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Abstract: The growing popularity of smart beds and devices for remote healthcare monitoring
is based on advances in artificial intelligence (AI) applications. This systematic review aims to
evaluate and synthesize the growing literature on the use of machine learning (ML) techniques
to characterize patient in-bed movements and bedsore development. This review is conducted
according to the principles of PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) and is registered in the International Prospective Register of Systematic Reviews
(PROSPERO CRD42022314329). The search was performed through nine scientific databases. The
review included 78 articles, including 142 ML models. The applied ML models revealed significant
heterogeneity in the various methodologies used to identify and classify patient behaviors and
postures. The assortment of ML models encompassed artificial neural networks, deep learning
architectures, and multimodal sensor integration approaches. This review shows that the models for
analyzing and interpreting in-bed movements perform well in experimental settings. Large-scale
real-life studies are lacking in diverse patient populations.

Keywords: artificial intelligence; machine learning; prediction; in-bed; monitoring; systematic review

1. Introduction

Recently, there has been an increase in attention to patient-centric approaches in the
healthcare environment, primarily through remote health monitoring [1]. Remote health
monitoring allows healthcare personnel to monitor patient health conditions and physiolog-
ical signs in real time [2]. In addition, electric medical beds have been developed in recent
years due to technological progress [3]. These beds are characterized by various features,
including alarms, exit sensors in the bed, and integrated accessory controls [3]. They are the
so-called “smart beds”, where this label describes the interconnection between materials,
design and functionality, and user interfaces [3]. Smart beds provide continuous data that
can be integrated into the health system to identify risk patterns [4]. Smart beds have been
used to prevent episodes such as agitation [5], falls among elderly patients [6], pressure
ulcers [7], and sleep disorders [8,9]. Smart beds and their interface offer an opportunity to
assess three key objectives, as Karvounis et al. [4] reported: patient monitoring, prevention
of falls, and prevention of pressure ulcers.

The growing popularity of smart beds and devices for remote healthcare monitoring
is based on the advancement of artificial intelligence (AI) applications [10]. Just lying in
a smart bed could provide a significant amount of information. Smart beds are widely
used in specific hospital settings, including intensive care units. They have recently found
applications in long-term care units and nursing homes to prevent bedsore-related com-
plications [11]. Furthermore, sensors placed in a hospital bed could inform about the
position of the patient in the bed [12]. Knowing and consequently anticipating the position
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of a patient in the bed has been proven helpful in detecting falls in at-risk populations,
particularly older people [12]. The large amount of data from these modern devices is
dependent on AI support, as traditional database technology cannot store and analyze
them [10]. Machine learning techniques are known to be especially suitable for performing
data processing tasks, given training examples [13]. Various reviews in the literature on
machine learning techniques (ML) and the prevention of pressure injury have shown that
ML techniques are widely implemented with promising results [14–16].

This systematic review aims to evaluate and synthesize the growing literature on the
use of ML techniques to characterize patient movements in bed.

2. Materials and Methods

This review is reported according to the statement of PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) [17]. It is registered in the International
Prospective Register of Systematic Reviews (PROSPERO registration no. CRD42022314329).

2.1. Information Sources and Search Strategy

The search was carried out through the following databases: MEDLINE through
PubMed, EMBASE (through Ovid), CINAHL, Scopus, Cochrane, IEEX, arXiv, ACM digital
library, and Web of Science. The string search was updated on the seventh of September
2024. The words related to the concept of positions in bed and the other outcomes, bedsore
development, and sleep quality, related to the terms related to machine learning techniques
and the term “bed”. The three groups of concepts were linked with the Boolean operator
“AND”. Table S1 shows the applied search strategy.

2.2. Eligibility Criteria

The eligibility criteria were based on the PICO (Population, Intervention, Compar-
ison, Outcome) acronym: Participants, Healthy/non-healthy, volunteer/patients; Inter-
vention/exposure; use of smart beds, sensors in the bed; Comparator, wearable devices;
Outcome, movement patterns.

Articles with the following characteristics were included in this systematic review: (1)
studies in which bed sensors measured parameters such as movements, heart rate, sleep
patterns, and pressure ulcers; (2) studies that used any ML technique; (3) studies that used
wearable devices based on accelerometry to evaluate movements. Articles (1) in languages
other than English, publications (2) with populations other than adults (e.g., animals,
children), or (3) letters, commentaries, or reviews without relevant data were excluded.

2.3. Selection Process

The selection of the title/abstract and the full text was performed by two independent
reviewers (CB and AC). Any conflicts were resolved through discussion or the judgment
of an experienced third-party researcher (HO and CL). The title/abstract and full text
were reviewed using the Rayyan free Web tool [18]. Duplicates were manually removed
using Rayyan.

2.4. Data Extraction

Data were extracted from all selected publications using a predefined format created in
a Microsoft Excel worksheet. The two investigators (CB and AC) independently performed
data extraction; they compared the results and resolved any conflict through discussion or
involvement of a third investigator (CL or HO).

