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Abstract: In this research, we formulated a fractional-order model for the transmission dynamics of
Zika virus, incorporating three control strategies: health education campaigns, the use of insecticides,
and preventive measures. We conducted a theoretical analysis of the model, obtaining the disease-free
equilibrium and the basic reproduction number, and analyzing the existence and uniqueness of the
model. Additionally, we performed model parameter estimation using real data on Zika virus cases
reported in Colombia. We found that the fractional-order model provided a better fit to the real
data compared to the classical integer-order model. A sensitivity analysis of the basic reproduction
number was conducted using computed partial rank correlation coefficients to assess the impact of
each parameter on Zika virus transmission. Furthermore, we performed numerical simulations to
determine the effect of memory on the spread of Zika virus. The simulation results showed that the
order of derivatives significantly impacts the dynamics of the disease. We also assessed the effect
of the control strategies through simulations, concluding that the proposed interventions have the
potential to significantly reduce the spread of Zika virus in the population.

Keywords: Zika virus; humans; sensitivity analysis; parameter estimation; numerical simulations

1. Introduction

Zika virus infection is a vector-borne disease caused by Zika virus, transmitted by
mosquitoes of the Flaviviridae family and the genus Flavivirus [1]. The primary mosquito
species responsible for transmitting Zika virus are Aedes aegypti and Aedes albopictus,
with the virus originally discovered in rhesus monkeys in Uganda’s Zika forest in 1947 [2].
The first human case of Zika virus infection was reported in 1952 [2]. The transmission
mechanism of Zika virus is similar to that of other vector-borne diseases such as malaria,
trypanosomiasis, dengue, chikungunya, and yellow fever [3]. Specifically, the disease
is transmitted to humans when an infected Aedes aegypti mosquito bites a susceptible
human during a blood meal. Conversely, a susceptible mosquito acquires the infection
when it bites an infected human, although the mosquitoes themselves are not affected
by the virus [4]. In humans, the incubation period of Zika virus disease ranges from 3 to
14 days after exposure, and most people infected with the virus (about 1 in 5) do not exhibit
symptoms [5]. The most common symptoms of Zika virus disease include fatigue, fever,
rash, red eyes, joint and muscle pain, and headaches [6]. Currently, there is no vaccine or
specific treatment for Zika virus disease, and management is based on supportive care,
such as providing pain relievers [7]. Preventive strategies, including the use of mosquito
nets, wearing long-sleeved clothing, applying mosquito repellents, and restricting travel to
affected areas, are essential measures for preventing the spread of the disease [8].
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Mathematical models have played a crucial role in epidemiology, helping researchers
and public health officials understand the spread, dynamics, and control of diseases within
populations [9–12]. In recent years, fractional-order derivatives have gained popularity in
disease modeling, as they allow for more flexible and realistic representations of biological
systems [10,13,14]. Unlike integer-order derivatives, fractional-order derivatives capture
the memory effects and hereditary properties inherent in biological systems [15]. Moreover,
it has been observed that the membranes of living organisms’ cells exhibit fractional-
order electrical conductance, which can be modeled using fractional-order derivatives [16].
These derivatives often provide a better fit to real epidemiological data [17]. The most
commonly used fractional derivatives include Caputo, Riemann–Liouville, and Atangana–
Baleanu derivatives [18]. Recent research has developed and analyzed mathematical
models incorporating fractional-order derivatives for vector-borne diseases [2,3,19]. For
instance, Prasad et al. [2] used the Caputo derivative to study the effect of memory on
Zika virus dynamics, demonstrating that fractional-order models offer a more flexible and
accurate framework for predicting the virus’s spread. In [3], an optimal control problem
using fractional-order derivatives was analyzed, showing a better fit to Zika outbreak
data. Similarly, Sharma et al. [19] formulated a model incorporating vaccination as a
control strategy, with simulations suggesting that vaccination could eliminate the disease
in a population.

Fractional-order models have gained significant attention in recent years for their
ability to capture complex dynamics in various epidemiological systems, including malaria
and co-infections. One such model is the fractional-order malaria transmission model that
incorporates temperature and rainfall dependencies, developed by Gizaw and Deressa [20].
Their work extends traditional models by applying fractional calculus, which provides
a more flexible framework for describing the memory and hereditary properties of the
disease. Similarly, Attiq ul Rehman et al. [21] proposed a fractional-order malaria model
that includes temporary immunity and relapse, further enriching our understanding of
malaria dynamics by addressing key biological processes through fractional operators.
In another study, Menbiko and Deressa [22] introduced an age-structured malaria model
utilizing the Atangana–Baleanu fractional operators, offering a unique perspective on the
age-dependent transmission of malaria. Abioye’s research [23] adds to this body of work
by exploring a fractional-order model for malaria and COVID-19 co-infection dynamics,
revealing the potential interactions between these two infections. Similarly, Kumar [24]
extended fractional modeling to study the co-infection dynamics between malaria and
filariasis, providing a framework for analyzing simultaneous epidemic outbreaks.

In this study, we formulate a fractional-order model of Zika virus transmission and
examine the effects of control strategies. Although various types of fractional derivatives
are available, we chose the Caputo derivative for this model. The decision was influenced
by several advantages: for a constant function, the Caputo derivative equals zero, consistent
with the result for integer-order differential equations. Additionally, the Caputo fractional
derivative allows the use of local initial conditions in the model’s formulation [18]. Recent
studies have shown that one of the most effective ways to minimize the spread of Zika virus
to humans is through prevention measures. Control strategies such as wearing long-sleeved
clothing, using physical barriers, and applying insecticide repellents during the day and
early evening are crucial to reducing contact between humans and mosquitoes [25]. Health
education programs that raise awareness regarding the use of insecticide to eliminate
Aedes mosquitoes may also significantly help prevent the spread of Zika virus in the
population [7]. To the best of our knowledge, no mathematical model of Zika virus
transmission has incorporated the three control strategies mentioned. Therefore, in this
study, we propose a fractional-order model that incorporates prevention measures, health
education awareness, and the use of insecticides to assess their effects on reducing the
spread of Zika virus disease.

The rest of the article is organized as follows: in Section 2, the mathematical model
formulation is presented; in Section 3, the basic properties of the model, namely the
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positivity of variables and the boundedness of trajectories, are presented; the computation
of the reproduction number and the existence of model equilibrium are presented in
Section 4; the results and discussion are presented in Section 5; and concluding remarks
complete the paper in Section 6.

