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Abstract: Mango production is fundamental to the agricultural economy, generating income and
employment in various communities. Accurate estimation of its production optimizes the planning
and logistics of harvesting; traditionally, manual methods are inefficient and prone to errors. Cur-
rently, machine learning, by handling large volumes of data, emerges as an innovative solution to
enhance the precision of mango production estimation. This study presents an analysis of mango
fruit detection using machine learning algorithms, specifically YOLO version 8 and Faster R-CNN.
The present study employs a dataset consisting of 212 original images, annotated with a total of
9604 labels, which has been expanded to include 2449 additional images and 116,654 annotations. This
significant increase in dataset size notably enhances the robustness and generalization capacity of the
model. The YOLO-trained model achieves an accuracy of 96.72%, a recall of 77.4%, and an F1 Score
of 86%, compared to the results of Faster R-CNN, which are 98.57%, 63.80%, and 77.46%, respectively.
YOLO demonstrates greater efficiency, being faster in training, consuming less memory, and utilizing
fewer CPU resources. Furthermore, this study has developed a web application with a user interface
that facilitates the uploading of images from mango trees considered samples. The YOLO-trained
model detects the fruits of each tree in the representative sample and uses extrapolation techniques
to estimate the total number of fruits across the entire population of mango trees.

Keywords: detection of fruits; production estimation; YOLO; faster R-CNN; extrapolation

1. Introduction

According to the Food and Agriculture Organization (FAO), among tropical fruits,
mango is the crop with the highest global production. This tropical fruit is not only valued
for its unique flavor and nutritional benefits but also plays a crucial role in generating
income and providing economic stability in various regions around the world. As one
of the most commercially traded fruit crops, mango represents a significant source of
foreign exchange for exporting countries, contributing substantially to the trade balance.
Additionally, the mango sector provides employment to numerous communities, from
local farmers to workers within the production and distribution chain [1].

Mango production is an agricultural activity that represents a significant source of
income for farmers. In 2022, Peru achieved a mango production quantity of 474,000 tons,
cultivated over an area of 30,800 hectares. The primary producing regions were as follows:
Piura with 19,867 hectares (64.6% of the total), followed by Lambayeque with 4311 hectares
(14%), Áncash with 1843 hectares (6%), and finally Cajamarca with 1160 hectares (4%). The
Kent variety of mango predominated in exports, accounting for 94% of the shipments [2].

Accurate estimation of fruit crop production is essential for the agricultural industry,
as it enables farmers to efficiently plan the harvests, distribution, and marketing of products.
This estimation underpins the organization and logistics necessary for collection, storage
planning, inventory control, and market supply. Traditionally, this task has been performed
using manual methods, which are labor-intensive, costly, and often imprecise due to the
natural variability in the growth and yield of plants and trees [3,4].

Informatics 2024, 11, 87. https://doi.org/10.3390/informatics11040087 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics11040087
https://doi.org/10.3390/informatics11040087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0009-0002-7668-0797
https://orcid.org/0000-0002-0007-0928
https://orcid.org/0000-0002-7788-951X
https://doi.org/10.3390/informatics11040087
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics11040087?type=check_update&version=1


Informatics 2024, 11, 87 2 of 14

Automated estimation of yield in fruit and vegetable fields facilitates more efficient
management of resources during harvesting, storage, and transportation [5]. In the absence
of automated systems for yield estimation in fruit crops, orchard managers must rely on
manual fruit counting. This method involves randomly selecting several tree branches,
counting the fruits present, and then extrapolating these results to the entire orchard [6].

In recent years, advancements in information technologies and the availability of large
volumes of data have encouraged the adoption of machine learning techniques across
various fields, including agriculture. In addition, machine learning offers a promising
alternative for fruit tree production estimation, as it can handle large datasets, identify
complex patterns, and enhance the accuracy of predictions [4].

