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Abstract: The “Exposome” is a concept that indicates the set of exposures to which a human is
subjected during their lifetime. These factors influence the health state of individuals and can
drive the development of Noncommunicable Diseases (NCDs). Artificial Intelligence (AI) allows
one to analyze large amounts of data in a short time. As such, several authors have used AI to
study the relationship between exposome and chronic diseases. Under such premises, this study
reviews the use of AI in analyzing the exposome to understand its role in the development of chronic
diseases, focusing on how AI can identify patterns in exposure-related data and support prevention
strategies. To achieve this, we carried out a search on multiple databases, including PubMed,
ScienceDirect, and SCOPUS, from 1 January 2019 to 31 May 2023, using the MeSH terms (exposome)
and (‘Artificial Intelligence’ OR ‘Machine Learning’ OR ‘Deep Learning’) to identify relevant studies
on this topic. After completing the identification, screening, and eligibility assessment, a total of
18 studies were included in this literature review. According to the search, most authors used
supervised or unsupervised machine learning models to study multiple exposure factors’ role in
the risk of developing cardiovascular, metabolic, and chronic respiratory diseases. In some more
recent studies, authors also used deep learning. Furthermore, the exposome analysis is useful to
study the risk of developing neuropsychiatric disorders or evaluating pregnancy outcomes and child
growth. Understanding the role of the exposome is pivotal to overcome the classic concept of a single
exposure/disease. The application of AI allows one to analyze multiple environmental risks and
their combined effects on health conditions. In the future, AI could be helpful in the prevention of
chronic diseases, providing new diagnostic, therapeutic, and follow-up strategies.

Keywords: artificial intelligence; chronic disease; deep learning; exposome; machine learning

1. Introduction

The main agents contributing to the development of the largest part of diseases known
to date include genetic factors, i.e., the “genome” [1], environmental factors, i.e., the
“exposome” [2], and infections [3]. The interplay of genomes and the exposome gives rise
to some of the most popular Noncommunicable Diseases (NCDs). NCDs are different from
the so-called Communicable Diseases (CDs), since the latter are referred to as infectious
conditions, whereas NCDs include chronic diseases resulting from a combination of genetic,
environmental (air pollution, climate change, etc.), sociodemographic (age, gender, etc.),
and self-management (smoking, diet, physical activity, etc.) factors, and medical conditions
(obesity, stress, blood pressure, etc.) [4]. Globally, NCDs lead to the death of 41 million

Informatics 2024, 11, 86. https://doi.org/10.3390/informatics11040086 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics11040086
https://doi.org/10.3390/informatics11040086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0002-6403-6905
https://orcid.org/0009-0001-2855-254X
https://orcid.org/0000-0001-8335-5541
https://doi.org/10.3390/informatics11040086
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics11040086?type=check_update&version=1


Informatics 2024, 11, 86 2 of 20

people yearly (74% of all global deaths) [5,6], constituting a significant health burden,
especially in wealthier countries [7].

The main types of NCDs are represented by cardiovascular diseases, cancer, chronic
respiratory diseases, and metabolic conditions, including diabetes. However, many other
pathologies are present regarding gastroenterological, renal, hepatic, dermatologic, hema-
tological, endocrine, and neurological systems [5–7]. In recent decades, the genetic compo-
nents of NCDs have been studied through gene sequencing and mapping to identify the
genetic factors underlying such diseases. These studies enabled the understanding of gene
expression and protein function in the identification of the biochemical pathways involved
in the natural history of chronic diseases. Although many genes predisposing individuals
to the main chronic diseases have been identified, our knowledge remains limited because,
beyond genetics, it is essential to understand the interaction with environmental factors in
developing the aforementioned conditions [8,9].

Under this light, the application of strategies aimed at reducing environmental expo-
sure to risk factors is pivotal for disease control [10,11]. In this framework, the concept
of the “exposome”, introduced in 2005 by Christopher Paul Wild, can be defined as the
measure of all the exposures of an individual within a lifetime and how those exposures
relate to health [2]; it is composed by three overlapping domains: general external, specific
external, and internal [12]. The general external exposome includes measurable levels of ex-
posure, including air pollution and meteorological factors. The specific external exposome
includes information on individual exposures, including lifestyle factors (diet, physical ac-
tivity, smoking, drugs, for example). Finally, the internal exposome encompasses multiple
biological responses to external factors detected through molecular and omics analyses.
In recent years, a new domain has emerged: the socio-exposome, i.e., the product of the
interaction between health and socio-economic factors [13] (see Table 1).

Notably, the exposome plays an essential role since genetic factors and enhanced clinical
capabilities alone cannot explain such a rapid change in the incidence of many chronic diseases;
therefore, knowledge of this aspect may explain why some people develop a disease while
others, with a common genetic background and apparently similar clinical characteristics, do
not. In addition, we should consider that the etiology of a disease is rarely explained by a single
exposure; therefore, examining the human exposome becomes relevant to simultaneously
consider multiple risk factors and more accurately estimate concurrent causes of different
health outcomes. The considerable and continuously increasing data production in exposome
studies has led researchers to introduce new approaches to evaluate the effect of the exposome
on health as a whole, or to consider the contributions of single exposures. Among these
principles, Artificial Intelligence (AI), through machine learning and deep learning, and
beyond them, has begun to emerge as the elective path to follow in this regard.

AI can be understood as the part of computer science and other disciplines that analyzes
complex data, and it is widely applied in nearly every sector, including the (bio-)medical
world. In medicine, such data can be used in the diagnosis, treatment, and prediction of
outcomes and can help to reduce diagnostic and therapeutic errors and human biases that
normally occur in the clinical practice, as with experienced and skilled professionals [14].

