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Abstract: Stunting remains a significant public health issue in Aceh, Indonesia, and is influenced
by various socio-economic and environmental factors. This study aims to address key challenges
in accurately classifying stunting prevalence, predicting future trends, and optimizing clustering
methods to support more effective interventions. To this end, we propose a novel hybrid machine
learning framework that integrates classification, predictive modeling, and clustering optimization.
Support Vector Machines (SVM) with Radial Basis Function (RBF) and Sigmoid kernels were em-
ployed to improve the classification accuracy, with the RBF kernel outperforming the Sigmoid kernel,
achieving an accuracy rate of 91.3% compared with 85.6%. This provides a more reliable tool for
identifying high-risk populations. Furthermore, linear regression was used for predictive modeling,
yielding a low Mean Squared Error (MSE) of 0.137, demonstrating robust predictive accuracy for
future stunting prevalence. Finally, the clustering process was optimized using a weighted-product
approach to enhance the efficiency of K-Medoids. This optimization reduced the number of iterations
from seven to three and improved the Calinski–Harabasz Index from 85.2 to 93.7. This comprehensive
framework not only enhances the classification, prediction, and clustering of results but also delivers
actionable insights for targeted public health interventions and policymaking aimed at reducing
stunting in Aceh.

Keywords: stunting; machine learning; Support Vector Machines; linear regression; K-Medoids;
clustering optimization; weighted product; Aceh

1. Introduction

Stunting, a chronic condition caused by prolonged undernutrition, continues to be a
pressing public health challenge in many developing regions, including in Aceh, Indone-
sia [1,2]. Characterized by low height-for-age, stunting not only signifies severe nutritional
deficiencies but also acts as a predictor of a child’s overall health, cognitive development,
educational attainment, and future economic productivity [3,4]. Despite numerous public
health initiatives, the prevalence of stunting in Aceh remains alarmingly high, reflect-
ing deep-rooted issues related to food security, healthcare access, and socio-economic
disparities [5].

To effectively address stunting, it is crucial to understand its trends and underlying
causes. Analyzing stunting trends can reveal critical insights into how various factors such
as nutrition, healthcare access, and socio-economic conditions influence child development
over time. Moreover, understanding how stunting rates change over time and differ across
regions allows policymakers and stakeholders to design better targeted programs that
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address the unique challenges faced by different communities, ensuring that resources are
allocated effectively where they are most needed [6].

In the realm of health informatics, machine learning (ML) has emerged as a transforma-
tive tool, revolutionizing the analysis of public health data and the design of intervention
strategies [7,8]. ML’s ability to process large datasets and uncover hidden patterns offers
a robust alternative to traditional statistical methods, which often struggle to address the
complex interplay of factors contributing to public health challenges like stunting [9,10].
By leveraging ML techniques, researchers can develop models that more accurately classify,
predict, and cluster stunting-related data, leading to more targeted and effective public
health interventions.

Traditionally, studies have employed conventional statistical methods to analyze
stunting prevalence and its associated risk factors. For instance, Ssentongo et al. [11]
utilized epidemiological approaches to assess stunting across various regions. However,
recent research has increasingly incorporated ML to enhance the analytical precision.
Studies by Ndagijimana et al. [12] and Lin et al. [13] have demonstrated the potential of
ML algorithms in identifying patterns and predictors of stunting more effectively than
traditional methods.

Among the various machine learning algorithms, Support Vector Machines (SVM) are
widely regarded for their effectiveness in classification tasks, especially in high-dimensional
spaces where multiple variables interact [14–17]. The performance of SVM models is
significantly shaped by the choice of kernel function. In this study, the classification process
using SVM, particularly those with Radial Basis Function (RBF) and Sigmoid kernels,
aims to identify the most relevant variables contributing to stunting prevalence [18,19].
However, there is a need for further empirical studies to assess the performance of these
kernels in the specific context of stunting classification [20]. By analyzing multiple factors
such as nutrition, healthcare access, socio-economic status, and environmental conditions,
this method facilitates the identification of key predictors of stunting. It allows for a
more targeted understanding of which variables exert the most significant influence on
stunting rates.