Scientific research in this field has explored various methodologies and machine learn-
ing algorithms to address the challenge of fruit production estimation [7]. These approaches
include regression models, decision trees, artificial neural networks [8,9], and deep learn-
ing techniques [10], each with its own specific advantages and limitations. Studies have
demonstrated that these methods can integrate diverse data sources. These sources include
satellite imagery, multispectral images [11], climatic data, soil characteristics, and physio-
logical variables of the trees. Such integration helps generate more accurate and reliable
estimates. Similar research has been conducted in various regions around the world [12,13],
with the aim of providing advanced information to facilitate the logistical organization
of this fruit. This is particularly relevant given the short duration between physiological
maturity and ripening on the tree, as well as the relatively brief shelf life of the product
post-harvest [14].

Accurate estimation of fruit crop production not only contributes to better agricultural
planning but also optimizes the supply chain, reduces waste, and enhances the sustainabil-
ity of agricultural systems. Therefore, the implementation of machine learning techniques
in mango production estimation emerges as an innovative approach, enabling the devel-
opment of applications for use in agriculture within the communities of technologically
developing countries.

2. Related Works

In the work by [13], a model based on convolutional neural networks (CNNs) was
developed to estimate citrus production using RGB images captured by an unmanned
aerial vehicle (UAV). The model was trained over three annual production seasons (2017,
2018, and 2019) on a 4-hectare plot. For this purpose, 20 trees were randomly selected from
a total of 1654 trees in the plot, and photographs were taken from the left and right sides of
each tree. During the three seasons, the model demonstrated favorable results, achieving
an accuracy of 96% and an error rate of between 4% and 6%, compared to an error rate of
between 8% and 11% achieved by a specialist technician. Despite these favorable results,
the model encountered difficulties in identifying fruits hidden among the branches.

In the study by [15], an efficient method for citrus recognition was proposed through the
optimization of the state-of-the-art detector You Only Look Once version 4 (YOLOv4) [16].
A Kinect V2 camera was used to capture RGB images of citrus trees. To automatically
select the number and size of the initial bounding boxes from these images, the Canopy
and K-Means++ algorithms were employed. An enhanced YOLOv4 network structure
was proposed to optimize the detection of smaller citrus fruits in complex environments.
Finally, the trained network model underwent sparse training, which involved pruning
non-essential channels or layers and fine-tuning the parameters of the pruned model to
recover recognition accuracy. In the experiments conducted, the results indicate that the
enhanced YOLOv4 detector is effective in detecting the different growth stages of citrus
fruits in natural environments, with an average precision increase of 3.15% (from 92.89% to
96.04%). This result surpasses that of the original YOLOv4, YOLOv3, and Faster R-CNN.
The model’s efficiency is evident as the average detection time of the model is 0.06 s per
frame at a resolution of 1920 × 1080.
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In the study by [12], the challenge of detecting and counting mangoes under occlusion
conditions—where the mango fruit is partially or fully obscured by leaves, stems, or other
tree objects—was addressed. A method was proposed that evaluated color filtering and
specific fruit characteristics, such as surface homogeneity. The efficiency of the method
was highlighted through the use of information extracted from blobs (large binary objects)
created after histogram filtering, including weighting, gradient topology assessment, and
hierarchical clustering, without the need to pre-determine the number of clusters. Using
150 mango images divided into 30 images for training and 120 images for testing, the results
demonstrated that this method could detect mangoes with precision and error rates of up
to 97.53% and 0.72%, respectively.

In Table 1, relevant research pertaining to fruit counting and harvest estimation is
presented, elucidating the equipment employed for data acquisition and the techniques
utilized for estimation.

Table 1. Techniques and devices for fruit counting and harvest estimation.

Fruit Technique Data Device Advantages and Disadvantages of Device

Apple [17] YOLO v4-tiny RGB images
Kinect V2 Sensor

Resolution:
1920 × 1080 pixels

The device has a high resolution and wide
field of view, allowing for precise capture of
fruit details. However, there are limitations

for outdoor use as sunlight can affect the
accuracy of the depth sensor.

