nicely (see Figure 8). In a production setting, one would
probably prefer to develop on a workstation (e.g., via USB) and ship the packaged app. For
propaedeutic settings, the ability to develop on smartphones is quite nice, though.
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3.4. Other Computing Frameworks

In the above, we have used “Simon” (SImple Multiparty computatiON) as an example
of secure multiparty computation in a peer-to-peer network. Simon is provided as a
package in the main repository with a free license. It is, in fact, intended to be used as a fast
propaedeutic example without the need for more elaborate third-party backends. However,
there has been some experience with other methods and setups:
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3.4.1. Homomorphic Encryption with Amazon Web Services

A very early implementation of Federated Secure Computing in 2020 compared the
performance of earlier work [23–25] to a new architecture based on dedicated microservices.
In particular, the amount of effort to implement a solution was a concern, as was the
achievable precision and computing time.

At the time, a prototype of Federated Secure Computing was run in a public cloud
(Amazon Web Services, AWS, Seattle, WA, USA) as “serverless” microservices (AWS
Lambda). It implemented “Sophie” for “simple homomorphic encryption” and was basi-
cally a trusted computing framework with some level of privacy protection through local
aggregation and homomorphic obfuscation.

The use of a public cloud provider, serverless microservices, the public cell phone
network, consumer hardware, and Python language were conceptual highlights. The
performance results were promising and motivated the further development of Federated
Secure Computing, Table 13.

Table 13. Secure multiparty computation vs. an early version of Federated Secure Computing.

Earlier Work [12–18,20–25] Federated Secure Computing

data • real patient data • pseudodata

routing
• Munich to Berlin (500 km)
• LMU to Charité
• fast internet backbone

• Munich to Frankfurt
(300 km)

• LMU to AWS eu-central-1
• public 4G mobile network

protocol • secure multiparty
computation

• (weak) homomorphic
encryption

software • FRESCO, SPDZ • fdrtd 0.3.1 (build 2020-03-02)

hardware

• Intel Xeon Silver 4112 CPU
• 8 cores, 2.6 GHz, 8 MB cache
• 128 GB RAM
• 1 Gb/s ethernet networking

• Samsung Galaxy Xcover 4
• Exynos 7570 CPU,

4 × 1.40 GHz
• 2 GB RAM
• ~100 Mb/s LTE networking

implementation effort

• several months of
preparation

• two systems administrators
• one crypto

expert programmer

• around 15 min
• 9 lines of Python code

achieved precision • 1.8% to 11.7% relative
numerical error

• exact to floating point
machine precision

runtime • 1229 s • 4.5 s

3.4.2. Differential Privacy with DataSHIELD as Backend

Due to its use in the German Medical Informatics Initiative (MII), the trusted comput-
ing framework DataSHIELD might be a desirable backend option. A student implemented
an interface to DataSHIELD as a collection of microservices as part of a third-party-funded
project. Functionality was demonstrated, and calculations were successfully performed.
Performance was in line with raw DataSHIELD performance without measurable overhead
by the middleware. A refactored version of the interface may be added to the Federated
Secure Computing repository at a later time.

3.4.3. Secure Multiparty Computation with Sharemind

Sharemind is a powerful industry-grade solution for secure computing. It employs
secure multiparty computation with end-to-end data protection and accountability. Share-
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mind is currently evaluated as a fully-fledged backend solution, and an interface is be-
ing developed.

4. Discussion
4.1. Project Background and Ownership

In 2019, we conducted the world’s first SMPC calculation with real patient data
between the university hospitals of LMU Munich and Charité Berlin [23–25]. Custom
cryptography based on the FRESCO/SPDZ framework [26–28] had to be developed by a
specialist security researcher from TUM. Dedicated hardware servers had to be serviced by
system administrators. Preparation and execution took several months. Our experience
confirmed that privacy-preserving computation was viable but difficult to use.

In 2020, interviews with companies and government agencies confirmed our own
experience. Making their data available for secure analysis without the need for data
sharing or a trusted third party seemed very attractive. On the other hand, they were very
reluctant to use a technology that was poorly understood by their developers and data
security officers; exotic tech stacks and missing skills were almost always a showstopper.
Simultaneously, a market scan revealed that there were attractive and powerful PPC
frameworks already available, both open source and proprietary. In fact, most of the
explored potential use cases would require only the most basic algorithms that had been
well described in the literature. Thus, it became clear that “the technology was already
there”. What was really required was rather a simple middleware to provide a better
DevSecOps experience.

“Multiparty Computation as a Service” was the first attempt to disentangle the cryptog-
raphy layer from business logic and move the complex and computing-intensive workload
to the cloud. It was successfully tested at a private healthcare company in May 2020, when
it was installed in two remote locations within 15 min and performed a distributed analysis
within seconds.

In 2021, bytes for life GmbH, a Munich-based cloud computing startup, conceived
“Federated Secure Computing”, the architecture described in this paper, and developed a
reference implementation. The technology was provided to LMU University Hospital for
“Wirkung hoch 100”, a national competition by Stifterverband (the German donors’ associ-
ation) with the declared aim to improve the German education, science, and innovation
ecosystem. Over a year, the team refined their solution to achieve systemic impact. During
the process, “Federated Secure Computing” was made free and open source. In November
2021, Stifterverband awarded its Innovation Prize to Federated Secure Computing and
provided three years of funding to further develop the technology [29–31].

In 2022, the complete IP and all assets were transferred by bytes for life GmbH to
Ludwig-Maximilians-Universität München (LMU Munich). As an excellence university,
LMU Munich is in the best position to host the open source project long-term and champion
its scientific and economic development.

4.2. Project Status

As of the writing of this paper, most design goals have been achieved.
Regarding architecture, different topologies with any number of data, compute, and

research nodes are feasible. There is a strict client–server separation of cryptography and
business logic concerns.

Regarding implementation, the server-side reference implementation is 100% Python
without any exotic dependencies. The client side is non-opinionated, and stubs to the
OpenAPI interface are available for over a dozen programming languages. The software
has been tested in propaedeutic settings and was usable by non-expert programmers.

Regarding functionality, there is a working implementation of a propaedeutic SImple
Multiparty Computation (Simon) protocol offering some of the most often used algorithms
as a collection of microservices. At the time of writing, there are microservices for secure
sum and secure matrix multiplication, private set intersection, private set intersection
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size, univariate and bivariate statistics, frequency histograms and contingency tables, and
ordinary least squares regression.

Regarding DevOps, our software has been successfully installed and run in minutes
on hardware from dedicated servers to heterogeneous clients to IoT devices. Writing a
simple, secure computation takes less than a dozen lines of user code.

Regarding IoT, both the client-side and server-side software are lean enough to run on
Raspberry Zero devices or last-generation (G3) smartphones. We tested on as early as the
Samsung Galaxy XCover 2 model (GT-S7710) from 2013.

Regarding FOSS, the software comes with a permissive MIT license. The IP is owned
by LMU Munich, a very reputable university and non-profit institution by the State of
Bavaria under German and Bavarian law.

Regarding availability, there is a project website, a dedicated GitHub organization
with a dashboard and structured repositories, a number of easy-to-install PyPI packages,
and this whitepaper.

5. Conclusions

To conclude, “Federated Secure Computing” is both an initiative and a middleware
aiming to make PPC available to small and medium enterprises, startups, research and
teaching institutions, and government agencies. The technology is available as free and
open source software backed by Ludwig-Maximilians-Universität München and funded
by Stifterverband.

We hope this whitepaper enables anyone to join the Federated Secure Computing
ecosystem. We welcome use cases from both the public and private sectors. We invite
contributions to the codebase.
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