The following study information was collected: characteristics of the study, authors,
year, journal of publication, study design (observational, longitudinal, and simulated
designs), setting (home, controlled environment, hospital, and nursing home), experiment
duration, and outcome type (in-bed pose estimation, multiple output data, and other
specific health indicators); characteristics of the population (volunteers, healthy volunteers,
patients), number of participants, number of male and female participants, and age (mean,
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range); characteristics of the bed, sensor type (bed sensors, wearable devices, arrays of
pressure sensors), number of load cells, bed sensor placement (embedded, outside the bed
structure), list of in-bed positions (supine, prone, left lateral, right lateral, and other), input
data (acceleration data, pressure data, pressure images/maps, and vital sign data), and
input data pre-processing; characteristics of the ML techniques applied, ML category (deep
learning, shallow learning, and combinations of both), models used (clustering, supervised
learning algorithms, and other specific machine learning techniques), and performance
metrics (accuracy, F1 score, sensitivity, specificity, and precision).

2.5. Assessment of Risk of Bias

In assessing the quality of the included studies, we utilized the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [19]. The tool is structured into four key domains:
participants, predictors, outcome, and analysis. Each domain contains multiple signaling
questions to guide the assessment. Reviewers use these questions to classify each study
as having a ”low”, “high”, or “unclear” risk of bias. Despite some limitations in its
applicability to our study design, using PROBAST provided a consistent framework for
evaluating study quality across the included studies.

3. Results

This review followed the PRISMA process [20] to select the included articles, as
presented in the flow diagram in Figure 1. The search in the various databases retrieved
6009 publications. After checking for duplicates, 4145 items were screened based on title
and abstract. This screening led to 3060 studies being removed due to their ineligibility (for
example, another outcome), and 78 articles were selected for this review.

Records identified from: 
Databases 6009 (PubMed 
1655, Scopus 1275, Embase 
999, CINAHL 41, Cochrane 
508, IEE 495, ACM 82, Arxiv 
150, Web of Science 804) 

 

Records removed before 
screening: 

Duplicate records removed  
(n = 1864) 
 

Records screened 
(n = 4145) 

Records excluded 
(n = 3060) 

Reports sought for retrieval 
(n = 1085) 

Reports assessed for eligibility 
(n = 245) 

Reports excluded 167: 

Mo Machine Learning (n = 59) 

Wrong patient population (n = 

20) 

Wrong outcome (n = 72) 

Wrong study design (n = 10) 

No full-text (n = 6) Studies included in review 

(n = 78) 

Identification of studies via databases and registers 

Figure 1. PRISMA flow chart.
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3.1. Descriptive Characteristics of the Study

Table 1 reports the descriptive characteristics of the articles included in this review.
The 78 articles included in our study were published in journals (41, 52%) or conference
collections (37, 48%) after 2018 (53, 68%)—or before it (25, 32%)—and comprised a total of
5647 participants. In many of the studies (65, 75.6%), the data were collected in a controlled
environment (such as a laboratory under supervision). For the remaining research, instead,
data sets were generated from a variety of settings, including hospitals (8, 9.3%), nursing
homes (5, 5.8%), and homes (7, 8.1%).

Table 1. Descriptive characteristics of the included studies.

Author, Year Study Design Population
Category

Number of
Participants

Number
of Males

Number
of Females Age Mean Setting Sensor Type

Research article

Albukhari,
2019 [21] Experimental Volunteers 7 6 1 Controlled

environment Bed sensors

Alinia, 2020
[22]

Olguın &
Pentland, 2006

[23]; Altun, 2010
[24]

Healthy
volunteers 30 7; 4 7; 4 Controlled

environment Wearable

Arora, 2020
[25]

Observational;
Arriba-Pérez,

2016 [26]
Volunteers 2250 Home Wearable

Azimi, 2020
[27] Longitudinal Elders 9 Nursing

home Bed sensors

Bai, 2023 [28] Experimental

Dementia
nursing
home

residents

24 Hospital Bed sensors

Breuss, 2024
[29] Experimental Healthy

volunteers 21 12 9 28.3 (male)
29.5 (female)

Controlled
environment Bed sensors

Bruser, 2013
[30] Experimental Healthy

volunteers
10 9 1 63.1 Hospital Bed sensors

Casas, 2019
[31] Experimental healthy

volunteers
6 4 2 Controlled

environment Bed sensors

Chica, 2012
[32] Observational Patients 20 10 10 Controlled

environment Bed sensors

Cho, 2019
[33] Experimental Healthy

volunteers 10 7 3 Home Wearable

Costello,
2021 [34]

Pouyan, 2017
[35]

Healthy
volunteers 13 Controlled

environment Bed sensors

Davoodnia,
2022 [36]

Ostadabbas, 2014
[37]; Pouyan,

2017 [35]; Clever,
2018 [38]

Healthy
volunteers 30 Controlled

environment Bed sensors

Diao, 2021
[39] Experimental Volunteers 16 9 7 Controlled

environment Bed sensors

Duvall, 2019
[40] Experimental Healthy

volunteers 10 Controlled
environment Bed sensors

Fonseca,
2023 [41] Experimental Healthy

volunteers 60

Controlled
environment

(sensor
sheets over
and under a

mattress)

Bed sensors

Gabison,
2022 [42] Experimental Healthy

volunteers 9 4 5 Home Bed sensors
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Table 1. Cont.