2. Model Formulation

In this study, we employ a fractional-order derivative model based on the Caputo
sense to formulate and investigate the transmission dynamics of the Zika virus. The
model captures the interaction between Aedes mosquitoes and the human population. The
human population is denoted by h, while Aedes mosquitoes are represented by v. The
human population is further subdivided into five compartments according to infection
status: susceptible (Sh(t)), exposed (Eh(t)), asymptomatic (Ah(t)), infectious (Ih(t)), and
recovered (Rh(t)). The total human population at time t is denoted as Nh(t), and is defined
by the following:

Nh(t) = Sh(t) + Eh(t) + Ah(t) + Ih(t) + Rh(t) (1)

Similarly, the total population of Aedes mosquitoes at time t, denoted by Nv(t), is
divided into three compartments: susceptible (Sv(t)), exposed (Ev(t)), and infectious (Iv(t)).
Therefore, the total mosquito population is given by:

Nv(t) = Sv(t) + Ev(t) + Iv(t) (2)

All parameters and variables in the model are assumed to be positive. The parameters
are defined as follows: Λh and Λv represent the recruitment rates of humans and Aedes
mosquitoes, respectively, assuming all new individuals are susceptible, either through birth
or immigration. The natural mortality rates of humans and mosquitoes are denoted by µh
and µv, respectively. The rates of progression from the exposed to infectious compartments
for humans and mosquitoes are represented by αh and αv, respectively. The recovery rates
of asymptomatic humans and infectious mosquitoes are given by κh and γv, respectively.
The transmission rate of infection from infectious mosquitoes to susceptible humans is
represented by βh, while βv denotes the transmission rate from infectious humans to
susceptible mosquitoes. The reduction in disease transmission from asymptomatic humans
to susceptible mosquitoes is represented by τh, and δv denotes the rate at which mosquitoes
bite humans. Recent studies suggest that prevention measures are crucial in minimizing the
spread of Zika virus [26,27]. Accordingly, the proposed model incorporates three control
strategies: the protection of humans from contact with Aedes mosquitoes, represented
by ηh; public awareness and education campaigns about the spread and prevention of
Zika virus, denoted by θh; and the use of insecticides to reduce the mosquito population,
represented by ϵv. These strategies are essential to preventing the spread of Zika virus in
the population. Based on the above assumptions, we have assumed the following flow
chart and non-linear differential equations:

From the flowchart diagram in Figure 1, the dynamics of the interaction between
humans and mosquitoes is given in patch i by the following system of ordinary differen-
tial equations:

c
t0

Dϕ
t Sh(t) = Λϕ

h − (1 − η
ϕ
h )δ

ϕ
v β

ϕ
h Sh Iv − (µ

ϕ
h + θ

ϕ
h )Sh,

c
t0

Dϕ
t Eh(t) = (1 − η

ϕ
h )δ

ϕ
h β

ϕ
h Sh Iv − (α

ϕ
h + µ

ϕ
h )Eh,

c
t0

Dϕ
t Ah(t) = (1 − ω

ϕ
h )α

ϕ
h Eh − (κ

ϕ
h + µ

ϕ
h )Ah,

c
t0

Dϕ
t Ih(t) = ω

ϕ
h α

ϕ
h Eh − (µ

ϕ
h + γ

ϕ
h )Ih,

c
t0

Dϕ
t Rh(t) = κ

ϕ
h Ah + γ

ϕ
h Ih + θ

ϕ
h Sh − µ

ϕ
h Rh,

c
t0

Dϕ
t Sv(t) = Λϕ

v − (1 − η
ϕ
h )δ

ϕ
v β

ϕ
v(Ih + τ

ϕ
h Ah)Sv − (µ

ϕ
v + ϵ

ϕ
v )Sv,

c
t0

Dϕ
t Ev(t) = (1 − η

ϕ
h )δ

ϕ
v β

ϕ
v(Ih + τ

ϕ
h Ah)Sv − (µ

ϕ
v + ϵ

ϕ
v + α

ϕ
v )Ev,

c
t0

Dϕ
t Iv(t) = α

ϕ
h Eh − (µ

ϕ
v + ϵ

ϕ
v )Iv.

(3)
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Figure 1. Flowchart illustrating the dynamics of the Zika transmission model.

3. Basic Properties

Herein, we study the basic properties of system (3), which are essential in the proof of
the stability analysis.

3.1. Positivity of Solutions

In this section, we investigate the asymptotic behavior of orbits starting in the non-
negative cone R+

8 . Obviously, system (3), which is a C∞ differential system, admits a
unique maximal solution for any associated Cauchy problem. In what follows, we claim
the following theorem:

Theorem 1. Let (t0 = 0, X0(t0) = (Sh(0), Eh(0), Ah(0), Ih(0), Rh(0), Sv(0), Ev(0), Iv(0))) ∈ R7
+

and for T ∈ [0,+∞] , ([0, T], X(t) = (Sh(t), Eh(t), Ah(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t))), the
maximal solution of the Cauchy problem associated with system (3). Then, for all t ∈ [0, T],
X(t) ∈ R8

+, ∀t ∈ [0, T].

Proof. Let

∆ = {t̃ ∈ [0, T], Sh(t) > 0, Eh(t) > 0, Ah(t) > 0, Ih(t) > 0, Rh(t) > 0, Sv(t) > 0, Ev(t) > 0, Iv(t) > 0 ∀t ∈ [0, t̃]}.

By the continuity of functions Sh(t), Eh(t), Ah(t), Ih(t), Rh(t), Sv(t), Ev(t) and Iv(t), one can
see that ∆ ̸= 0. Let T̃ = sup ∆. Next, we have to show that T̃ = T. Suppose T̃ < T,
then one can suppose that Sh(t), Eh(t), Ah(t), Ih(t), Rh(t), Sv(t), Ev(t) and Iv(t) are non-
negative on [0, T̃]. At T̃, at least one of the following conditions is satisfied Sh(T̃) = 0,
Eh(T̃) = 0, Ah(T̃) = 0, Ih(T̃) = 0, Rh(T̃) = 0, Sv(T̃) = 0, Ev(T̃) = 0 and Iv(T̃) = 0. Then,
from the last equation of system (3), one can obtain the following:

c
t0

Dϕ
t Iv(t) = α

ϕ
h Eh − (µ

ϕ
v + ϵ

ϕ
v )Iv. (4)

Integrating Equation (4) from 0 to T̃ yields

Iv(T̃) = Iv(0) +
∫ T̃

0
(α

ϕ
h Eh − (µ

ϕ
v + ϵ

ϕ
v )Iv)dt > 0.
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Similarly, one can show that Sh(T̃) > 0, Eh(T̃) > 0, Ah(T̃) > 0, Ih(T̃) > 0, Rh(T̃) > 0,
Sv(T̃) > 0, and Ev(T̃) > 0. This is the contradiction. Then, T̃ = T; consequently, the
maximal solution (Sh(t), Eh(t), Ah(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t)) of the Cauchy prob-
lem associated with system (3) is positive. This completes the proof.

3.2. Boundedness of Trajectories

We obtain the following result regarding the boundedness of the trajectories of sys-
tem (3).

Lemma 1. Each non-negative solution of system (3) is bounded on R8
+.