More specifically, ML is a subset of AI that enables computers to utilize large amounts
of data to make predictions without being explicitly programmed to do so [15]. Many dif-
ferent ML categories are available for several applications, including Supervised Learning,
Unsupervised Learning, Semi-supervised Learning, and Reinforcement Learning.

Supervised Learning involves using labeled datasets to train algorithms for accurate
classification or regression tasks, most frequently in the domain of outcome prediction.
Common Supervised Learning algorithms include Linear Regression, used to predict nu-
merical values based on a linear relationship between different values; Logistic Regression
(LR), which makes predictions for categorical response variables, such as “yes/no”; Ran-
dom Forest (RF), which predicts a value or category by combining the results from many
decision trees; decision trees, which are used for both predicting numerical values, regres-
sion, and classifying data; Naïve Bayes, which uses Bayes’ theorem to classify objects; and
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Neural Networks, which use Artificial Neural Networks (ANNs) to imitate the human
brain’s learning process.

Table 1. List of relevant exposures.

Exposome Factor(s) Biological
Plausibility

Ability to Derive Individual
Level of Exposure

General external exposome

Meteorological Factors Climate Change, Wind, Temperature High Medium/High

Air Pollution Pollen, Traffic, NO2, SO2, PM, CO High Medium

Urban/Rural Environment Population Density, Green Space,
Accessibility to Resources Medium Medium

Home Environment PM, NO2, CO, Metals, Plastic, Pets, Dust High Low/Medium

Food and Water Contaminants Pesticides, Metals, Fertilizers High Medium

Specific external exposome

Occupational Exposures Plants, Chemicals, Animal Proteins, Dust High Medium

Medications Medicines, Surgeries High Low

Personal Behavior Diet, Physical Activity, Smoking, Alcohol High Low/Medium

Internal exposome

Metabolic Factors
Microbioma

Inflammation Factors
Oxidative Stress Factors

Aging
Genetic and Epigenetic Factors

Medium/High Medium/High

Socio-exposome

Social Factors Education, Occupation, Psychological
Stress, Access to Food, Racial Inequality Low-to-High Low/Medium

Economic Factors Economic Status, Occupation Low-to-High Low/Medium

Unsupervised Learning applies unlabeled and unclassified datasets to make predic-
tions without human intervention. It does normally perform Clustering (algorithms that
identify patterns in data so that it can be grouped), and Association (discovering interesting
relationships between features in a given dataset), as well as dimensionality reduction.

Semi-supervised Learning is a highly efficient ML approach combining labeled and
unlabeled data during training.

Finally, Reinforcement Learning (RL) is an ML technique where an agent learns to take
optimal actions through environmental feedback. In positive-RL, the agent is rewarded for
taking actions that lead to positive outcomes, whereas in negative-RL, the agent is punished
for taking actions leading to negative outcomes [16].

As said, AI in general, and ML in particular, include specific tools which enable a sys-
tematic approach to adequately support the investigation towards the complex etiopatho-
genesis of chronic diseases and the management of these conditions that typically involve
multiple characteristics (genetics, lifestyle choices, and environmental factors), differing
from patient to patient and capable of contributing to their onset [17]; therefore, their
application to studies about the exposome is quite straightforward, as the main advantage
of the exposome over traditional ‘one-exposure-one-disease’ study approaches is that it
provides an unprecedented conceptual framework for the study of multiple environmental
hazards (urban, chemical, lifestyle, social) and their combined effects. Given the increasing
availability of complex environmental health data, there is a need for more advanced statis-
tical approaches focusing on complex mixtures of exposures; therefore, the management of
chronic diseases is a task perfectly suited to innovative technologies such as AI that can
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speed up the development of personalized treatments [17]. In addition, AI could support
the development of practical prevention tools, planning the management of NCDs, with
key impacts for healthcare and resource optimization [18–20].

Literature reviews dealing with the topic are scarce and not recent. For example, one of
the main contributions to scientific knowledge in the field was published by Subramanian and
co-authors in 2020 [21]; however, it is easy to understand that, especially within a topic that is
revolutionizing scientific research in the medical field, updated evidence should be provided to
promptly inform the scientific community about the latest advancements in the field.

Therefore, the present work seeks to identify the current literature contributions
dealing with AI in the exposome framework, thus providing an updated perspective on AI
applications’ benefits and future opportunities in studying the exposome, evaluating its
implications in clinical practice to promote prevention interventions and new diagnostic,
therapeutic, and follow-up strategies for chronic diseases.

2. Materials and Methods

A research study on AI applied to the exposome was conducted through a search on
PubMed, ScienceDirect, and SCOPUS from 1 January 2019 to 31 May 2023 by using the
Mesh terms: (“exposome”) and (“Artificial Intelligence” OR “Machine Learning” OR “Deep
Learning”) according to the PRISMA guidelines [22]. Original articles were included in the
analysis, whereas reviews, meta-analysis, proceedings, abstracts, and book chapters were
excluded. Also, articles published in a language other than English were not taken into account.

In a subsequent analysis, out of the 55 unique studies observed, 18 were considered to
be eligible as studies matching the criteria mentioned below were excluded.

As such, the papers excluded were those for which a subsequent analysis of the text,
title, and abstract did not allow inclusion for thematic reasons, review articles, and papers
written in a language other than the English language (Figure 1).
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3. Results and Discussion

After about four decades since the Human Genome Project takeoff, it is now clear
that only a tiny percentage of chronic diseases are linked to purely genetic causes; indeed,
genetic factors can play an important role in the development of CDs, but pathogenic
microorganisms constitute another determining factor, and the majority of such conditions
can be caused or worsened by so-called “exposures” [23].

In 2005, Wild highlighted the importance of developing reliable exposure assessment
tools to promote genome characterization [2].