Author, Year Study Design Population
Category

Number of
Participants

Number
of Males

Number
of Females Age Mean Setting Sensor Type

Garcia-
Molina, 2024

[43]
Experimental Healthy

volunteers 18 9 9 44.5
Controlled

environ-
ment; home

Both

Gargees,
2019 [44] Experimental Healthy

volunteers 56 42 14 29.27 Controlled
environment Bed sensors

Hagihara,
2021 [45] Experimental Healthy

volunteers 14 2; 5 3; 4 Controlled
environment Bed sensors

Hsiao, 2015
[46] Experimental Volunteers 9 Controlled

environment Bed sensors

Hu, 2021 [47] Experimental Healthy
volunteers 5 3 2 29.2 Controlled

environment Bed sensors

Hu, 2024 [48] Experimental Healthy
volunteers 22 15 7 Home Bed sensors

Jung, 2022
[49] Experimental Healthy

volunteers 15 9 6 25.8 Hospital Bed sensors

Kawakami,
2017 [50] Experimental Patients 3 2 1 76.7 Nursing

home Bed sensors

Kusmakar,
2021 [51] Observational

Patients;
healthy

volunteers
80 38 42 47.6 Home Wearable

Kuwahara &
Wada, 2017

[52]
Observational Healthy

volunteers 7 Controlled
environment Bed sensors

Liu, 2021 [53] Observational Healthy
volunteers 4 2 2 29.75 Controlled

environment Bed sensors

Manners,
2024 [54] RCT Healthy

volunteers 24 12 12 27.6 Controlled
environment Bed sensors

Matar, 2020
[55] Observational Healthy

volunteers 12 10 2 27.35 Controlled
environment Bed sensors

Monroy,
2020 [56] Observational Healthy

volunteers 7 4 3 24.75 Controlled
environment Wearable

Mosquera-
Lopez, 2019

[57]
Observational Patients 14 11 3 48

Controlled
environ-

ment; home
Bed sensors

Pornpreedawan,
2022 [58] Experimental Healthy

volunteers 10 5 5 22.5 Controlled
environment Bed sensors

Pupic, 2022
[59]

Observational;
simulated

Healthy
volunteers 18 10 8 29.8 Controlled

environment Bed sensors

Raschella,
2022 [54] Observational Patients 26 19 7 68

Controlled
environ-

ment; home
Wearable

Rosales, 2017
[60] Experimental Elders 4 4 0 91.25 Nursing

home Bed sensors

Stern, 2024
[61] Experimental Healthy

volunteers 10

Hospital bed,
home bed,
home bed
with foam
mattress
topper

Bed sensors

Tandon, 2024
[62] Experimental Healthy

volunteers
Controlled

environment Bed sensors

Tapwal, 2023
[63] Experimental COVID-19

patients

Controlled
environ-

ment; home
Bed sensors

Walsh, 2017
[64] Experimental Healthy

volunteers 15 12 11 Controlled
environment Bed sensors
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Table 1. Cont.

Author, Year Study Design Population
Category

Number of
Participants

Number
of Males

Number
of Females Age Mean Setting Sensor Type

Waltisberg,
2017 [9] Observational Patients 9 6 3 53.6 Controlled

environment Bed sensors

Willemen,
2012 [65] Simulated Healthy

volunteers 10 22.95 Controlled
environment Both

Conference paper

Austin, 2012
[66] Observational Patients 27 18 9 51 Controlled

environment Wearable

Bajkowski,
2023 [67] Experimental Elders 19 Nursing

home Bed sensors

Belay, 2022
[68] Experimental Elders 7 Controlled

environment Bed sensors

Breuss, 2023
[69] Methodological Healthy

volunteers 1 Controlled
environment Bed sensors

Channa,
2020 [70]

Pouyan, 2017
[35]

Healthy
volunteers 13 26.9 Controlled

environment Bed sensors

Davoodnia,
2019 [71]

Pouyan, 2017
[35]; Goldberger,

2000 [72]