Proof. First of all, we separate model system (3) into two parts: the human population and
the Aedes mosquito population. Adding the first five equations of model system (3) and
using Equation (1) yields the following:

c
t0

Dϕ
t Nh(t) ≤ Λh − µhNh(t) (5)

By applying the Gronwall Lemma in (5), one can obtain the following:

Nh(t) ≤
Λϕ

h

µ
ϕ
h

+

(
Nh(0)−

Λϕ
h

µ
ϕ
h

)
exp−µ

ϕ
h t.

With this in mind, one can suppose that Nh(t) ≤
Λϕ

h

µ
ϕ
h

for all t ≥ 0 if Nhi(0) ≤
Λϕ

h
µh

. This

means the following: Sh ≤
Λϕ

h
µh

, Eh ≤
Λθ

h

µ
ϕ
h

, Ah ≤
Λϕ

h

µ
ϕ
h

, Ih ≤
Λϕ

h

muϕ
h

and Rh ≤
Λϕ

h

µ
ϕ
h

. Using the

same concept, we prove that Nvi(t) ≤
Λϕ

v

µ
ϕ
v

. This means the following: Sv ≤ Λϕ
v

µv
, Ev ≤ Λϕ

v

µ
ϕ
v

and , Iv ≤ Λϕ
v

µ
ϕ
v

. This completes the proof.

Corollary 1. The region
Ω = ΩH × ΩV , (6)

where

ΩH =

{
(Sh, Eh, Ah, Ih, Rh) ∈ R5

+, Sh ≤
Λϕ

h

µ
ϕ
h

, Eh ≤
Λϕ

h

µ
ϕ
h

, Ah ≤
Λϕ

h

µ
ϕ
h

, Ih ≤
Λϕ

h

µ
ϕ
h

, Rh ≤
Λϕ

h

µ
ϕ
h

}
, (7)

and

ΩV =

{
(Sv, Ev, Iv) ∈ R3

+, Sv ≤ Λϕ
v

µ
ϕ
h

, Ev ≤ Λϕ
v

µ
ϕ
h

, Iv ≤ Λϕ
v

µ
ϕ
h

}
, (8)

is invariant and attractive for system (3).

Thus, system (3) is mathematically and ecologically well posed and is sufficient to
consider the dynamics of the flow generated by system (3) in Ω.

3.3. Existence and Uniqueness of Solution

In this section, we present the existence and uniqueness of the solution of the model
system (3) using the techniques of a fixed-point theorem. First, we denote the Banach space
of all continuous real-valued functions equipped with the norm by B = ℓ([0, T],ℜ), which
is defined as follows:
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||Sh, Eh, Ah, Ih, Rh, Sv, Ev, Iv|| = ||Sh||+ ||Eh||+ ||Ah||+ ||Ih||+ ||Rh||+ ||Sv||+ ||Ev||+ ||Iv||,

where
||Sh(t)|| = supt∈[0,T] |Sh(t)|, ||Eh(t)|| = supt∈[0,T] |Eh(t)|, |Ah(t)|| = supt∈[0,T] |Ah(t)|,
||Ih(t)|| = supt∈[0,T] |Ih(t)|, ||Rh(t)|| = supt∈[0,T] |Rh(t)|, ||Sv(t)|| = supt∈[0,T] |Sv(t)|,
||Ev(t)|| = supt∈[0,T] |Ev(t)|, ||Iv(t)|| = supt∈[0,T] |Iv(t)|.

We then use the fractional integral operator c Iϕ
0+ on both sides of system (3):

Sh(t)− Sh(0) = c Iθ
0+

{
Λϕ

h − (1 − η
ϕ
h )δ

ϕ
v β

ϕ
h Sh Iv − (µ

ϕ
h + θ

ϕ
h )Sh

}
,

Eh(t)− Eh(0) = c Iθ
0+

{
(1 − η

ϕ
h )δ

ϕ
h β

ϕ
h Sh Iv − (α

ϕ
h + µ

ϕ
h )Eh

}
,

Ah(t)− Ah(0) = c Iθ
0+

{
(1 − η

ϕ
h )δ

ϕ
h β

ϕ
h Sh Iv − (α

ϕ
h + µ

ϕ
h )Eh

}
,

Ih(t)− Ih(0) = c Iθ
0+

{
ω

ϕ
h α

ϕ
h Eh − (µ

ϕ
h + γ

ϕ
h )Ih

}
,

Rh(t)− Rh(0) = c Iθ
0+

{
κ

ϕ
h Ah + γ

ϕ
h Ih + θ

ϕ
h Sh − µ

ϕ
h Rh

}
,

Sv(t)− Sv(0) = c Iθ
0+

{
Λϕ

v − (1 − η
ϕ
h )δ

ϕ
v β

ϕ
h(Ih + τ

ϕ
h Ah)Sv − (µ

ϕ
v + ϵ

ϕ
v )Sv

}
,

Ev(t)− Ev(0) = c Iθ
0+

{
(1 − η

ϕ
h )δ

ϕ
v β

ϕ
h(Ih + τ

ϕ
h Ah)Sv − (µ

ϕ
v + ϵ

ϕ
v + α

ϕ
v )Ev

}
,

Iv(t)− Iv(0) = C Iθ
0+

{
α

ϕ
h Eh − (µ

ϕ
v + ϵ

ϕ
v )Iv

}
.



(9)

which implies that, for k = 1, 2, 3 . . . 7, we have the following:

Sh(t) = Sh(0) +
(1 − ϕ)

M(ϕ)
(Fi(t, Sh(t)) +

ϕ

M(θ)

1
Γ(ϕ)

∫ t

0
Fk(t, Sh(t))dτ,

Eh(t) = Eh(0) +
(1 − ϕ)

M(ϕ)
(Fk(t, Eh(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Eh(t))dτ,

Ah(t) = Ah(0) +
(1 − ϕ)

M(θ)
(Fk(t, Eh(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Eh(t))dτ,

Ih(t) = Ih(0) +
(1 − ϕ)

M(ϕ)
(Fk(t, Ih(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Ih(t))dτ,

Rh(t) = Rh(0) +
(1 − ϕ)

M(ϕ)
(Fk(t, Rh(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Rh(t))dτ,

Sv(t) = Sv(0) +
(1 − ϕ)

M(ϕ)
(Fk(t, Sv(t)) +

θ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Sv(t))dτ,

Ev(t) = Ev(0) +
(1 − ϕ)

M(ϕ)
(Fk(t, Ev(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Ev(t))dτ,

Iv(t) = Iv(0) +
(1 − ϕ)

M(ϕ)
(Fk(t, Iv(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
Fk(t, Iv(t))dτ.