On 1 January 2020, the European Human Exposome Network (EHEN) [24] was es-
tablished. The EHEN is the world’s largest network of projects studying human health in
relationship to the environment and includes a group of nine projects funded since 2020 for
five years by the EU Horizon 2020 program for research and innovation. The EHEN research
projects include the following: Human Exposomic Determinants of Immune-Mediated
Diseases (HEDIMED) [25]; Dynamic Longitudinal Exposome Trajectories in Cardiovascular
and Metabolic Non-communicable Diseases (LONGITOOLS) [26]; Impact of Exposome
on the Course of Lung Diseases (REMEDIA) [27]; Advancing Tools for Human Early Life-
course Exposome Research and Translation (ATHLETE) [28]; Exposome Project for Health
and Occupational Research (EPHOR) [29]; Mapping Exposure-induced Immune Effects:
Connecting the Exposome and the Immunome (EXIMIOUS) [30]; Early Environmental
Quality and Life-course Mental Health Effects (EQUAL-LIFE) [31]; Exposome Powered
Tools for Healthy Living in Urban Settings (EXPANSE) [32]; Human Exposome Assessment
Platform (HEAP) [33].

When it comes to the present work, the literature analysis here conducted found
multiple associations between diseases and risk factors, which were investigated through
AI algorithms.Among the projects included in the EHEN, LONGITOOLS was developed
with the aim of assessing which exposures are associated with the development of cardio-
vascular and metabolic disorders, with these in turn being those with the highest mortality
worldwide [26].

Another initiative, namely FLExiGUT [34], represents the first large-scale exposome
study focusing on low-grade chronic inflammation. It aims to characterize environmental
exposure throughout human life to assess and validate its impact on intestinal inflammation
and biological processes and related diseases, including metabolic disorders, food allergies,
accelerated biological aging, and gastrointestinal cancers [34].

Multiple exposures and their interaction result in much stronger health effects than
any single exposure [35]; therefore, it is necessary to seek further links between risk factors
to study their impact on human health and to develop increasingly effective preventive
actions [36]. To this extent, the knowledge of the main determinants of health has in-
creased in recent years; however, the etiology of most NCDs, or chronic diseases, is still
poorly understood.

For this reason, it is pivotal to study the effects of the different human exposures to
evaluate their effects over time, especially when it comes to the appearance of undesirable
effects, and also to find the starting point for prevention and health promotion projects.

For this purpose, it was stated that “The Human Exposome Assessment Platform
(HEAP) is a research resource for the integrated and efficient management and analysis
of human exposome data. The primary goal of HEAP is to enable global collaborative
research on exposure to cost-effective health interventions” [33].

The articles and results included in our investigation are shown in Table 2, with a
summary of the main characteristics of the AI models employed depicted in Table 3.
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Table 2. Included articles and their characteristics (ANN: Artificial Neural Network; BMI: body mass index; CNN: Convolutional Neural Networks; GNB: Gaussian
Naive Bayes; KNN: K-Nearest Neighbor; LASSO: Least Absolute Shrinkage and Selection Operator Regression; LR: logistic regression; ML: Machine Learning; MLR:
Multiple Linear Regression; PLS: Partial Least Squares; PLS-DA: Partial Least Squares Discriminant Analysis; RF: Random Forest; SVM: Support Vector Machine,
T2D: type 2 diabetes).

Author and Year AI Type ML Model Topic Aims Study Area Patients Results

Ohanyan et al.,
2022a [37] Supervised ML

PLS, Bayesian Model
Averaging, penalized

regression using
Minimax Concave

Penalty, RF, XGBoost,
MLR

Environmental
factors and BMI

To explore which
factors of the urban

exposome are related
to body mass index
(BMI) and evaluate

the consistency of the
results across

multiple statistical
approaches

The
Netherlands 14,829

Associated with BMI: average neighborhood
value of homes, oxidative potential of

particulate matter air pollution, healthy food
outlets in neighborhood, low-income

neighborhoods, and one-person households
in neighborhood. Higher BMI levels in
low-income neighborhoods, with lower

average house values, lower share of
one-person households, and smaller amount
of healthy food retailers and higher OP levels

Ohanyan et al.,
2022b [38] Supervised ML LASSO, ANN, RF Urban exposome

and T2D

To examine the
associations of 85
urban exposure
factors and the

prevalence of T2D
and evaluate how the

obtained results
compare with data
on established T2D

risk factors

The
Netherlands 14,829

Lower average home values, higher share of
non-Western immigrants, and higher surface
temperatures related to higher risk of T2D in
LASSO, RF. Some risk factors (air pollutants)

appeared in LASSO but were not among
most important factors in RF. Other factors
(green space) did not appear in LASSO, but
appeared in RF. LASSO outperformed both

RF and ANN

Lee et al., 2022
[39] Supervised ML Knockoff Boosted

Tree
Exposome and

cardiovascular risk

To explore the
relationship between

the exposome and
various

cardiovascular
outcomes with

different and shared
pathophysiologies in
an adult population

in the USA

USA 5015

Analyses revealed new associations between
blood type A (Rh-) with heart attack, paint

exposure with stroke, exposure to
biohazardous materials with arrhythmia, and

higher level of paternal education with
reduced risk of cardiovascular disease. Sleep
disorders and smoking remained important

risk factors.
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Table 2. Cont.