Healthy
volunteers 13 Controlled

environment Bed sensors

Duan, 2021
[73] Experimental Volunteers 8 Controlled

environment Bed sensors

Enayati, 2018
[74] Experimental Healthy

volunteers 58 Controlled
environment Bed sensors

Heydarzadeh,
2016 [75] Experimental Volunteers 10 Controlled

environment Bed sensors

Husák, 2021
[76] Methodological Healthy

volunteers
Controlled

environment Bed sensors

Ibrahim,
2024 [77] Methodological Healthy

volunteers 15
Controlled
laboratory

environment
Wearable

Lei, 2024 [78] Methodological Healthy
volunteers

Controlled
environment Bed sensors

Luo, 2018
[79] Experimental Volunteers 10 Controlled

environment Bed sensors

Madokoro,
2014 [80] Experimental Volunteers 10 Controlled

environment Bed sensors

Matthies,
2021 [81] Experimental Volunteers 11 8 3 31.45 Controlled

environment Bed sensors

Mendez,
2010 [82] Experimental Healthy

volunteers 11 0 11 Controlled
environment Bed sensors

Metsis, 2011
[83] Experimental Volunteers 3 Controlled

environment Bed sensors

Migliorini,
2010 [84] Experimental Healthy

volunteers 11 0 11 Controlled
environment Bed sensors

Moon, 2023
[85] Experimental Bedridden

patients 5 Hospital Bed sensors

Mukai, 2014
[86] Experimental Healthy

volunteers 11 7 4 Controlled
environment Bed sensors

Oboe
Kubota, 2014

[87]
Methodological Volunteers Controlled

environment Bed sensors

Perez-
Macias, 2017

[88]
Experimental Volunteers 30 24 6 Controlled

environment Bed sensors

Pouyan, 2014
[89] Experimental Volunteers 15 Controlled

environment Bed sensors
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Table 1. Cont.

Author, Year Study Design Population
Category

Number of
Participants

Number
of Males

Number
of Females Age Mean Setting Sensor Type

Pouyan, 2015
[90] Experimental Volunteers 8 Controlled

environment Wearable

Pouyan, 2017
[35] Experimental Healthy

volunteers 13 26.9 Controlled
environment Bed sensors

Rangarajan,
2022 [91] Experimental Healthy

volunteers 5

Tertiary care,
university-
affiliated
hospital

Wearable

Russo, 2021
[92]

Pouyan, 2017
[35]

Healthy
volunteers 13 Controlled

environment Bed sensors

Sano &
Picard, 2014

[93]
Experimental Volunteers 15 Controlled

environment Wearable

Sawada,
2022 [94] Experimental Healthy

volunteers 11 Controlled
environment Bed sensors

Soleimani &
Pesch, 2023

[95]
Experimental

Patients at
risk of

pressure
ulcers

13 Controlled
environment Bed sensors

Vázquez-
Santacruz &

Gamboa-
Zúñiga, 2016

[96]

Methodological Volunteers 1 Controlled
environment Bed sensors

Vyas, 2021
[97] Observational Patients 5 2 3 66.2 Hospital Bed sensors

Wai, 2009
[98] Methodological Volunteers Controlled

environment Bed sensors

Wu, 2023
[99] Experimental Healthy

volunteers 10 7 3 Controlled
environment Bed sensors

Yoon, 2024
[100] Experimental Healthy

volunteers 5 3 2 Hospital Bed sensors

Youngkong,
2021 [101] Experimental Volunteers 6 3 3 Controlled

environment Bed sensors

Yousefi, 2011
[102] Methodological Volunteers Controlled

environment Bed sensors

Regarding the participants enrolled in the included studies, in 48 (60.8%) articles,
healthy adult volunteers were recruited; similarly, 15 (19%) articles involved volunteers.
Furthermore, only five articles involved older people (6.3%), while eleven studies (14%)
focused on patients. In the latter case, the diseases considered were Parkinson’s [32],
sleep disorders [45], obstructive syndrome apnea [29], deteriorated cognitive function [73],
atrial fibrillation [43], and heart disease [72]. The age of the participants ranged between
19 [41,51,53,54,57,58] and 99 years [72]. Eleven studies [22,34–42] considered publicly
available datasets or simulated data.

3.2. Characteristics of the Collected Data

Experiments in this review lasted less than 0.5 h in 14 studies [21–24,28,35,36,38,40,44,
50,52,55,60] or up to months when investigating sleeping patterns [71,72]. The input data
were classified into kinetic data, pressure data, pressure image or map, and vital sign data
(Tables 2 and S2). As expected, before analysis, these input data underwent a preprocessing
phase (70, 90%), which, in most models, involved signal manipulation (46, 58%), feature
extraction (24, 31%), and analysis of the principal component (15, 19%) (Table S3).
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Table 2. Summary of the characteristics of the machine learning technique (MLT) used in the
included articles.