Citrus [18] YOLO v5-CS RGB images

DJI MAVIC Air2,
with SLR camera

(Panasonic
DMC-G7) and a
mobile phone

Honor 20

They provide high-quality images with
excellent resolution, sharpness, and control

over parameters such as exposure, focus, and
aperture. In this study, they were used in

uncontrolled environments, which reduces
image quality.

Grape [19] Artificial neural
network (ANN) Satellite images Landsat 8 OLI time

series

The OLI sensor features nine spectral bands
covering different ranges of the spectrum.

However, its spatial resolution of 30 m may
be insufficient for studies requiring detailed

analysis of small objects.

Melon [20] RetinaNet RGB images

UAV Phantom 4
Pro equipped with
a DJI FC6310 RGB

color camera, at
15 m above the field
with a resolution of
5472 × 3648 pixels

This device enables detailed analysis and
efficient coverage at 15 m above the field,

offering good stability and ease of use.
However, its performance is dependent on
weather conditions, and image processing
requires substantial storage resources and

computational capacity.

Apple [21] YOLO v5 RGB images
UAV and a

Raspberry Pi
camera

The Raspberry Pi camera is low-cost and
highly customizable, facilitating its

integration with fruit detection algorithms
such as YOLOv5. However, the Raspberry Pi
camera’s image quality is limited compared

to more advanced cameras, which may affect
the accuracy of fruit detection.

Strawberry [8] R-CNN RGB images
Smartphone with a
resolution of 4608 ×
3456 in JPG format

This device captures high-resolution images,
allowing for clear detail of the fruits, and the

JPG format produces lightweight files.
However, the required proximity for image
capture (0.2–0.3 m) could limit efficiency, as
multiple shots would be needed to cover a

large area of the crop.
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Table 1. Cont.

Fruit Technique Data Device Advantages and Disadvantages of Device

Strawberry [11] Linear regression Multispectral
imaging

RPA Phantom 4 Pro
Mapir Survey3W

camera
Resolution:

12 megapixels

This device captures multispectral images,
offering detailed data on strawberry health
and growth. With a 12-megapixel resolution
and aerial coverage, it allows for precise crop
assessment. However, it requires substantial
storage capacity and processing power for

image capture.

Pepper [22] DeepSORT RGB images D435i RGB-D
camera

It captures both color images and depth data,
improving accuracy in detecting fruit

maturity and counting by providing distance
and shape information. However, this

integration adds complexity and requires
more computational power.

Mango [9] Faster R-CNN RGB images
Smartphone
resolution:

1920 × 1080 pixels

This device is easy to use for farmers,
although the images may exhibit low quality

under variable lighting conditions.

3. Materials and Methods

Figure 1 illustrates the process followed for the labeling of images, data augmentation,
the training of mango fruit detection models, the development of the fruit counting algo-
rithm, and the application for data extrapolation and estimation of mango fruit production.
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Figure 1. Method for estimating mango fruit production.

3.1. Training Environment

To train the fruit detection model, the Google Colaboratory service has been utilized,
and its features are listed in Table 2.
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Table 2. The training environment for the models.

Service Features Value

Google Collaboratory
GPU NVIDIA T4 Processor speed 8 virtual CPUs at 3.7 GHz

Storage 78.2 GB
RAM 12.7 GB
GPU GDDR6 of 15 GB

3.2. Dataset

Public datasets have been utilized; the first one is presented by [23], which contains
49 images of mango trees of the Mangifera indica variety in the production stage. These
are JPG images with dimensions of 4000 × 3000 pixels, acquired using a high-resolution
RGB camera. These images were captured between 1:00 PM and 3:00 PM on a bright
afternoon in April, during the tropical summer. The experiment was conducted in a mango
orchard located in the village of Mudimadagu, with a latitude of 13.56 N and a longitude of
78.36 E, within the Rayalpad subdivision of the Srinivaspur taluk, a region known for
mango cultivation in southeastern India.