Author and Year AI Type ML Model Topic Aims Study Area Patients Results

Bae et al., 2022
[40]

Deep learning
and ML Logistic regression Indoor air quality

and ashtma

To provide methods
for assessing indoor

air quality on a
patient-specific basis

with significant
control regarding the
level of exposure to

each agent

Republic of
Korea 19

Application of deep learning led to
improvement in classification accuracy

(11.5–18.4%) of logistic regression model,
with low relative errors, ranging between

0.018 and 0.160

Ren et al., 2023
[41] Supervised ML RF, XGBoost Socioexposome and

COVID-19

To identify
socioexpository

associations with
COVID-19 outcomes

in New Jersey and
evaluate the

consistency of
findings from

multiple modeling
approaches

USA

Data from
565 munici-
palities of

New Jersey

Positive associations of COVID-19 mortality
with historic exposures to NO2, population

density, percentage of minorities, and
below-high school education, and other social

and environmental factors. ML methods
detected consistent nonlinear associations not

captured by geostatistical models

Pries et al., 2019
[42] Supervised ML LR, GNB, LASSO,

Ridge
Schizophrenia and

exposome

To demonstrate how
predictive modeling
approaches can be

used to construct an
exposome score for

schizophrenia

The
Netherlands,

Turkey, Spain,
Serbia

3316

Machine learning approaches perform well,
especially LR, LASSO, and Ridge. For

example, exposure score (LR) distinguished
patients from controls (odds ratio [OR] = 1.94,
p < 0.001), patients from siblings (OR = 1.58,

p < 0.001), and siblings from controls
(OR = 1.21, p = 0.001)

Zhao et al., 2023
[43] Supervised ML RF, ANN, SVM Human blood

exposome

To develop an ML
model to predict

blood concentrations
of chemicals and

prioritize chemicals
potentially

hazardous to health

USA N/A

RF outperformed ANN and SVF models. The
most active compounds are food additives

and pesticides rather than widely monitored
environmental pollutants
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Table 2. Cont.

Author and Year AI Type ML Model Topic Aims Study Area Patients Results

Matta et al.,
2020 [44] Supervised ML

LR, ANN, SVM,
Adaptive Boosting,

Partial Least Squares
Discriminant

Analysis

Endometriosis and
persistent

pollutants in
adipose tissue

To apply different
ML techniques to

explore associations
between mixtures of

persistent organic
pollutants and deep

endometriosis

France 99

Deep endometriosis associated with
octachlorodibenzofuran, cis-heptachlor

epoxide, polychlorinated biphenyl 77, or
trans-nonachlor, among others. Regularized

logistic regression provided good
compromise between interpretability of

traditional statistical approaches and
classification capacity of machine

learning approaches

Li et al., 2022 [45] Supervised ML PLS-DA, RF, KNN

Risk of neurodevel-
opmental delay
and for human

milk metabolome/
exposome issues

To examine the
prognostic value of

the human milk
metabolome and

exposome in children
at risk for

neurodevelopmental
delay

USA 82

Changes in deoxysphingolipids,
phospholipids, glycosphingolipids,

plasmalogens, and acylcarnitines in milk of
mothers with children at risk for future delay.
Predictive classifier had diagnostic accuracy
of 0.81 (95% CI: 0.66–0.96) for females and

0.79 (95% CI: 0.62–0.94) for males

Louis et al.,
2019 [46]

Unsupervised
ML

Linear mixed-effects
model

Exposome and
pregnancy
outcomes

To better understand
the complexity of the

exposome and the
temporal changes in

endocrine-
disrupting chemicals

during pregnancy
and their interaction

with pregnancy
outcomes

USA 50

Four chemical clusters comprising
80 compounds, of which six consistently
increased, 63 consistently decreased, and

11 reflected inconsistent patterns over
pregnancy. Overall, concentrations tended to

decrease over pregnancy for persistent
endocrine-disrupting chemicals; inverse

pattern was seen for many non-persistent
chemicals. Explained variance was highest

for five persistent chemicals: polybrominated
diphenyl ethers #191 and #126,

hexachlorobenzene,
p,p’-dichloro-diphenyl-dichloroethylene,

and o,p’-dichloro-diphenyl-dichloroethane
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Table 2. Cont.

Author and Year AI Type ML Model Topic Aims Study Area Patients Results

Nemkov et al.,
2021 [47]

Supervised and
unsupervised

ML
Not specified

Blood donor
exposome and

drug impact on red
blood cell

metabolism

To evaluate the
impact of the

exposome that can
alter erythrocyte
energy and redox

metabolism and the
possibility of

influencing red blood
cell storage quality

and efficacy
post-transfusion

USA 250 Impact of drugs (65% of 1366 tested) on RBC
metabolism; ranitidine as potential additive

Buelow et al.,
2020 [48] Supervised ML RF Eco-exposome and

water pollution

To use ML to
evaluate the

resistome,
microbiota, and
eco-exposome

signatures of hospital
wastewater, as

compared to urban
wastewater

N/A N/A

Analysis demonstrated significant impact of
pharmaceuticals and surfactants on resistome

and microbiota of both hospital and
municipal wastewater

Loef et al.,
2022 [49] Supervised ML RF Exposome and

preceived health

To study the
relationship between

exposure and
perceived health

based on data
extracted from the

30-year Doetinchem
cohort study.

The
Netherlands 3419

RF model’s ability to discriminate poor from
good self-perceived health was acceptable
(area under curve = 0.707). Nine exposures
from different exposome-related domains

were largely responsible for model’s
performance, while 87 exposures seemed to

contribute little to performance
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Table 2. Cont.