Characteristic Overall Other Position
Estimation

Sleep and
Vigilance Vital Signs

N = 78 N = 31 N = 481 N = 191 N = 81

Type of input
data

Acceleration data 6 (7.7%) 1 (33%) 2 (4.2%) 3 (16%) 0 (0%)
Multiple input data 12 (15%) 0 (0%) 7 (15%) 5 (26%) 0 (0%)

Other 5 (6.4%) 0 (0%) 1 (2.1%) 4 (21%) 0 (0%)
Pressure data 29 (37%) 2 (67%) 21 (44%) 2 (11%) 4 (50%)

Pressure image/map 1 (1.3%) 0 (0%) 1 (2.1%) 0 (0%) 0 (0%)
Vital sign data 17 (22%) 0 (0%) 16 (33%) 1 (5.3%) 0 (0%)

Input data
pre-processing No 8 (10%) 0 (0%) 0 (0%) 4 (21%) 4 (50%)

MLT category Deep learning 29 (37%) 2 (67%) 22 (46%) 3 (16%) 2 (25%)
Shallow learning 39 (49%) 1 (33%) 21 (44%) 12 (64%) 5 (63%)

Both 10 (13%) 0 (0%) 5 (10%) 4 (21%) 1 (13%)

MLT type

Boosting methods 5 (6.4%) 0 (0%) 3 (6.3%) 0 (0%) 2 (25%)
Discriminant analysis 1 (1.3%) 0 (0%) 0 (0%) 1 (5.3%) 0 (0%)

KNN-based 6 (7.7%) 0 (0%) 5 (10%) 1 (5.3%) 0 (0%)
Linear models 1 (1.3%) 0 (0%) 1 (2.1%) 0 (0%) 0 (0%)
Naive Bayes 1 (1.3%) 0 (0%) 0 (0%) 1 (5.3%) 0 (0%)

Other 32 (41%) 2 (67%) 24 (50%) 3 (16%) 3 (38%)
Random Forest 9 (12%) 0 (0%) 6 (13%) 2 (11%) 1 (13%)

SVM-based 22 (28%) 1 (33%) 9 (19%) 10 (53%) 2 (25%)
Unsupervised Learning 1 (1.3%) 0 (0%) 0 (0%) 1 (5.3%) 0 (0%)

Accuracy more
than 95% Yes 36 (47%) 2 (67%) 29 (62%) 2 (11%) 3 (38%)

Abbreviations: MLT = machine learning technique.

3.3. Smart Bed Characteristics

The participant data were acquired from wearable devices (11, 13.4%) and bed sen-
sors (67, 81.7%), and four of them from both (4.8%). The study utilized various sensor
technologies to monitor pressure distribution and related parameters. The majority of
the devices used were load cells, accounting for 32.1% of the cases, followed closely by
arrays of pressure sensors, representing 27.2% (Figure 2). The load cells are specialized
transducers that convert mechanical force or weight into an electrical signal. In the context
of bed monitoring, load cells are often integrated into the bed frame or mattress to mea-
sure changes in weight distribution and provide quantitative data on patient movements,
postural changes, and restlessness during sleep.

These pressure sensors consist of an array of pressure-sensitive elements distributed
across the bed’s surface. They function by detecting changes in pressure distribution when
a patient lies on the bed, providing valuable information about the patient’s movements
and positioning during sleep or rest. A small percentage of studies used multiple sensors
(6.2%) and EMFi sensors (3.7%), highlighting some diversity in sensor choice. Additionally,
a few studies employed specific devices like hydraulic bed sensors (3.7%) and piezoelectric
sensors (2.5%) (Table 1).

The number of sensors that made up the arrays was between 15 [25] and 3560 [27], with
2048 being the most common size [50,51,53,54,57,58,62,75]. Hydraulic sensors use fluid-
filled chambers or tubes to measure pressure variations, providing information on patient
movements and body positioning. Pad sensors typically consist of pressure-sensitive pads
or mats placed on the bed surface to detect pressure distribution and movement patterns.
Oscillosensors use oscillatory motion or vibration detection mechanisms to monitor patient
movements and sleep disturbances.
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Figure 2. Type of bed sensors (columns) and their positions (colors). In the y-axis are reported the
number of studies, while the x-axis categorizes the types of sensors.

Most sensors were embedded into a mattress (25, 30.9%), followed by those integrated
into the bed structure (18, 22.2%). Some were placed outside the mattress and bed structure
(13, 16.0%), while others were positioned outside the mattress (6, 7.4%) or under the
mattress (6, 7.4%). A few studies involved multiple placements (2, 2.5%). Notably, eight
entries (9.9%) had missing information on sensor placement (Figure 2).