(10)
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where

Fk(t, Sh(t)) = Λϕ
h − (1 − η

ϕ
h )δ

ϕ
v β

ϕ
h Sh Iv − (µ

ϕ
h + θ

ϕ
h )Sh,

Fk(t, Eh(t)) = (1 − η
ϕ
h )δ

ϕ
h β

ϕ
h Sh Iv − (α

ϕ
h + µ

ϕ
h )Eh,

Fk(t, Ah(t)) = (1 − η
ϕ
h )δ

ϕ
h β

ϕ
h Sh Iv − (α

ϕ
h + µ

ϕ
h )Eh,

Fk(t, Ih(t)) = ω
ϕ
h α

ϕ
h Eh − (µ

ϕ
h + γ

ϕ
h )Ih,

Fk(t, Rh(t)) = κ
ϕ
h Ah + γ

ϕ
h Ih + θ

ϕ
h Sh − µ

ϕ
h Rh,

Fk(t, Sv(t)) = Λϕ
v − (1 − η

ϕ
h )δ

ϕ
v β

ϕ
h(Ih + τ

ϕ
h Ah)Sv − (µ

ϕ
v + ϵ

ϕ
v )Sv,

Fk(t, Ev(t)) = (1 − η
ϕ
h )δ

ϕ
v β

ϕ
h(Ih + τ

ϕ
h Ah)Sv − (µ

ϕ
v + ϵ

ϕ
v + α

ϕ
v )Ev,

Fk(t, Iv(t)) = α
ϕ
h Eh − (µ

ϕ
v + ϵ

ϕ
v )Iv.


(11)

The kernels N with 0 ≤ Qk < 1 satisfy the Lipschitz condition in Equation (11) if and only
if Sh(t), Eh(t), Ah(t), Ih(t), Rh(t), Sv(t), Ev(t), and Iv(t) have an upper bound. In general, if
supposing that Shi(t) and S∗

hi(t) are two functions, we obtain the following:

||Fkt, Sh(t)− Fk(t, S∗
h(t))|| = ||Λϕ

h − (1 − η
ϕ
h )δ

ϕ
v β

ϕ
h Sh Iv − (µ

ϕ
h + θ

ϕ
h )Sh,

−
(

Λϕ
h − (1 − η

ϕ
h )δ

ϕ
v β

ϕ
h S∗

h Iv − (µ
ϕ
h + θ

ϕ
h )S

∗
h ,
)
||,

=

(
δ

ϕ
v β

ϕ
h Iv + µ

ϕ
h + θ

ϕ
ij

)
||Sh − S∗

h ||,

≤
(

δ
ϕ
v β

ϕ
h supt∈[0,T] Ih(t) + µ

ϕ
h + θ

ϕ
h

)
||Sh − S∗

h ||,

= Qk||Sh − S∗
h ||.


(12)

where Qk = δ
ϕ
v β

ϕ
h supt∈[0,T] Ih(t) + µ

ϕ
h + θ

ϕ
h . Thus:

||Fkt, Sh(t)− Fk(t, S∗
h(t))|| ≤ Qk||Sh − S∗

h || (13)

Applying the same techniques as in (12), we obtain the following:

||Fkt, Eh(t)− Fk(t, E∗
h(t))|| ≤ Qk||Eh − E∗

h ||,
r||Fkt, Ah(t)− Fk(t, A∗

h(t))|| ≤ Qk||Ah − A∗
h||,

r||Fkt, Ih(t)− Fk(t, I∗h (t))|| ≤ Qk||Ih − I∗h ||,
||Fkt, Rh(t)− Fk(t, R∗

h(t))|| ≤ Qk||Rh − R∗
h||,

||Fkt, Sv(t)− Fk(t, S∗
v(t))|| ≤ Qk||Sv − S∗

v ||,
||Fkt, Ev(t)− Fk(t, E∗

v(t))|| ≤ Qk||Ev − E∗
v ||,

||Fkt, Iv(t)− Fk(t, I∗v (t))|| ≤ Qk||Iv − I∗v ||


, (14)

whereby Qk is the Lipschitz constant for the function Fk(.). Indeed, Equation (10) is in
recursive form, as follows:
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Sh(t) = Sh(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Shi,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Sh,n−1(τ))dτ,

Eh(t) = Eh(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Eh,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Eh,n−1(τ))dτ,

Ah(t) = Ah(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Ah,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Eh,n−1(τ))dτ,

Ih(t) = Ih(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Ih,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Ih,n−1(τ))dτ,

Rh(t) = Rh(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Rh,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Ah,n−1(τ))dτ,

Sv(t) = Sv(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Sv,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Sv,n−1(τ))dτ,

Ev(t) = Ev(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Ev,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Ev,n−1(τ))dτ,

Iv(t) = Iv(0) +
(1 − ϕ)

M(ϕ)
Fk(t, Evi,n−1(t)) +

ϕ

M(ϕ)

1
Γ(ϕ)

∫ t

0
(t − τ)ϕ−1Fk(τ, Iv,n−1(τ))dτ.



(15)

Supposing that Ψk, k = 1, 2, . . . 8 is the difference between successive components in (15),
we have the following:

Ψk
n = Sh,n(t)− Sh,n−1(t) =

1−ϕ
M(ϕ)

(
Fk(t, Sh,n−1(t))− Fk(t, Sh,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Sh,n−1(τ))− Fk(τ, Sh,n−2(τ))

)
dτ,

Ψk
n = Eh,n(t)− Eh,n−1(t) =

1−ϕ
M(ϕ)

(
Fk(t, Ehi,n−1(t))− Fk(t, Eh,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Eh,n−1(τ))− Fk(τ, Eh,n−2(τ))

)
dτ,

Ψk
n = Ih,n(t)− Ih,n−1(t) =

1−ϕ
M(ϕ)

(
Fk(t, Ih,n−1(t))− Fk(t, Ih,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Ih(n−1)(τ))− Fk(τ, Ih,n−2(τ))

)
dτ,

Ψk
n = Rh,n(t)− Rh,n−1(t) =

1−ϕ
M(ϕ)

(
Fk(t, Rh,n−1(t))− F7(t, Rh,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Ah,n−1(τ))− Fk(τ, Ah,n−2(τ))

)
dτ,

Ψk
n = Sv,n(t)− Sv,n−1(t) =

1−ϕ
M(ϕ)

(
Fk(t, Sv,n−1(t))− Fk(t, Sv,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Svi,n−1(τ))− Fk(τ, Svi,n−2(τ))

)
dτ,

Ψk
n = Ev,n(t)− Ev,n−1(t) =

1−ϕ
M(ϕ)

(
Fk(t, Ev,n−1(t))− Fk(t, Ev,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Ev,n−1(τ))− Fk(τ, Ev,n−2(τ))

)
dτ,

Ψk
n = Iv,n(t)− Iv,n−1(t) = 1−θ

M(θ)

(
Fk(t, Iv,n−1(t))− Fk(t, Iv,n−2(t))

)
+ ϕ

M(ϕ)
1

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1(Fk(τ, Iv,n−1(τ))− Fk(τ, Iv,n−2(τ))

)
dτ.