Predictive modeling is essential for projecting stunting trends and for identifying
vulnerable populations [21,22]. Linear regression, a widely used method in predictive
analytics, has proven to be reliable for this task. By minimizing the Mean Squared Error
(MSE), it delivers accurate forecasts, which is critical for informed public health strategies
and resource distribution [23]. However, its application in stunting analysis, especially
alongside other machine learning techniques, remains underexplored. In this study, linear
regression is employed to predict stunting prevalence based on key variables. The primary
goal is to produce accurate predictions of future stunting rates, enabling better public health
planning and effective resource allocation. By minimizing the MSE, the model provides a
dependable tool for assessing how current risk factors may shape future stunting trends.

Clustering analysis is essential for identifying regional patterns in stunting preva-
lence [24,25]. This study introduces an optimized K-Medoids clustering method that
incorporates a weighted-product approach to enhance the accuracy and relevance of the
results. The method’s effectiveness is assessed using the Calinski–Harabasz Index, where
higher values signify distinct and well-defined clusters critical for understanding the stunt-
ing distribution in Aceh [26]. Initially, the K-Medoids algorithm is applied to categorize
regions with a similar stunting prevalence. This conventional approach is refined through
the weighted-product method, which prioritizes significant variables to improve the clus-
tering precision. Additionally, the study evaluates the number of iterations needed for
both the traditional K-Medoids and the weighted-product approach to further assess their
efficiency in analyzing regional stunting patterns.

Each method in this hybrid approach plays an essential role in addressing the complex
issue of stunting. The classification method, using SVM, identifies the key variables
contributing to stunting prevalence in Aceh, Indonesia, offering valuable insights into
the primary risk factors. This is crucial for understanding the core determinants and for
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effectively targeting interventions. Linear regression, by contrast, forecasts future trends in
stunting prevalence, providing the government and policymakers with a tool to monitor
stunting rates across cities in Aceh. This predictive capability is vital for planning long-
term interventions and for optimal resource allocation. Clustering, particularly through
the optimized K-Medoids approach, aids in identifying regions at high risk of stunting
by mapping geographic and demographic patterns. It is especially beneficial alongside
prediction, as it adds a spatial dimension to the understanding of stunting prevalence,
pinpointing areas where interventions are most urgently needed. By integrating these three
methods—classification to identify key predictors, prediction to forecast future trends, and
clustering to map vulnerable regions—this hybrid approach offers a comprehensive and
actionable framework for addressing stunting in Aceh.

Traditional statistical methods, although widely used, often fail to capture the complex,
multifactorial nature of stunting prevalence. For instance, regression models typically
assume linear relationships between predictors, which limits their ability to account for
the intricate interactions driving stunting. In contrast, machine learning techniques like
Support Vector Machines (SVM) excel in modeling non-linear relationships and capturing
complex interactions between variables. Additionally, traditional clustering methods such
as K-Means assume spherical clusters with equal variance, which may not accurately
reflect the diverse regional patterns of stunting. To address these limitations, this study
aims to develop a comprehensive and robust framework for analyzing stunting in Aceh
by integrating advanced machine learning techniques. Specifically, the study focuses on
enhancing classification accuracy using Support Vector Machines (SVM) with Radial Basis
Function (RBF) and Sigmoid kernels, improving predictive capabilities through linear
regression, and optimizing regional clustering using an enhanced K-Medoids method. The
ultimate goal is to generate actionable insights that can inform policymaking, resource
allocation, and targeted interventions to effectively reduce the stunting prevalence in Aceh.

The research makes several key contributions, including the following:

• Hybrid machine learning approach: Integrating SVM, linear regression, and an opti-
mized K-Medoids clustering method into a comprehensive framework for
stunting analysis.

• Enhanced classification accuracy: Applying SVM models with RBF and Sigmoid
kernels to achieve superior classification performance.

• Precise predictive modeling: Utilizing linear regression to generate accurate predic-
tions of stunting prevalence.