Author and Year AI Type ML Model Topic Aims Study Area Patients Results

Johnson et al.,
2023 [50]

Deep learning
and supervised

ML

CNN, RF, SVM,
decision ree,

Gaussian Naive
Bayes, LR, XGBoost

Digital exposome
and human
wellbeing

To use
“DigitalExposome” to
better understand the
relationship between

environment and
mental health along

with perceived
environmental

responses

UK 40

Electrodermal activity and heart rate
variability impacted by level of particulate

matter in environment. Self-reported
wellbeing classified from multimodal dataset

with f1-score of 0.76

Patella et al.,
2020 [51]

Unsupervised
Artificial
Neural

Networks

Kohonen
Self-Organizing Map

Atmospheric and
climatic factors’

effects on signs and
symptoms of atopic

dermatitis

To use AI to
understand the

possible relationships
between climate

variables and atopic
disorder likelihood

Italy 60
Good predictivity of disease severity based

on environmental pollution data, lower
predictivity for weather-related factors

Jaiswal et al.,
2021 [52]

Supervised
machine

learning and
neural

networks (plus
chemoinformat-

ics)

kNN, Recursive
Partitioning, SVM,

XGBoost, Perceptive
Neural Network,

Naive Bayes,
Random Forest

Skin microbiome-
mediated

metabolism of
biotics and
xenobiotics

To test a tool to
predict the metabolic

reaction, enzymes,
species, and skin
sites of the skin

microbiome
potentially

metabolizing
biotic/xenobiotic

molecules, through
chemoinformatics,
machine learning,

and neural networks

India

N/A
(1,094,153
metabolic
enzymes)

Multiclass multilabel accuracy: 82.4%; binary
accuracy: 90.0%
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Table 2. Cont.

Author and Year AI Type ML Model Topic Aims Study Area Patients Results

Atehortúa et al.,
2023 [53]

Supervised
machine
learning
ensemble
method

XGBoost

Relationship
between exposome

and
cardiometabolic

risk

Developing a model
for cardiovascular
disease (CVD) and

type 2 diabetes (T2D)
risk prediction based
on exposome factors

UK

13,764
(equally

divided into
cases and
controls)

ROC AUC of 0.78 ± 0.01 and 0.77 ± 0.01 for
CVD and T2D, respectively

Dong et al.,
2024 [54]

Machine
learning

combination of
models

XGBoost, genetic
algorithm and

logistic regression
models. Final

multiple logistic
regression model

Preconceptional
exposome and

atopic problems

To apply a machine
learning approach to

explore the role of
the exposome in the
preconception phase
of atopic problems

Singapore
1151

mother–child
pairs

Pre-conception alcohol consumption and
maternal depressive symptoms during

pregnancy increase eczema and rhinitis risk.
Higher maternal blood neopterin and child
blood dimethylglycine protect against early

childhood wheeze. After birth, early infection
is key driver of atopy

Table 3. Main models employed in studies included in present analysis.

Model Application(s) Advantages Drawbacks

Partial Least Squares Regression Investigation around relationships between
continuous-like variables

Handling large amounts of variables, non-orthogonal
descriptors, low risk of retrieving correlations by chance

Risk of overlooking real correlations,
suboptimal sensitivity

Random Forest Regression and classification tasks
High accuracy, robustness to noise, handling missing
values and numerical and categorical data, stability
to overfitting

Poor interpretability, significant
computational efforts

Extreme Gradient Boosting Regression and classification tasks Good accuracy, computational speed, flexibility,
robustness to overfitting

Complexity, lack of transparency, memory
usage, not fully immune to overfitting

Multiple Linear Regression
Predictions, explanations of relationships
between variables,
variable-importance ranking

Ability to determine relative influence of predictors of
criterion value, capability of identifying outliers Requires high-quality data

LASSO Regression tasks Reduces overfitting, performs feature selection, fast to
implement and run

Relatively poor stability, not
particularly intuitive
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Table 3. Cont.

Model Application(s) Advantages Drawbacks

Boosted Trees Regression and classification tasks Excellent performances with high-quality data Poor with noisy data, tendency to overfit

Logistic Regression Regression tasks Easy implementation, interpretable, fast, no assumptions
about data distribution

Tendency to overfitting, linearity assumption
(rarely found in real world)

Gaussian Naïve Bayes Symptom-based diagnosis Performs well with normally distributed data Unsuitable with non-gaussian data

Ridge Regression Regression tasks
Robust to overfitting, performs well with large data
featuring more observations than predictors,
low complexity

Not performing feature selection, trades
variance for bias

Support Vector Machine
Pattern recognition, reliability evaluation,
bioinformatics, survival time estimation,
assessment of disease severity

Effective in high-dimensional spaces, memory
efficient, versatile

Unable to provide direct probability estimates,
tendency to overfit

Adaptive Boosting Regression, clustering, data and text mining Optimal with noisy data or with many
non-relevant features Need for high quality datasets

k-Nearest Neighbors Classification and regression tasks, e.g.,
pattern recognition, data mining Simple to implement

Not optimal with large dataset and with
high-dimensional data, sensitive to noisy and
missing data

Linear Mixed-Effects Providing evolutional details of
repeated measurements Prevent false positives, possibility to increase its power Computational issues, limited interpretation

Decision Trees Regression and classification tasks
Interpretability, ability to handle unbalanced data,
variable selection, handling missing values,
non-parametric nature

Overfitting, sensitivity to small variations,
biased learning

Convolutional Neural Networks Image segmentation, disease classification
and grading

Robust to noise and distortion in input data, automatic
feature extraction, no need for supervision Time consumption, subjectivity

Artificial Neural Networks Prediction, data and image interpretation,
data mining

Parallel operation, reliable with noisy data, easy to
update with new data, good performances in
complex problems

Limited output interpretability,
computational burden
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Regarding cardiovascular diseases, the main studies here included analyze inputs like
air pollution, poor food quality, neighborhood, sleep disturbances, and family history, in
turn being associated with conditions such as obesity or the presence of high BMI [37],
diabetes [38], stroke, and coronary heart disease [39].

In particular, Ohanyan et al. [37] performed a cross-sectional analysis using data from
14,829 participants from the Occupational and Environmental Health Cohort study and
86 different environmental factors. The exposures were derived linking the individual
home addresses based on geolocalization. Authors applied different ML approaches
(sparse-group Partial Least Squares, Bayesian Model Averaging, penalized regression using
the Minimax Concave Penalty, Generalized Additive Model-based boosted RF, Extreme
Gradient Boosting, and Multiple Linear Regression) to characterize the obesogenic urban
exposome, demonstrating the role of neighborhood socioeconomic position, urbanicity,
and air pollution [37]; these data have been assessed by self-reported questionnaires.