(16)

Considering that Sh,n(t) =
n
∑

r=1
Ψk

r(t), Eh,n(t) =
n
∑

r=1
Ψk

r(t), Ah,n(t) =
n
∑

r=1
Ψk

r(t), Ih,n(t) =

n
∑

r=1
Ψk

r(t), Rh,n(t) =
n
∑

r=1
Ψk

r(t), Sv,n(t) =
n
∑

r=1
Ψk

r(t), Ev,n(t) =
n
∑

r=1
Ψk

r(t), and Iv,n(t) =
n
∑

r=1
Ψk

r(t).

Taking the norm on both sides of the equation and using Equations (15) and (16), we have
the following:

||Ψk
n(t)|| = 1−ϕ

M(ϕ)
Qk||Qk

n−1(t)||+
ϕ

M(ϕ)
Qk

Γ(ϕ)

∫ t
0 (t − τ)ϕ−1||Qk

n−1(τ)||dτ, (17)

In what follows, we state and prove the following theorem based on the results in (17).

Theorem 2. The model system (3) has a unique solution for t ∈ [0, T] if the condition in (19) below
is satisfied.
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Let

Qk
n(t) =

(
1 − ϕ

M(ϕ)
Qk +

1
M(ϕ)

Qk
Γ(ϕ)

Tϕ

)
, k = 1, 2, . . . 7, (18)

since the functions Sh(t), Eh(t), Ah(t), Ih(t), Rh(t), Sv(t), Ev(t), and Iv(t) are
bounded and satisfy the Lipschitz condition, and by using (18), we obtain the following:

||Qk
n(t)|| ≤ ||Sh,n(0)||

(
1−θ

M(ϕ)
Qk +

1
M(ϕ)

Qk
Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Eh,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Qk

Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Ah,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Qk

Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Ih,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Qk

Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Rh,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Qk

Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Sv,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Q11
Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Ev,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Qk

Γ(ϕ)Tϕ

)n

,

||Qk
n(t)|| ≤ ||Iv,n(0)||

(
1−ϕ
M(ϕ)

Qk +
1

M(ϕ)
Qk

Γ(ϕ)Tϕ

)n

.



(19)

Therefore, the sequence in (19) exists, and ||Qk
n|| → 0 as n → ∞, k = 1, 2, . . . 8. In addition,

when using the triangular inequality in (19), for any s, we have the following:

||Sh,n+s − Sh,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

1 −qn+s+1
k

1−qk
,

||Eh,n+s − Eh,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

k −qn+s+1
k

1−qk
,

||Ah,n+s − Ah,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

k −qn+s+1
k

1−qk
,

||Ih,n+s − Ih,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

k −qn+s+1
k

1−k5
,

||Rh,n+s − Rh,n|| ≤
n+s
∑

r=n+1
qr

9 =
qn+1

k −qn+s+1
k

1−qk
,

||Sv,n+s − Sv,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

k −qn+s+1
k

1−qk
,

||Ev,n+s − Ev,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

k −qn+s+1
k

1−qk
,

||Iv,n+s − Iv,n|| ≤
n+s
∑

r=n+1
qr

k =
qn+1

k −qn+s+1
k

1−qk
.



(20)

where qk, k = 1, 2, . . . 8 are the terms inside the brackets in (19). Thus, Sh(t), Eh(t), Ih(t),
Rh(t), Sv(t), Ev(t) and Iv(t) are the Cauchy sequences in B. Therefore, one can note that as
n → ∞ in (15), the limit of these sequences is the unique solution of the model system (3).
This completes the proofs of the unique solution of the system (3).

4. Basic Reproduction Number and Existence of Equilibria

In this section, we use the next-generation method, as presented in [28], to compute
the threshold quantity R0, which determines the persistence and extinction of disease in
the population. It is believed that when the basic reproduction number R0 > 1, the disease
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persists in the population, and dies out when R0 < 1. The model system (3) always has a
disease-free equilibrium E0 given by

E0 :

(
S0

h, E0
h, A0

h, I0
h , R0

h, S0
v, E0

v, I0
v

)
=
( Λϕ

h

µ
ϕ
h + θ

ϕ
h

, 0, 0, 0, 0,
Λϕ

v

µ
ϕ
v + ϵ

ϕ
v

, 0, 0
)

.

Following the next-generation matrix approach method used in [28], the non-negative
matrix F that denotes the generation of new infection and the non-singular matrix V that
denotes the disease transfer among compartments evaluated at E0 are defined as follows:

Fi =


0 0 0 0 (1 − η

ϕ
h )δ

ϕ
v β

ϕ
h S∗

h
0 0 0 0 0
0 0 0 0 0
0 (1 − ηh)δ

ϕ
v β

ϕ
v τ

ϕ
h S∗

v (1 − η
ϕ
h )δ

ϕ
v β

ϕ
v S∗

v 0 0
0 0 0 0 0

 (21)

Vi =


α

ϕ
h + µ

ϕ
h 0 0 0 0

−(1 − ω
ϕ
h )α

ϕ
h µ

ϕ
h + κ

ϕ
h 0 0 0

−ω
ϕ
h α

ϕ
h 0 µ

ϕ
h + γ

ϕ
h 0 0

0 0 0 µ
ϕ
v + ϵ

ϕ
v + κ

ϕ
v 0

0 0 0 −α
ϕ
v µ

ϕ
v + ϵ

ϕ
v

 (22)

Using (21) and (22), the basic reproduction number R0 of the model system (3) is given by
the following:

R0 =
(1 − η

ϕ
h )δ

ϕ
v

µ
ϕ
v + ϵ

ϕ
v

√√√√ β
ϕ
v β

ϕ
h Λϕ

v Λϕ
h α

ϕ
v α

ϕ
h
(
ω

ϕ
h (κ

ϕ
h + µ

ϕ
h − τ

ϕ
h ) + τ

ϕ
h
)

(α
ϕ
h + µ

ϕ
h )(µ

ϕ
h + θ

ϕ
h )(κ

ϕ
h + µ

ϕ
h )(µ

ϕ
h + γ

ϕ
h )(µ

ϕ
v + ϵ

ϕ
v + α

ϕ
v )

The basic reproduction number R0 is defined as the expected number of secondary cases
(mosquito or human) produced in a completely susceptible population by one infectious
individual (mosquito or human, respectively) during its lifetime. The square root here
is due to the fact that the generation of secondary cases in malaria diseases requires two

transmission processes. α
ϕ
h

α
ϕ
h+µ

ϕ
h

and α
ϕ
v

α
ϕ
v+µ

ϕ
v+ϵ

ϕ
v

are the average life spans of the exposed

human and vector populations, respectively.

Theorem 3. If R0 < 1, then the DFE of system (3) is globally asymptotically stable in Ω; otherwise,
it is unstable.