• Optimized clustering method: Introducing a novel weighted-product approach in
K-Medoids clustering to improve the understanding of regional stunting patterns.

The paper is organized as follows: Section 2 reviews the current research on stunting
and the applications of machine learning, highlighting key developments and challenges.
Section 3 describes the methodology, including the data collection, preprocessing, and
machine learning techniques used. Section 4 presents the results, comparing the perfor-
mance of various models and approaches. Finally, Section 5 discusses the implications of
the findings and offers recommendations for future research and policy actions. Through
this comprehensive approach, the study aims to provide valuable insights that can enhance
public health strategies, improve intervention effectiveness, and contribute to the reduction
of stunting prevalence in Aceh.

2. Related Works

This section reviews the literature on stunting analysis, the application of machine
learning in health data analysis, and various methods used for classification, prediction, and
clustering. It also highlights how this study differs from and builds upon previous research.

2.1. Stunting Analysis and Public Health Interventions

Stunting, characterized by low height-for-age, remains a critical public health issue
with significant implications for long-term health, cognitive development, and economic
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productivity [27–29]. Extensive research has documented its persistence in developing re-
gions and highlighted the need for effective interventions [30]. Mondon et al. [31] identified
key socio-economic and environmental factors contributing to stunting in Southeast Asia,
emphasizing the necessity for targeted nutritional programs and comprehensive strategies
addressing both the immediate and the underlying causes. Haselow et al. [32] evaluated
public health campaigns aimed at reducing stunting rates in rural areas and found that,
despite some progress, challenges like food insecurity and limited healthcare access persist.
These studies collectively underscore the need for integrated approaches combining direct
nutritional support with broader socio-economic improvements.

2.2. Machine Learning in Health Data Analysis

Machine learning (ML) techniques have increasingly been applied to health data
analysis to uncover complex patterns and to improve prediction accuracy [33–36]. Kumar
et al. [37] demonstrated the effectiveness of Support Vector Machines (SVM) in classifying
health conditions from intricate datasets, showcasing the robustness of SVM in handling
high-dimensional data and interpreting complex health information. Similarly, Leung
et al. [38] used linear regression models to forecast disease prevalence, highlighting the
technique’s reliability in predicting health trends based on historical data. However, linear
regression alone may not capture the full complexity of health data, especially when
combined with other ML techniques for enhanced insights [39].

Despite these advancements, the application of ML techniques to stunting analysis
remains underexplored [40]. Most existing studies have focused on isolated ML methods
without integrating them into a comprehensive framework. This research aims to address
this gap by employing a hybrid approach that combines SVM, linear regression, and
optimized K-Medoids clustering that provides a more nuanced understanding of stunting
patterns and improves prediction accuracy and intervention strategies.

2.3. Support Vector Machines (SVM) and Kernel Functions

Support Vector Machines (SVM) are renowned for their effectiveness in classifica-
tion tasks, particularly due to their ability to handle non-linear relationships within
datasets [41–44]. Sun et al. [45] assessed various SVM kernel functions in medical diagnos-
tics, finding that Radial Basis Function (RBF) kernels generally outperformed others. This
research demonstrated the RBF kernel’s superior capability in managing non-linearity and
processing high-dimensional data, establishing it as a preferred kernel for complex classifi-
cation tasks [46]. Despite these advancements, empirical research specifically focusing on
the use of SVM kernels for stunting classification remains limited. This study addresses
this gap by employing both RBF and Sigmoid kernels in SVM to analyze stunting data
comprehensively. By rigorously comparing these kernels, the research aims to refine the
classification accuracy and provide valuable insights into optimizing kernel functions for
stunting analyses.