On the same data, the authors applied Least Absolute Shrinkage and Selection Op-
erator (LASSO), RF, and ANN models to study the association between type 2 diabetes
(T2D) and the urban exposome, derived as specified above [37]; in this way, they iden-
tified neighborhood socio-economic and socio-demographic characteristics and surface
temperature to be strongly associated with T2D risk, and also in this case used self-reported
questionnaires [38].

Lee et al. [39] used an exposure-level association study (ExWAS) to examine all
exposure–outcome associations to better understand environmental effects on cardiovas-
cular health. Broad and comprehensive questionnaire-based exposome data that cross-
sectionally encompass internal and external exposures at work and home have been col-
lected within a North Carolina-based cohort. The authors applied the deletion–substitution–
addition (DSA) variable selection algorithm to build up a final multi-exposure model [39].
Analyses showed new associations between blood type A (Rh-) with heart attack, paint
exposures with stroke, exposure to biohazardous materials with arrhythmia, and higher pa-
ternal education level with a reduced risk of multiple CVD outcomes. In multiple exposure
models, sleep disorders and smoking are confirmed as important risk factors [39].

Asthma and chronic obstructive pulmonary disease (COPD) [27,55] are highly debil-
itating chronic respiratory conditions, on which some AI-based models have been used
to develop causation patterns. Among the main players, air pollution is notoriously a
common factor in various chronic diseases.

De Vito et al. [56] developed an IoT AQMS architecture called MONICA (MONI-
toraggio Coooperativo della qualità dell’Aria or “Cooperative Air Quality Monitoring”)
based on a hybrid network of low-cost portable devices using electrochemical sensor arrays
for air quality assessment and exposome monitoring. The platform has demonstrated
good accuracy, maintaining good performance over the long term. However, an annual
recalibration routine seems to be the minimum requirement to ensure performance [56].

Other projects to assess the most frequent risk factors for development or exacerbations
of chronic respiratory diseases have been started, including the REMEDIA project [27] and
the PROMESA cohort study [55]. According to the evidence, the risk factors most frequently
involved in the pathogenesis and exacerbation of respiratory diseases include air pollution
(both indoor and outdoor) and cigarette smoking. Sharing common etiopathological
pathways, allergic diseases have also been investigated with the support of AI. Notably,
ML has been used in this specific field [57] with the ambitious challenge of achieving
precise characterizations of allergic endotypes allergy medicine, understanding allergic
multimorbidity relationships, contextualizing the impact of exposure and ancestry/genetic
risks, achieving viable multi-omic integration, and using this information to develop patient
cohorts and refined clinical trials.

In their study of 19 asthma patients, Bae et al. [40] evaluated the correlation between
asthma exacerbation probability and patient exposure to indoor environmental factors.
The air quality data points were obtained through a laser light-scattering sensor and the
peak expository flow rate (PEFR) measurements were used to evaluate lung function. The
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authors overcome the limitations of existing predictive models by using two regression
models, obtaining an increase in the accuracy of the classification model of 11.5–18.4% [40],
but it is worth stating that the extremely small sample size could have led to spurious
results in terms of the generalizability of the model, overall.

The supervised ML approach was also used to assess infective respiratory disease,
primarily COVID-19 outcomes. Ren et al. [41] used six geostatistical models and two ML
methods (RF, Extreme Gradient Boosting) to assess socio-exposomic associations with
COVID-19 outcomes. The authors considered 84 heterogeneous environmental, demo-
graphic, and socio-economic factors, retrieved based on the living area of people included
in the study according to existing exposure-related databases. This study revealed a strong
correlation between COVID-19 mortality and historical exposures to NO2, population
density, and the percentage of minors and those with less than a high school education [41].

The EUGEI study [42] and the Equal Life project [31] were conducted to assess how
certain types of exposures were associated with mental health and cognitive development
disorders. Notably, Pries et al. analyzed factors such as cannabis use, noise pollution, birth
in the winter months, and physical and emotional abuse, derived from existing, reliable
datasets, as possible risk factors for schizophrenia, using algorithms such as LASSO, Ridge,
LR, and Gaussian Naive Bayes (GNB), among which LASSO, Ridge, and LR had the best
predictive performances.

Overall, it has been found that social inequalities, abuse, and stress can lead to the onset
of psychogenic and also biological disorders in children. These factors can also determine
early exposure to cigarette smoking, alcohol, unhealthy diets, attention disorders, cognitive
and language delays, and the development of schizophrenia [42].

The EU-funded Equal Life project studied combined exposures and their effects
on children’s mental and cognitive health based on data from eight birth cohorts and
three school studies (N = 240,000) linked to exposure data. The project has enabled the
development and use of the exposome concept by integrating internal, physical, and social
exposomes and aims to propose the best supportive environments for all children [31].

The relationship between phenotypes and chemicals and genes has always aroused
great interest from a biomedical point of view; for this reason, tools such as Phexpo have
been developed to predict chemical–phenotypic relationships and to better understand
these relationships [58,59].

Recently, Zhao et al. [43] used RF to develop a prediction model based on the an-
notation of chemicals in human blood [43]. The study was conducted on a sample of
7858 substances selected from the US EPA ToxCast chemical list, which includes more than
9000 compounds, including industrial chemicals, pesticides, consumer product ingredients,
and pharmaceuticals. The objective was to develop an ML model to predict blood concen-
trations of chemicals and prioritize chemicals of health concern. In this specific scenario,
RF outperformed the ANN and Support Vector Regression (SVR) models; the chemical
compounds most commonly represented in this framework include food additives and
pesticides rather than widely monitored environmental pollutants.