Proof. By considering only the infected compartments from (3), one can write the following:

c
t0

Dϕ
t x = (F − V)x,

where x = (Eh, Ah, Ih, Ev, Iv)T , with F and V defined as follows:

F =


0 0 0 0 (1 − η

ϕ
h )δ

ϕ
v β

ϕ
h S∗

h
0 0 0 0 0
0 0 0 0 0
0 (1 − ηh)δ

ϕ
v β

ϕ
v τ

ϕ
h S∗

v (1 − η
ϕ
h )δ

ϕ
v β

ϕ
v S∗

v 0 0
0 0 0 0 0

 (23)
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V =


α

ϕ
h + µ

ϕ
h 0 0 0 0

−(1 − ω
ϕ
h )α

ϕ
h µ

ϕ
h + κ

ϕ
h 0 0 0

−ω
ϕ
h α

ϕ
h 0 µ

ϕ
h + γ

ϕ
h 0 0

0 0 0 µ
ϕ
v + ϵ

ϕ
v + κ

ϕ
v 0

0 0 0 −α
ϕ
v µ

ϕ
v + ϵ

ϕ
v

 (24)

We can observe that by direct calculation, we can verify that V−1F is a non-negative and
irreducible matrix and ρ(V−1F) = R0. It follows from the Perron–Frobenius theorem [29]
that V−1F has a positive left eigenvector w associated with R0; that is,

wV−1F = R0w.

Since wV−1 is a positive vector, we propose the following Lyapunov function to study the
global stability of disease-free equilibrium:

L(t) = wV−1x.

Differentiating L using solutions of (3) leads to

c
t0

Dϕ
t L(t) = wV−1 c

t0
Dϕ

t x ≤ wV−1(F − V)x
= (R0 − 1)wx ≤ 0 if R0 ≤ 1.

It can be easily verified that the largest invariant subset of Γ where c
t0

Dϕ
t L(t) = 0 is the sin-

gleton {E0}. Therefore, by LaSalle’s invariance principle [30], E0 is globally asymptotically
stable in Ω when R0 ≤ 1.

Euler Approximation Scheme of Model (3) Using Caputo Derivative Sense

Here, we discuss an efficient numerical scheme called the Euler fractional approx-
imation method for model (3) with regard to the Atangana–Baleanu–Caputo fractional
derivatives used in [13]. The proposed model differential equation equations can be pre-
sented in the following form:

CDϕ
0 Sh(t) = G1(t, Sh),

CDϕ
0 Eh(t) = G2(t, Eh),

CDϕ
0 Ah(t) = G3(t, Eh),

CDϕ
0 Ih(t) = G4(t, Ih),

CDϕ
0 Rh(t) = G5(t, Rh),

CDϕ
0 Sv(t) = G6(t, Sv),

CDϕ
0 Ev(t) = G7(t, Ev),

CDϕ
0 Iv(t) = G8(tIv).


(25)

Next, we present Equation (25) for G1(t, Sh), which satisfies the Lipschitz condi-
tion, where Sh(0) is the initial conditions. Now, by applying the non-integer operator to
Equation (25), one can obtain the following:

Shi(t) = Shi(0) +
C Iα

0 G1(t, Shi) (26)

where C Iϕ
0 denotes the fractional integer operator with respect to the Caputo derivatives.

For the proposed numerical method, we consider an interval length [0, d] with a time step
size of h = d

N , where N ∈ N . Let Shk
be the numerical approximation of Sh(t) at t = tk,

where tk = 0 + kh and k = 0, 1 2 3; . . . N. Applying the Euler method in (26), we obtain the
following Caputo operator formula:
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Shk+1
(t) = Sh(0) +

1 − ϕ

M(ϕ)
G1(Shk+1

) +
hϕ

M(ϕ)Γ(ϕ)

k

∑
p=0

zk+1,pG1(Ship), k = 0, 1, 2, . . . N − 1 (27)

where zk+1,p = (k + 1 − p)ϕ − (k − p)ϕ, p = 0, 1, . . . , k. The stability analysis of the
proposed model is given by the following theorem:

Theorem 4. The numerical approximation scheme (27) is conditionally stable.

Proof. Let S̃h0 and S̃hp be approximations of Sh0 and Shp , p = 0, . . . , k+1. From Equation (27),
we obtain the following:

Shk+1
+ S̃hk+1

= Sh0 + S̃h0 +
1−θ

M(ϕ)
G1(Shk+1

+ S̃hik+1
) + hϕ

M(ϕ)Γ(ϕ) ∑k
p=0 zk+1,pG1(Shp + S̃hp) (28)

Using Equation (27) in (28), we obtain the following:

|S̃hk+1
| = |Sh0 +

1−ϕ
M(ϕ)

[G1(Shk+1
+ S̃hk+1

)− G1(Shk+1
)]+

θhϕ

M(ϕ)Γ(ϕ+1) ∑k
p=0 zk+1,p[G1(Shp + S̃hp)− G1(Shp)]|

(29)

Applying the Lipschitz condition and triangular inequality, one can obtain the following:

|S̃hk+1
| ≤ ϵ0 +

(1−ϕ)V1
M(ϕ)

|S̃hk+1
|+ ϕhθV1

M(θ)Γ(θ+1) ∑k
p=0 zk+1,p|S̃hip | (30)

where ϵ0 = max0≤k≤N{|S̃hi0 |+
ϕhϕV1zk,0

M(ϕ)Γ(ϕ+1) |S̃h0 |} . Equation (30) can be further simplified
to obtain the following:

|S̃hk+1
| ≤ V1V1ϕ

ϵ0 +
ϕhϕV1V1ϕ

M(ϕ)Γ(ϕ+1) ∑k
p=0 zk+1,p|S̃hip | (31)

where V1ϕ
= M(ϕ)

|(ϕ−1)V1+M(ϕ)| . Finally, we obtain | ˜Shk+1
| ≤ CV1ϕ

ϵ0, and this completes
the proof.

5. Results and Discussion
5.1. Model Parameter Estimations

In this section, we perform model fitting using data about the progression of Zika
virus disease from 1 to 36 days in Colombia, as reported in [9], to fit the proposed model (3).
Some of the parameters used in the simulations were adopted from the literature, as shown
in Table 1, and some parameters were estimated using root-mean square error (RMSE) and
the following formula:

RMSE =

√√√√ 1
n

36

∑
k=1

(I(k)− Î(k))2, (32)

where n is the number of weekly reported Zika cases from 1 to 36 weeks. We assumed
the initial population as follows: Sh(0) = 6000, Eh(0) = 50, Ah(0) = 50, Ih(0) = 5,
Rh(0) = 10, Sv(0) = 100, Ev(0) = 2, and Iv(0) = 10. In addition, from model (3), the
generated cases new are obtained using the term (1 − ηh)δvβv(Ih + τh Ah)Sv, which counts
the detected cases.