The second dataset was published on GitHub and contains 123 images of mango
trees in the production stage. These are JPG images with dimensions of 640 × 640 pixels.
Another dataset consists of 40 images with a resolution of 612 × 408 pixels in JPG format.
Sample images from this dataset are shown in Figure 2.
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3.2.1. Data Annotation

The images in the dataset have been manually labeled (ground truth) by the researchers
using the LabelImg program, adhering to the format required by YOLO and annotating
the location (bounding boxes) of the mango fruit or fruits on the tree. Figure 3 shows
two sample images from the dataset with the mango fruits labeled.

In the YOLO format, bounding box coordinates are typically defined as the coordinates
of the center of the bounding box, along with its width and height relative to the dimensions
of the image. To use the Faster R-CNN algorithm, considering image size, annotations have
been converted to the Pascal VOC format [24]. The coordinates in YOLO format are (xcenter,
ycenter, w, h), where xcenter and ycenter are the coordinates of the center of the bounding box,
and w and h are the width and height, all normalized in the range [0, 1].
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To convert these coordinates to the Pascal VOC format (xmin, ymin, xmax, ymax), we use
the following formulas:

xmin = xcenter −
w
2

(1)

ymin = ycenter −
h
2

(2)

xmax = xcenter +
w
2

(3)

ymax = ycenter +
h
2

(4)

3.2.2. Data Augmentation

To expand the training dataset, data augmentation has been employed, which is an
effective method to combat overfitting [25]. The augmentation process includes applying
various geometric transformations and distortions to the images, such as scaling, rotation,
random cropping, vertical flipping, horizontal flipping, and contrast enhancement, to
increase the variety of images for model training and improve accuracy.

In this study, data augmentation has been performed using progressive rotations
ranging from −5◦ to +5◦, simulating different viewing angles of the fruits on the tree
(Equation (5)). Table 3 presents the number of resulting images.

rotation = Irot(x′, y′) = I (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ)), (5)

where θ is the angle of rotation.

Table 3. Dataset details.

Original Images Data Augmentation

Images Annotations Images Annotations

212 9604 2449 116,654

3.3. Fruit Detection

In this study, two object detection methods were compared to detect mango fruits, and
their efficiency was measured. Using the dataset, two models were trained: YOLO version
8 and Faster R-CNN. The dataset was divided into three subsets: 70% for training, 15% for
validation, and 15% for testing. Both models were trained for 100 epochs with a batch size
of 8.
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3.3.1. Yolo Version 8

The first model was trained using YOLO Version 8. YOLO is a family of object
detection models that divides the input image into a grid and simultaneously predicts
multiple bounding boxes and their corresponding class probabilities [26].

Image Division into a Grid: The input image is divided into a grid of S × S cells. In
this study, images with a width of 4000 pixels and a height of 3000 pixels are used, so for
these images, a reduction factor of 32 is applied (a typical reduction factor for YOLO).

Cell Prediction: Each cell of the grid predicts a fixed number of bounding boxes B and
their corresponding confidence scores. Additionally, each cell predicts a probability value
for the class “mango”.

Loss Calculation: the YOLO loss function includes several components: the error in
bounding box coordinates (x, y, w, h), the error in bounding box confidence scores, and the
error in class probabilities.

3.3.2. Faster R-CNN

This method combines region proposal and object detection into a single model,
significantly improving speed and accuracy compared to previous methods such as R-CNN
and Fast R-CNN [27]. The general process of Faster R-CNN includes three phases:

Feature Extraction: to extract features from each input image, the deep convolutional
network ResNet50 [28] is employed.

Region Proposals: the Region Proposal Network (RPN) is a fully convolutional net-
work that generates region proposals, which are potential locations where objects may be
present.

Refinement and Classification: The proposals generated by the RPN are used to extract
regions of interest (RoIs) from the feature map. These RoIs are normalized to a fixed
dimension and passed through a pooling layer (RoI Pooling or RoI Align), which converts
them into fixed-size feature maps.

4. Results

During this study, the efficiency of the algorithms in terms of training and the perfor-
mance of the trained models were assessed.

4.1. Efficiency

To evaluate the efficiency of the two algorithms developed for mango detection in trees,
three key parameters were measured: memory consumption, CPU usage, and processing
time. The results are presented in Table 4.