3.4. In-Bed Movements

In 53 articles (68%), participants were instructed to perform a set of movements or
acquire specific positions while lying in bed. The most popular postures detected were
supine (47, 60%), prone (21, 27%), and lateral (47, 60%) (Table S4). Regarding the positions,
we categorize the primary static ones (prone, supine, and lateral). When using the term
“movements”, we refer to all distinct types of movement considered by the authors in
the articles, whether static or dynamic. The in-bed movements, as considered by authors,
ranged from three [25,31] to twenty-eight [41]. Postures such as supine (lying on the back),
lateral (lying on the side), prone (lying face down), and various transitional movements
between these positions contribute to the diversity of in-bed movements captured by the
sensors. The differences in in-bed movements between different postures can be attributed
to several factors, including changes in weight distribution, pressure points, and muscle
activation patterns associated with each posture. For example, in the supine position,
movements can primarily involve changes in body position and adjustments for comfort,
whereas, in the lateral or prone positions, movements can include rolling, turning, or
repositioning to alleviate pressure or discomfort.

3.5. Machine Learning Techniques Applied

Among the 78 articles, we considered a model for each outcome and MLT for 142 models
(Table S4). Deep learning models were used primarily featuring CNNs for in-bed position
estimation. Shallow models appeared in seven cases (32%), mainly using SVM, KNN, and
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decision trees, often paired with feature extraction and clustering methods. For sleep out-
come, deep learning models (e.g., CNNs) were used in five cases (56%) with preprocessing
steps such as SMOTE and signal manipulation. Vital sign monitoring featured in five cases
(13%), where shallow models dominated with four instances (80%), including Random
Forests, Naive Bayes, and clustering techniques like KMCA and FCM. Table S3 describes
the characteristics of the models included and their reported performance.

Accuracy was used as an evaluation indicator to assess the performance of the ML
model; we considered the accuracy of the number of correctly identified positions. Pressure
images and pressure data are the most frequently used types of input data for in-bed
monitoring applications, particularly in pose estimation and bedsore prevention (Figure 3).
Pressure data and pressure image/map data are associated with higher accuracy rates in
detecting and predicting various outcomes. The varying sizes and colors of the bubbles
further illustrate the different levels of accuracy achieved across various applications, with
warmer colors indicating higher accuracy.

Figure 3. Bubble chart of the mean minimal accuracy (color) of the best model divided by outcome
(vital signs, sleep, multiple output data, in-bed pose estimation, bedsores) and type of input data
(acceleration data, multiple input data, other, pressure data, pressure image/map, vital sign data).

The best-performing models in each article exhibited an accuracy range from 31%
(as seen in the AdaLSTM in Alinia et al. [22]) to 100% (Feed Forward Neural Network in
Davoodnia et al. [36] and RF in Youngkong et al. [101]). Globally, 36 models (34%) reached
an accuracy of more than 95%.

Figure 4 shows if the models have used pre-processing techniques or not. The bar
chart highlights that the majority of studies, regardless of the machine learning approach
used, apply preprocessing techniques. Specifically, thirty-six of the shallow learning studies
(51.4%), twenty-five deep learning studies (35.7%), and nine of the combined shallow and
deep learning studies (12.8%) utilized preprocessing. This underscores the importance of
preprocessing in improving the performance of in-bed patient monitoring systems.
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Figure 4. Preprocessing techniques in in-bed patient monitoring studies with machine learning
approach.

In Table S3, the information on pre-processing is reported. The most commonly used
preprocessing methods were feature extraction methods, accounting for 20 occurrences
(28.57%). This was followed closely by signal manipulation methods with 23 occurrences
(32.86%). Principal Component Analysis (PCA) was used in 12 instances (17.14%). Addi-
tionally, image processing techniques appeared three times (4.29%), while data cleaning
and augmentation were employed in three cases (4.29%). Other methods comprised six
instances (8.57%).

3.6. Risk of Bias Assessment

Overall, about 40% of the studies are rated as “Unclear”, indicating uncertainty in their
overall quality, while around 35% are rated as “High”, suggesting notable concerns. Only
about 25% have a “Low” rating, reflecting a lower risk of bias in their overall assessment.
This distribution suggests that many studies may have methodological limitations affecting
their overall reliability.

4. Discussion

This review focuses on the use of sensor devices and bed sensors to primarily classify
movements in the bed, the onset of bedsores, or sleep quality. In detail, we focus on the
types of ML models implemented so far in the field.

ML models were classified into deep learning models and shallow models. As sug-
gested by Chollet et Allaire, shallow learning models use one or two hidden layers [13] or
are non-neural-network ML models (e.g., SVM or RF). In contrast, deep learning considers
numerous hidden layers [78]. In this present review, we show that deep learning and
shallow learning were used to detect outcomes in the bed, which is the main outcome
considered in this work. Among shallow learning models, the best models achieve the
best accuracy, ranging from 71.95% to 99.93% for different outcomes. DL models also
demonstrate competitive performance, with the best accuracy ranging from 31.05% to
100%. Similarly to other studies [103], we observed higher accuracy rates in controlled
simulated settings (up to 95.43%) compared to real-world clinical environments (around
86.80%). This discrepancy emphasizes the challenge of achieving high detection accuracy
in practical applications, a point that is not always fully addressed in the existing literature.
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Among deep learning models, a common approach used in these studies is the application
of artificial neural networks (ANNs). For example, Chica et al. [21] propose a real-time
recognition system that uses ANNs to classify patient intentions based on sequences of
pressure maps. Similarly, Hu et al. [26] present an ANN-based model to classify posture
in the bed using pressure sensors on the bed sheets. ANNs allow these models to learn
and recognize patterns in the pressure data, enabling accurate classification of different
postures or behaviors.