Moreover, some studies have been conducted which apply supervised ML models
to analyze the presence of chemicals in adipose tissue and the association with the risk of
developing endometriosis [44] or an alteration of the metabolites in breast milk and the
subsequent risk of alterations in the neurological development of the child [45].

Matta et al. [44] analyzed a dataset from a case–control study conducted in France
to identify associations between mixtures of organochlorine persistent organic pollutants
(POPs) and endometriosis. The five models tested revealed the POPs most associated with
endometriosis: octachlorodibenzofuran, cis-heptachlor epoxide, polychlorinated biphenyl
77, and trans-nonachlor. These compounds were analyzed using gas chromatography
coupled with high-resolution mass spectrometry. All models showed excellent classification
performances. Amongst them, regularized LR provided a good trade-off between the
interpretability of traditional statistical approaches and the classification ability of ML
approaches [44].
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Li et al. [45] analyzed the predictive potential for the human milk metabolome and
exposome in infants at risk of neurodevelopmental delay in a retrospective cohort study
of 82 mother–infant pairs. Milk samples were collected before 9 months of age and neu-
rocognitive development was assessed using the Ages and Stages-2 (ASQ-2) questionnaire.
The metabolomic analysis of endogenous metabolites was performed using a UFLC XR
HPLC system (LC-20AD, Shimadzu) coupled with an Qtrap 5500 triple quadrupole mass
spectrometer. In total, 453 metabolites and 61 environmental chemicals present in breast
milk were identified. ML detected changes in deoxysphingolipids, phospholipids, gly-
cosphingolipids, plasmalogens, and acylcarnitines present in the milk of mothers with
infants at risk of delayed neurocognitive development [45].

Instead, Louis et al. [46] used an unsupervised model on 50 women with uncompli-
cated pregnancies [46] with the objective of evaluating how some chemical substances
(EDC) change in the serum and the urine for each trimester of pregnancy since, as we
know, the exposures that pregnant women encounter during this critical and sensitive
window of fetal development can impact maternal and infant health. Four chemical clusters
included 80 compounds, of which six increased, 63 steadily decreased, and 11 reflected
inconsistent patterns during pregnancy. Overall, concentrations tended to decrease dur-
ing pregnancy for persistent EDCs, whereas an inverse trend was observed for many
non-persistent chemicals. Gas chromatography interfaced with high-resolution mass spec-
trometry (HRGC-HRMS) was used to quantify most persistent EDCs in serum (polychlori-
nated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides; Table 1),
whereas perfluoroalkyl and polyfluoroalkyl substances (PFASs) were measured using
high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS).
Various classes of non-persistent EDCs including phthalate metabolites, environmental
phenols, organophosphate pesticide metabolites, hydroxylated polycyclic aromatic hy-
drocarbons, phytoestrogens, perchlorate, and other related anions were quantified in
urine by HPLC-MS/MS. The explained variance was highest for five persistent chemicals:
polybrominated diphenyl ethers #191 (51%) and #126 (47%), hexachlorobenzene (46%), p,p’-
dichloro-diphenyl—dichloroethylene (46%), and o, p’-dichloro-diphenyl-dichloroethane
(36%). The concentrations of many EDCs are not stable during pregnancy and reflect
varying patterns depending on their persistence, highlighting the importance of timed
biological sample collection [46]. Dietary, iatrogenic, or environmental exposures could also
alter erythrocyte energy and redox metabolism, influencing the quality of red blood cell
preservation and posttransfusion efficacy [40]. For this reason, Nemkov et al. [47] studied
blood donor exposomes, derived from existing datasets, and data regarding the use of
common medications in 250 healthy volunteers in the Recipient Epidemiology and Donor
Evaluation Study III Red Blood Cell-Omics Study (REDS-III RBC-Omics). By carrying out
pharmacological screening on 1366 drugs, it emerged that approximately 65% of these had
an impact on the metabolism of erythrocytes. Specifically, the authors focus on the anti-acid
ranitidine, which had a substantial effect on markers of the quality of preservation of red
blood cells in vitro [47].

The RF algorithm was successfully used to evaluate the impact of pharmaceuticals
and surfactants on the resistome and microbiota on both hospital wastewater (HWW) and
municipal wastewater (UWW) [48] in 126 WW samples (UWW, HWW, and WW mixed)
collected in a French city for approximately four years (34 months with different treatments
for H and UWW and 11 months with H and UWW mixed 1:2 HWW:UWW in a single
system) [48]. After filtration for microorganisms, water samples were subjected to DNA
extraction, and DNA concentration was estimated through fluorimetric quantification, then
subjected to quantitative PCR and 16S rRNA analysis. On the other hand, chemical data
were treated using solid-phase extraction (SPE) and liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS), used in particular to measure antibiotics like
ciprofloxacin, sulfamethoxazole, and vancomycin, and the pharmaceutical carbamazepine.
In addition, heavy metals (Zn, Cu, Ni, Pb, Cr, Gd, Hg, As, and Cd) were measured with
inductively coupled plasma combined with atomic emission spectroscopy (ICP-AES).
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The differences between the H and UWW signatures are consistent with the differ-
ences in antibiotic exposure in the two frameworks. Furthermore, hospital WW contains
significantly greater loads of antimicrobial resistance genes, mobile genetic elements, and
integrons [48].

Supervised models, mainly the RF model, were also selected to analyze which lon-
gitudinal exposures had the most significant predictive value for self-perceived health in
a cohort of 3419 Doetinchem participants over 30 years [49]. This study considers many
exposome models from different domains: demographic, lifestyle, environmental, and
biological. More specifically, exposome variables include the measurements related to
the physical environment outside and inside the participants’ home, whereas biological
internal measurements were performed by trained staff. Other variables were collected
through self-reported approaches.