Table 4. Efficiency of algorithms used.

Parameter Yolo Version 8 Faster R-CNN

Storage Usage (GB) 32 32
Processing Time (s) 8046.65 13,551.23

RAM Consumption (MB) 5302.20 7450.30
GPU Memory Consumption

(GB) 13.9 16

CPU Usage (%) 58.70 84.75

4.2. Performance

Using the dataset, two models were trained: YOLO version 8 and Faster R-CNN. The
dataset was divided into three subsets: 70% for training, 15% for validation, and 15% for
testing. Both models were trained for 100 epochs with a batch size of 8.

The detection model trained with YOLO version 8 demonstrates strong performance
in identifying mango fruits within images of mango trees during the production stage.
With an accuracy of 96.72%, the model achieves a high proportion of correct predictions
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among all detections made. A recall of 77.4% reflects the model’s ability to correctly identify
a significant portion of the positive instances within the dataset. Finally, the F1 Score of
86% balances precision and recall, indicating a robust overall performance.

The detection model trained with Faster R-CNN achieves a precision of 98.57%, a
recall of 63.80%, and an F1 Score of 77.46%. This model exhibits a lower performance
compared to the model trained with YOLO. In Figure 4, the performance of the model
trained with YOLO version 8 and Faster R-CNN over 100 epochs is shown.
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These trained models can process a test image to detect mango fruits in images of
mango trees in the production stage. Figure 5 presents several test images with predicted
labels and confidence scores.

In this study, the images of mango fruits were labeled by the researchers, ensuring that
each image contained an exact number of labels corresponding to a specific fruit from the
mango tree. To validate the models, 15% of the images were used, and the results obtained
were derived from the training process.
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4.3. Estimation of Production

For counting mangoes, the initial input will include the number of trees to be pho-
tographed and the total number of trees. Subsequently, the number of fruits per sampled
tree will be determined, and through extrapolation, the total mango production for all trees
will be estimated.

Initially, the average number of fruits per tree (x) will be calculated as follows:

X =
1
n∑n

i=1 Xi (6)

where Xi, is the number of fruits on tree i.
Then, we will calculate the standard deviation (S) using the following equation:

S =

√
1

n − 1

n

∑
i=1

(
Xi − X

)2 (7)

The Standard Error of the Mean (SE) will be determined as follows:

SE =
s√
n

(8)
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Next, the population (N trees) will be extrapolated:

Lin f =
(
X − t × SE

)
× N (9)

Lsup =
(
X + t × SE

)
× N (10)

The confidence interval will be given by the following:

X ± t × SE (11)

where t is the critical value from the t-distribution for a specific confidence level (e.g., 95%)
and n − 1 degrees of freedom.

4.4. Application for Production Estimation

Figure 6 illustrates the architecture of the developed web application, which is de-
signed based on a client–server model. The user interface has been implemented using the
JavaScript programming language, supplemented with HTML and CSS for the creation of
the visual environment. This interface facilitates the execution of necessary requests to the
server, allowing for data entry and the submission of images of the trees for subsequent
processing. The data are sent from the user interface to the server via requests using the
Hypertext Transfer Protocol (HTTP) in JavaScript Object Notation (JSON) format.
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Figure 6. Software architecture of application.

The business layer has been developed in Python, utilizing the Flask framework. This
layer is responsible for receiving requests through endpoints and performing the necessary
processing. Within this business logic resides the trained model, which is designed to detect
mango fruits on the trees. This model takes an input image and, as a result, provides the
number of mango fruits identified within the image.