Another approach mentioned in the references is the use of deep learning models.
Deep residual networks [22] and deep learning [23] are used for sleep posture recognition
and sleep stage classification, respectively. Deep learning models, particularly convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs), have successfully
processed sequential data, making them suitable for analyzing time-series data collected
from sensors.

In addition, some studies combine different sensor modalities and machine learning
techniques to enhance the accuracy of posture recognition and behavior detection. For
example, in the study by Pupic et al. [31], they considered the bed reaction and the skin–bed
interface forces to detect the position of the patient and monitor the skin pressure to prevent
pressure injury.

Both deep and shallow learning models offer distinct advantages: deep models excel
in complex pattern recognition with large datasets, while shallow models are more feasible
for real-time, resource-limited clinical settings. Combining both approaches can optimize
patient monitoring and outcomes.

The studies considered in this review use different types of sensors, such as pressure
sensors, bed sensors, load cells, and wearable devices. Several studies used pressure-
sensitive sensors attached to the bed or patients’ clothing to detect sleep posture, bed-exit
intention, and in-bed postural changes. Chica et al. [21] developed an artificial neural
network (ANN) that can recognize patient intentions from sequences of pressure maps in
real time. Kuwahara and Wada [27] developed a deep learning algorithm that predicts bed
leave using a pressure-sensitive sheet-type sensor base. Similarly, Gargees et al. [44] used a
hydraulic bed sensor to classify the stages of sleep using deep learning. Hsiao et al. [25]
developed a body posture recognition and turning recording system for bedbound patients.
Matar et al. [28] used an ANN to classify posture in the bed using bedsheet pressure
sensors. Hu et al. [26] developed a patient-specific real-time sleep posture recognition
system using a pressure-sensitive conductive sheet and transfer learning. Furthermore,
Metsis et al. [38] and Walsh et al. [33] used bed pressure mats to recognize sleep patterns
using machine learning. Finally, some studies used sensors to monitor pressure changes to
prevent pressure ulcers and sleep apnea. Monroy et al. [30] used inertial sensors attached
to clothing to monitor postural changes in the bed to avoid pressure ulcers. Pupic et al. [31]
used bed reaction forces and monitored skin–bed interface forces for the prevention and
management of pressure injuries. Waltisberg et al. [8] used non-contact pressure-based
sensors to discriminate between sleep and wakefulness.

The market for in-bed patient monitoring has seen some commercialized products,
such as smart beds and wearable devices integrated with sensor technologies. These
products are designed to monitor vital signs, detect exits from the bed, and assess sleep
patterns, improving patient care and safety. However, widespread adoption is hindered
by several factors. A significant challenge is that most studies have been conducted on
prototypes rather than on real hospital beds, which limits the generalizability of the findings
to actual clinical settings. Additionally, high costs, technological limitations, regulatory
hurdles, data privacy concerns, and the need for user acceptance and training further
impede commercialization. Overcoming these challenges requires increased funding,
collaborative efforts, standardization of protocols, advancements in technology, regulatory
support, and public engagement to build trust and facilitate broader implementation. Large-
scale real-life studies across diverse patient populations are still lacking due to logistical
challenges, high costs, and ethical and privacy concerns. To improve this scenario, several
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steps can be taken: increased funding and resource allocation, fostering collaborations
between institutions and countries, developing standardized protocols for data collection
and analysis, leveraging advanced technologies like electronic health records (EHRs) and
AI, and ensuring robust data protection measures to build public trust.

The range of movements considered in the included studies varied significantly, from
three to seventeen distinct dynamics. This level of detail in movement categorization is
more comprehensive compared to previous reviews, which often did not differentiate
as clearly between static and dynamic movements [103]. This variability suggests a lack
of standardization in the categorization and measurement of movements, which could
impact the comparability of results across studies. Additionally, the ability of sensors to
accurately detect and classify different postures and movements may differ, indicating the
need to discuss the precision and limitations of the various sensor types used. Movements
associated with different postures, such as supine versus lateral, have different charac-
teristics due to differences in weight distribution, pressure points, and muscle activation.
This aspect warrants further investigation to understand how well sensors capture these
nuances. Furthermore, movements made for comfort adjustments versus those made to
alleviate discomfort or pressure could provide insight into patient well-being and the
effectiveness of sensors. Understanding these distinctions could enhance the interpretation
of data collected from monitoring in the bed. Finally, discussing the implications of these
findings for clinical practice is crucial. For instance, understanding typical movements in
different positions could help design better intervention strategies for bedridden patients,
improving patient care.