Figure 2 shows the reported cases of Zika virus in Colombia for 36 days, and the
simulation result in Figure 3 shows (a) the fitting of the model at ϕ = 0.5 to the real data of
Zika virus infections. From illustrations, we observed that model (3) had a good fit to the
reported real cases. In (b), we observe that the fractional-order model had the best fit to
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the observed data compared to the classical integer model. The numerical simulation in
Figure 4 shows the cumulative sum of square error (SSER) for different derivative orders.
Overall, one can observe that the minimum estimation error for the reported cases occurs at
ϕ = 0.5. Figure 5a illustrates the numerical simulation of residuals against the reported real
data of Zika virus infection in Colombia. One can observe that the residuals have neither
auto-correlation nor partial auto-correlation, suggesting that the model (3) had a good
fit to the Zika cases in Colombia reported in [9]. Figure 6 shows the effect of prevention
measures on Zika virus transmission. Overall, we noted that as the number of prevention
measures increases, there is a reduction in the rate of Zika virus cases reported; hence, the
disease decreases in the population.

Table 1. Definition of model parameters and values.

Symbol Definition Value Units Source

βh Disease transmission from mosquito to human 0.00195 day−1 [14,31]
βv Disease transmission from human to mosquito 0.63 day−1 [14,31]
µh Natural mortality rate of human 27.9113 day−1 [14,31]
µv Natural mortality rate of vector 27.9113 day−1 [14,31]
αh Progression rate of human from incubation to infectious 0.055 day−1 [3,9]
αv Progression rate of vector from incubation to infectious 0.055 day−1 [3,9]
κh Progression rate of human from asymptomatic to recovered class 0.004 day−1 [3,9]
γh Progression rate of human from infectious to recovered class 0.004 day−1 [9]
Λh New recruitment of human 287, 460 day−1 [14,31]
Λv New recruitment of Aedes mosquito [40, 800] day−1 [3]
θh Human education awareness on Zika virus disease [0, 1] day−1 fitted
ϵh Rate of use of insecticides [0, 1] day−1 fitted
ηh Rate of prevention in contact with mosquitoes [0, 1] day−1 fitted
δh Rate of mosquito biting on human [0, 1] day−1 [9]
τh Reduction factor of disease transmission [0, 1] day−1 [3,9]
ωh Proportion of human progress to infectious class [0, 1] day−1 [3]

Figure 2. Number of reported disease cases over 36 days in Colombia, as in [9].



Informatics 2024, 11, 85 14 of 28

(a)

(b)

Figure 3. (a) Model fit versus reported cases of Zika virus infection (b); model fit versus reported
Zika virus cases at ϕ = 0.5 and ϕ = 1.

(a)

Figure 4. Cont.
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(b)

Figure 4. Simulation of the cumulative sum of squared errors (SSER) against the order of derivatives,
with (a) a ranging from 0.5 to 1 and (b) b ranging from 0.47 to 0.54.

(a)

(b)

Figure 5. Plot of (a) time series against residuals (b); residual against leverage on Zika infection
generated by model (3).
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Figure 6. Effects of varying preventive measures ηh (set at 50%, 75%, and 90%) on the reduction of
new Zika infections, showing reduction in new cases relative to reported cases.

5.2. Sensitivity Analysis

The numerical simulation results in Figure 7 show the relationship between individual
parameters and R0 when all the parameters are simultaneously varied. We utilized the
partial rank correlation coefficients, and the results are presented in Figure 7.

Figure 7. Sensitivity analysis of R0 for key model parameters.

The results indicate that increasing specific model parameters can enhance the trans-
mission of the disease. These parameters include the human birth rate (Λh), which increases
the number of susceptible individuals in the population, and the vector birth rate (Λv),
which boosts the number of mosquitoes capable of transmitting the virus. Additionally,
increasing the vector biting rate (δv) and the progression rate of vectors from the exposed to
infectious class (αv) further amplifies transmission. Similarly, the disease transmission rate
from infected vectors to susceptible humans (βh) and from infected humans to susceptible
vectors (βv) also plays a crucial role in accelerating the spread. On the other hand, several
parameters can reduce disease transmission when increased. These include the mortality
rate of humans (µh) and vectors (µv), as well as control strategies such as health education
campaigns (θh), the use of insecticides (ϵh), and preventive measures (ηh). Preventive
measures, which include the use of mosquito nets, wearing long-sleeved clothing, applying
mosquito repellents, and restricting travel to affected areas, are essential for preventing the
spread of the disease. These findings suggest that increasing public awareness through
health education campaigns, along with the use of insecticides and preventive measures,
can significantly reduce the potential for disease transmission.
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It is worth noting that some of the measures indicated in the PRCC analysis cannot
be encouraged as practical strategies for disease control because they may be beyond the
influence of policymakers. For example, addressing the rate of human birth or human
mortality as a means of controlling Zika virus transmission would not be feasible or ethical.

We further investigated the relationship between R0 and the five model parameters
that strongly correlated with it and the results presented in Figure 8. Overall, the results
confirm that an increase in prevention measures, including the use of insecticides, health
education campaigns, and increasing the vector mortality rate, will reduce the potential
for disease transmission; meanwhile, increasing the vector biting rate will increase the
potential for disease transmission.

(a) (b)

(c) (d)

(e)

Figure 8. Sensitivity analysis and Latin hypercube sampling of R0 for key model parameters. Each
parameter was varied across its range to assess its impact on R0: (a) θh, (b) ϵv, (c) ηh, (d) µv, and
(e) δv.

The contour plot in Figure 9a demonstrates that as both ϵv (use of insecticides) and
ηh (prevention measures) increase, the reproduction number, R0, decreases significantly.
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This indicates that the combined efforts of health education campaigns and insecticide
usage effectively reduce the potential for disease transmission within the community. It
is important to note that while these two factors are critical, other variables might also
influence the overall dynamics of disease spread. In Figure 9b, we observe a similar trend:
as the use of insecticides (ϵv) increases and the vector mortality rate (δv) improves, the
reproduction number decreases. This suggests that increasing vector mortality, possibly
by reducing biting rates through insecticide application, can significantly curb disease
transmission. Finally, in Figure 9c, the plot reveals that when preventive measures (ηh) are
reduced and the vector mortality rate (δv) increases, R0 rises. This implies that despite an
increased vector mortality rate, if preventive measures such as health education campaigns
are not maintained, the risk of disease transmission within the community can still increase,
highlighting the need for an approach that balances vector control and preventive strategies.