The RF model’s ability to discriminate between poor and good self-perceived health
was deemed acceptable. The other 87 exposures contributed little to the performance.

Johnson et al. [50] used Convolutional Neural Networks (CNN) to classify self-
reported wellbeing from multimodal datasets, including urban environmental factors
(e.g., noise, nearby people counting), body reactions (physiological reactions including
EDA, HR, HRV, body temperature, BVP, and movement) and individuals’ perceived re-
sponses (e.g., self-referential valence) in urban settings. The study was conducted on a
sample of 40 participants. The sensing kit built and used for the project includes a sensing
edge, namely Enviro-Edge, featured ten embedded sensors for air quality, was linked to
a customized smartphone app (EnvBodySens2) collecting accelerometer data, and used
Bluetooth Low Energy (BLE) for self-report labels, noise, date and time, as well as GPS
traces. Finally, body data were collected by means of E4 Empatica. The results showed that
the electrodermal activity frequency (EDA) and heart rate variability (HRV) are markedly
influenced by an environment’s level of particulate matter [50].

The exposome also plays a role in the pathogenesis and course of skin diseases; Patella
et al. [51] evaluated the impact of air pollutants, measured through environmental control
units discharged in specific sites in an area, and weather changes on patients with atopic
dermatitis, demonstrating that changes in weather and air pollution have a significant
effect on skin reactivity and symptoms in AD patients, increasing the severity of dermatitis.

Furthermore, the skin microbiome regularly comes into contact with cosmetic agents,
pollutants, and topical compounds, such as skin-care products and medical ointments.
These substances, part of the skin exposome, can be processed into toxic compounds
responsible for rashes and neoplasms. To predict all possible metabolic reactions that may
occur to these chemicals from our skin microbiome, along with information about the
respective reaction centers, metabolic enzymes, microbial species that carry these enzymes,
and also the skin sites that host these species, a tool called SkinBug [52] was proposed.
Jaiswal et al. [52] developed SkinBug using a database of metabolic enzymes, reactions,
and substrates from 900 bacterial species from 19 different skin sites. This tool uses ML and
neural networks to predict the xenobiotic metabolism of the skin microbiome with a binary
accuracy of up to 90.0% [52].

In an international team effort, coordinated by Atehortúa [53], a model, based on ML,
was developed to estimate the risk of developing cardiovascular disease (CVD) and type
2 diabetes (T2D) based on exposome factors. The study made use of data coming from
13,764 individuals, equally distributed between cases and controls, with a prevalence of
CVD patients (5348 vs. 1534 for T2D). Using the popular Extreme Gradient Boost ensemble
model (XGBoost), the authors reached an area under the curve of the ROC of 0.78 ± 0.01
for CVD and a slightly lower result (0.77 ± 0.01) for T2D.

Finally, Dong and collaborators [54] tried to shed light on the pre-conception risk
factors for childhood atopic problems, using XGBoost, genetic algorithms, and logistic
regression to analyze data from a dataset populated by Singapore-based mother–child
pairs (1151 overall). With this approach, the authors discovered that pre-conception alcohol
consumption and maternal depressive symptoms were clear risk factors for the subsequent
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development of eczema and rhinitis. In addition, higher maternal blood neopterin and
child blood dimethylglycine were found to be protective against early childhood wheezing.
In addition, after birth, early infections were seen to be key drivers of atopic problems,
including atopic eczema and rhinitis.

The analysis of the studies included in this review highlights the possibility of us-
ing AI to identify complex associations between environmental exposures and NCDs by
integrating multidimensional datasets, which are difficult to interpret using traditional
statistical methods.

However, the studies also reported significant gaps such as the heterogeneity of the
exposome data, this representing an intrinsic bias.

For future research, in order to improve the analysis of the exposome in developing
chronic diseases through AI algorithms, significant challenges must be confronted regarding
data integration, standardization, and the appropriate choice of the analytical model.

Additionally, the limited use of longitudinal study designs decreased the ability
to infer causal relationships between environmental factors and disease outcomes. The
need for more standardization across studies in terms of data collection methods and
AI model selection also hinders the reproducibility and generalizability of their findings.
Addressing these weaknesses will be crucial for advancing the reliability and impact of AI
in medical research.

4. Conclusions

All the exposures of an individual within a lifetime and how those exposures relate
to health define the exposome. Understanding how multiple environmental exposures
act together over time is the goal to reach, overcoming the classic concept of one single
exposure/disease, particularly in the development of NCDs, for which has been proven
that, beyond genetics, it is essential to identify the interaction with environmental factors, to
plan prevention and management strategies. In such a framework, our review highlighted
how AI can be effectively used in analyzing multiple environmental hazards and their
combined effects on health conditions. Notably, the European Human Exposome Network
(EHEN) projects and others used AI to integrate multiple environmental exposure data
with clinical data, providing prevention interventions and resource-optimization tools.
Therefore, applying AI to the exposome helps to expand our understanding of NCDs and
improves health outcomes. In fact, AI can play an essential role in identifying specific
biomarkers related to NCDs, integrating genomic data and environmental factors, allowing
for early disease diagnosis, and developing targeted diagnostic tools. Thanks to AI, person-
alized intervention strategies can be formulated, thus improving therapeutic effectiveness
in treating chronic diseases. Nevertheless, by studying the complex interaction between
environmental exposures and genetic susceptibilities, AI can facilitate the development of
more effective and individualized treatments. They can be used in AI algorithms in public
education programs that allow people to undertake informed health promotion actions. If
implemented, these interventions aim to effectively prevent or mitigate health risks and
improve the outcomes of non-communicable diseases, radically transforming the manage-
ment approach of NCDs, offering many opportunities to promote prevention interventions
and new diagnostic, therapeutic, and follow-up strategies for chronic diseases.
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