This review, which includes a variety of study designs, highlights the significant
efforts made to predict events affecting patient outcomes. However, only nine studies were
conducted on actual patients, and these involved relatively small sample sizes. Studies
in controlled environments often do not account for the variability in movements and
conditions present in real hospital settings, such as the use of pillows or the presence of
bed rails. Additionally, we identified significant heterogeneity in the machine learning
(ML) models used across studies, with notable differences in input data types, preprocess-
ing methods, and model architectures. This variability makes it challenging to compare
results between studies, as differences in sensor types, data granularity, and movement
categorizations lead to inconsistent findings. For example, models trained in controlled
environments with healthy volunteers may not generalize well to clinical settings, where
patient conditions and behaviors are more diverse. Furthermore, the lack of standardized
performance metrics complicates the evaluation of model accuracy and limits the ability to
determine which models are truly robust across different populations. To address these
issues, future research should prioritize standardized data collection, preprocessing, and
reporting practices, along with the development of benchmark datasets that reflect real-
world variability. Standardization would facilitate the comparison of results and improve
the generalizability of findings across diverse clinical environments.

This review, considering that it includes all kinds of studies, shows that there is a
great effort to try to predict events that can affect patient outcomes. However, there are
only nine studies conducted in actual patients, involving only a few patients. Studies in a
controlled environment do not consider the same variability in movements available in a
real-hospital setting. Most studies must provide information on the use of a pillow and the
presence/absence of bed rails.

5. Conclusions

This review highlights significant heterogeneity in the diverse range of ML models
used to recognize and classify patient behaviors and postures. These models include artifi-
cial neural networks, deep learning architectures, and approaches that combine different
sensor modalities. Each model has advantages and may be more suitable for specific
applications based on the available data and the desired classification tasks.
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Looking towards the future, in-bed patient monitoring through bed sensors holds
promising prospects. Trends indicate a growing integration of advanced machine learning
algorithms, both deep and shallow, to enhance accuracy and functionality. Continuous
improvements in sensor technology and data processing capabilities will lead to more
sophisticated monitoring systems that can provide real-time insight into patient movements
and vital signs.

Overall, the studies demonstrate the potential of sensor technology and machine
learning algorithms to monitor patient sleep posture, intention to leave the bed, postural
changes in the bed, sleep patterns, and prevention of pressure ulcers and sleep apnea. The
generalizability of the findings is limited by the fact that many studies were conducted in
controlled environments or with small sample sizes. Furthermore, few studies involved
real-world clinical settings, which restricts the applicability of the findings to broader
patient populations. Future research should aim to validate these findings in more diverse,
real-world settings.

However, several critical challenges must be addressed to realize these advancements.
The high cost of these technologies remains a significant barrier to widespread adoption.
Efforts to reduce production costs and develop cost-effective solutions will be crucial.
Additionally, the integration of these systems with existing hospital infrastructure poses
technical challenges that require robust, interoperable designs.

To address these issues, a structured roadmap can guide future developments (Figure 5).
Establishing standardized protocols for data collection and utilizing high-resolution, unob-
trusive sensors can enhance accuracy and patient comfort, ensuring more reliable monitor-
ing systems. Developing and refining machine learning algorithms that balance accuracy
and computational efficiency is essential. These algorithms should be optimized for real-
time processing and low-power consumption, making them practical for various settings.
Implementing robust data encryption and privacy-preserving techniques is necessary to
protect patient data and comply with regulations. Furthermore, extensive validation studies
in clinical environments will ensure the effectiveness and reliability of these technologies.
Fostering interdisciplinary collaboration between engineers, healthcare professionals, and
researchers will help develop holistic solutions. Providing comprehensive training for
healthcare providers and patients is also crucial to maximizing the benefits of smart-bed
technologies. Ethical and privacy concerns surrounding patient data need to be rigorously
addressed to build trust and compliance with data protection regulations. Engaging health-
care providers and patients through education and training will be essential to ensure
acceptance and the proper use of these technologies.

Ethical and privacy concerns surrounding patient data also need to be rigorously
addressed to build trust and compliance with data protection regulations. Engaging
healthcare providers and patients through education and training will be essential to
ensure acceptance and proper use of these technologies.

In conclusion, while the potential for in-bed patient monitoring technologies is substan-
tial, overcoming these barriers will require coordinated efforts from researchers, industry
stakeholders, regulatory bodies, and healthcare providers. By addressing these challenges,
we can pave the way for more personalized and proactive healthcare solutions that signifi-
cantly improve patient care and outcomes.
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computational efficiency is essential
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Security, and 
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• Extensive validation studies in clinical environments 

Collaboration 
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• Providing comprehensive training for healthcare providers and patients

Figure 5. Roadmap for Future Smart-Bed Technologies.
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