(a) (b)

(c)

Figure 9. Contour plots illustrating the relationship between the basic reproduction number, R0,
and key parameters related to vector control and prevention measures: (a) as a function of ϵv (use of
insecticides) and ηh (prevention measures); (b) as a function of ϵv and δv (biting rate); (c) as a function
of ηh and δv.
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5.3. Impact of Memory Effect on the Disease Transmission

To investigate the effect of memory on the spread of Zika virus, we simulated model
system (3) for R0 < 1 and R0 > 1, as presented in Figures 10 and 11, respectively. The order
of derivative ϕ was varied within a reasonable range (ϕ = 0.1, 0.3, 0.5, 0.7). As mentioned
in the literature, when the fractional order ϕ = 1.0, the fractional-order model based on the
Caputo derivative becomes a classical ordinary differential model. Based on this assertion,
we observed that as the order of derivatives ϕ reduced from 1, the memory effects of the
system increased, and the model solution grew quickly, peaked earlier, and converged to
unique equilibrium points. In particular, for R0 < 1, the model solution converged to the
disease-free equilibrium after 10 days, and for R0 > 1, the model solutions converged to
unique endemic equilibrium. Furthermore, the results showed that when the fractional
order decreases, the model solution differs. In particular, one can observe that when the
fractional order approaches 0, the memory effects become strong and the model solutions
converge to their respective equilibrium point earlier than when the order of derivatives
approaches 1. This result was also observed in previous studies.

(a)

(b)

Figure 10. Cont.
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(c)

(d)

(e)

Figure 10. Simulation results of the model system (3) with R0 < 1, illustrating solutions for various
values of the derivative order ϕ = 0.1, 0.3, 0.5, 0.7. The simulations were conducted over an 80-day
period for the following classes: (a) infected vectors (Iv), (b) exposed vectors (Ev), (c) asymptomatic
humans (Ah), (d) exposed humans (Eh), and (e) infected humans (Ih). Parameter values used are
provided in Table 1.
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(a)

(b)

(c)

(d)

Figure 11. Simulation results of the model system (3) with R0 > 1, showing solutions for different
values of the derivative order ϕ = 0.1, 0.3, 0.5, 0.7. The simulations illustrate the effects over 80 days
for each of the following classes: (a) exposed humans (Eh), (b) infected humans (Ih), (c) asymptomatic
humans (Ah), and (d) infected vectors (Iv). Parameter values used are provided in Table 1.
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5.4. Effects of Insecticides Use on the Disease Dynamics

To investigate the effects of insecticide use on Zika virus disease, we simulated model
system (3) at different values of ϵv, and the other parameter values are presented in Table 1.
The results are presented in Figure 12. From the numerical simulation, the results show that
the use of insecticides may lead to a reduction in the potential for disease transmission. In
particular, one can observe that for ϵv = 0, the disease persists in the population; if ϵv ≥ 0.2,
the disease dies in the population. The results in Figure 12 show that the use of insecticides
has a significant effect on public health when aiming to control the spread of disease in
the population.

(a)

(b)

(c)

Figure 12. Cont.
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(d)

(e)

Figure 12. Simulation of the model system (3) was conducted to investigate the effects of insecticides
on the spread of Zika virus disease. Simulations were conducted for the following classes: (a) Ev,
(b) Iv, (c) Eh, (d) Ih, and (e) Ah. Simulations were carried out using the parameter values shown in
Table 1.

5.5. Effects of Prevention Measures on the Disease Dynamics

To evaluate the effects of prevention measures on disease dynamics, we performed the
numerical simulation of the model (3) at different values of ηh. The results are presented in
Figure 13. In all scenarios, we observed that the effective use of prevention measures such
as wearing long-sleeved clothes and the use of mosquito nets reduce the spread of disease
in the population. In particular, one can observe that for ηh = 0, the disease persists in
the population, and when ηh ≈ 0, the model solution converges to the unique disease-free
equilibrium point.

(a)

Figure 13. Cont.
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(b)

(c)

(d)

(e)

Figure 13. Simulation of the model system (3) was conducted to investigate the effects of prevention
measures on the spread of Zika virus disease. Simulations were conducted for the following classes:
(a) Ih, (b) Eh, (c) Rh, (d) Ah, and (e) Ev. Simulations were carried out using the parameter values
shown in Table 1, and the order of derivatives was assumed to be ϕ = 0.5.
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5.6. Effects of Health Education Campaigns on the Disease Dynamics

Next, we evaluate the effectiveness of health education campaigns on reducing the
spread of Zika virus disease. The effective use of health education campaigns can be
implemented by using different media outlets such as newspapers, television, and other
social media to report on how people can prevent themselves coming into contact with
mosquitoes that transmit Zika virus disease. Here, we simulated model (3) at θ = 0 (no
effective use of health education campaigns) and θ = 0.9 (effective use of health education
campaigns), and the results are presented in Figure 14. The results show that for θ = 0, the
disease persists, and for θ = 0.9, the disease dies in the population.

(a)

(b)

(c)

Figure 14. Cont.
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(d)

(e)

(f)

(g)

Figure 14. Simulation of the model system (3) was conducted to investigate the effects of human
awareness on the spread of Zika virus disease across the following classes: (a) Ih, (b) Ah, (c) Eh, (d) Iv,
(e) Ev, (f) Rh, and (g) Sh. Simulations were performed over a period of 30 days using the parameter
values shown in Table 1, and the order of derivatives was assumed to be φ = 0.5.
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6. Concluding Remarks

This study presents a novel fractional-order mathematical model for Zika virus trans-
mission, which provides valuable insights into the disease dynamics and the potential
impact of various public health interventions. By incorporating memory effects through
fractional derivatives, we were able to capture the long-term influence of past infections
on disease progression and transmission, which is a significant improvement over clas-
sical integer-order models. The sensitivity analysis highlighted the critical parameters
influencing the basic reproduction number (R0), particularly the importance of preventive
measures, vector control, and health education campaigns in reducing disease transmis-
sion. Our simulations demonstrate that an increase in these public health strategies can
lead to a significant decrease in R0, thus lowering the potential for Zika virus outbreaks.
Furthermore, the fractional-order model (ϕ = 0.5) provided a better fit to real data from the
Zika virus outbreak in Colombia, emphasizing the practical relevance of fractional calculus
in modeling epidemiological data with memory effects. This shows the importance of
fractional-order models in capturing the complexity of vector-borne diseases, where the
effects of past states cannot be ignored. These findings have important implications for
public health policy, as they suggest that a combination of prevention measures, vector
control, and health education can be highly effective in controlling the spread of Zika virus.
Furthermore, the model’s ability to incorporate memory effects offers a more accurate and
flexible tool for predicting disease dynamics, especially in the context of emerging infectious
diseases. While the current model provides substantial insights, future work could explore
the inclusion of seasonal variations and migration patterns, both of which can further
influence disease dynamics. Incorporating these factors would allow for a more compre-
hensive analysis of how Zika virus transmission may vary across different environments
and populations, providing a stronger foundation for targeted intervention strategies. In
summary, this study improves on the application of fractional-order models, demonstrating
their efficacy in improving model accuracy and supporting public health decision-making.
The results offer a foundation for the further exploration of fractional-order approaches in
other vector-borne and infectious diseases.
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