Initially, the application has been deployed in a local environment for testing purposes.
Upon accessing the web application, users can specify the total number of mango trees
present in their cultivation area and must also input the number of trees that will constitute
the representative sample (Figure 7a). For each tree, the user is required to capture pho-
tographs that include all visible fruits on the tree; these images must be specifically selected
for each tree, and the application will automatically display the number of fruits identified
for that tree (Figure 7b). Finally, the application presents the results of the extrapolation
performed, indicating the average range of mango fruits present in the crop (Figure 7c).
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5. Discussion

The estimation of fruit production and the counting of fruits are based on the analysis
of images as input data. Some studies employ high-resolution images, which enable the
capture of precise details of the fruits; however, this approach necessitates greater storage
and data processing capacity [17,20]. Other studies utilize images obtained through a
UAV [11,18,21]; however, applying these results requires farmers to invest in equipment,
often incurring excessive costs. Our research, similar to that of [8,9], utilizes images
captured by smartphones, thereby facilitating a more economical and feasible adoption by
farmers.

In the work by [13], a convolutional neural network (CNN) was employed to estimate
citrus production using images captured by drones. Although the authors achieved an
accuracy of 96% and an error rate of 4–6%, they encountered difficulties in identifying
occluded fruits. Our research focuses on estimating mango production and utilizes the
YOLO model, achieving an accuracy of 96.72%. However, the model presented in [13] faced
challenges in identifying occluded fruits, a limitation that may also be pertinent to our
study, where the occlusion of fruits by leaves or branches could affect detection accuracy.

In the study by [12], mango detection under occlusion conditions was addressed using
color filters and fruit-specific characteristics, achieving a precision of 97.53% and an error
rate of 0.72%. Although our method does not specifically focus on occlusion conditions, it
is more generalizable and adaptable to different environments, making it robust for various
applications.

While the study by [9] employs the ResNet-50 model, focusing on a more traditional
convolutional neural network approach for yield estimation, our research leverages ad-
vanced models that facilitate real-time detection, which is crucial in dynamic agricultural
environments. Although both studies aim to estimate agricultural production, our research
not only emphasizes precision, achieving an accuracy of 96.72%, but also prioritizes practi-
cal application by providing farmers with a service to estimate their mango production.

In comparison to the work presented in [12], our research implements a more robust
approach utilizing data augmentation techniques. The methodological framework em-
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ployed in our study is based on advanced object detection models, specifically YOLOv8
and Faster R-CNN, which facilitate real-time analysis and enhance the ability to identify
objects under varying lighting conditions and background complexities. Our research not
only advances the accuracy of mango detection but also provides a framework for the
practical implementation of these technologies in agriculture.

6. Conclusions

The dataset used in this study comprised a total of 212 original images, each with
9604 annotations. After applying data augmentation techniques, 2449 additional images
were generated, resulting in 116,654 annotations. This represents a substantial increase in
the amount of data available for training, which is crucial for enhancing the robustness and
generalization of detection models. The significant increase in the number of images and
annotations strengthens the model’s ability to learn from a greater diversity of examples,
thereby optimizing its performance in detection and classification tasks.

The YOLO algorithm outperforms Faster R-CNN in terms of processing time, memory
consumption, and CPU usage during training. These advantages make YOLO the preferred
choice for rapid development environments with resource constraints.

The results obtained from the evaluation of the YOLO and Faster R-CNN models
demonstrate that YOLO outperforms Faster R-CNN, achieving an accuracy of 96.72% and
an F1 Score of 86%.

Extrapolation was used to calculate the total number of fruits in mango trees based
on the quantity observed in a representative sample of trees. This technique allows for
an accurate estimation of the total number of fruits in a larger population from the data
collected in the sample, providing a more comprehensive view of mango production in the
studied trees.

Finally, a web application was developed that allows farmers to upload images of their
trees and receive an estimation of mango production. While this application represents
progress in the integration of technologies for agriculture, it is concluded that such solutions
must evolve into accessible services for farmers, enabling them to benefit from these
estimations in a consistent and efficient manner.

This project represents an initial effort in our region to estimate mango production, a
crop of significant local importance. In future work, a dataset of mango images from the area
will be developed, ensuring that the images are taken from a consistent distance between
the capture device and the tree. Regarding image processing, the latest versions of YOLO
will be utilized, and other object detection architectures will be tested. The application
developed in this study will be available to all farmers through cloud computing services,
ensuring broad accessibility and scalability.
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