2.4. Predictive Modeling with Linear Regression

Linear regression is a cornerstone of predictive modeling due to its simplicity and
effectiveness in estimating outcomes based on input variables [47–49]. Islam et al. [50]
highlighted the utility of linear regression in forecasting disease prevalence, emphasizing
its reliability and interpretability in health analytics. Despite its well-established use, inte-
grating linear regression with other machine learning techniques for analyzing stunting has
not been thoroughly investigated. This study addresses this limitation by combining linear
regression with SVM and optimized clustering methods, aiming to enhance predictive
accuracy and to offer a more nuanced understanding of stunting prevalence. This hybrid
approach leverages the strengths of linear regression alongside advanced ML techniques
to provide a more comprehensive analysis and to improve predictive modeling in public
health contexts.
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2.5. Clustering Techniques and Optimization

Clustering analysis is essential for identifying patterns and groups within data [51,52].
Traditional methods like K-Medoids have been used to analyze health data, but recent
advancements have introduced optimization techniques to enhance clustering accuracy.
Ikotun et al. [53] explored techniques to improve clustering precision, while Chen et al. [54]
applied weighted-product methods in K-Medoids to refine cluster validity. Although these
methods show promise, their application to stunting data, especially in regional analysis,
remains limited. This study introduces an optimized K-Medoids clustering approach
incorporating weighted-product methods to provide more accurate insights into regional
stunting patterns.

Additionally, incorporating optimization techniques in clustering not only improves
the accuracy of identifying distinct patterns but also enhances the detection of subtle
regional variations in stunting prevalence. By using a weighted-product approach, this
study aims to better capture the diversity within stunting data across different regions in
Aceh. This refined clustering method is expected to offer more actionable insights, allowing
for more targeted public health interventions that address specific needs in various sub-
regions. The improved clustering results will provide a clearer understanding of stunting’s
spatial distribution, contributing to more effective and localized strategies to combat this
public health challenge.

This study extends previous research by integrating advanced machine learning
techniques to offer a comprehensive analysis of stunting in Aceh. Unlike earlier studies
that predominantly relied on traditional statistical methods, this research employs a hybrid
approach combining Support Vector Machines (SVM) with Radial Basis Function (RBF)
and Sigmoid kernels, linear regression, and optimized K-Medoids clustering.

The novelty of this study lies in its hybrid methodology, which enhances classification
accuracy, improves predictive capabilities, and refines clustering analysis. By applying
SVM with various kernels and integrating an optimized K-Medoids approach, this research
overcomes the limitations of traditional methods and provides deeper insights into stunting
patterns. Furthermore, while existing studies often focus on isolated aspects of stunting, this
research offers a unified framework combining different ML techniques for a more nuanced
understanding of stunting in Aceh. This comprehensive approach is expected to inform
more effective public health interventions and policymaking, contributing significantly
to reducing the stunting prevalence. A comparative analysis of stunting research and
differences to the current study are illustrated in Table 1.

Table 1. Comparative analysis of stunting research and differences to the current study.

Authors Methodology Objectives Techniques Used Performance Key Contributions

[55]
Traditional
statistical
methods

Analyze
socio-economic and
environmental
factors

Descriptive statistics,
cross-sectional surveys Not specified

Identified key socio-economic
determinants of stunting;
emphasized the need for
targeted nutritional
interventions

[56]
Public health
campaign
evaluation

Assess effectiveness
of public health
campaigns

Comparative analysis,
survey data

Some progress in
reducing stunting;
gaps remain

Evaluated the impact of health
campaigns on stunting rates;
identified persistent challenges
such as food insecurity and
limited healthcare access

[57]
Machine
learning for
classification

Classify health
conditions using
complex datasets

Support Vector
Machines (SVM)

Effective in handling
high-dimensional data

Demonstrated the capability of
SVM in managing complex
health data; set a benchmark for
machine learning in health
diagnostics
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Table 1. Cont.

Authors Methodology Objectives Techniques Used Performance Key Contributions

[58] Kernel function
comparison

Compare the
performance of
different SVM
kernels in
diagnostics

Radial Basis Function (RBF)
and Sigmoid kernels

RBF kernels generally
provided superior
performance

Compared SVM kernels to
identify the most effective one
for medical diagnostics

[59] Clustering
analysis

Analyze patterns in
health data and
improve clustering
accuracy

K-Medoids
Enhanced clustering
accuracy with
optimization

Improved accuracy of
clustering analysis through
advanced techniques

[60] Time-series
prediction

Forecast stunting
prevalence trends

Linear regression,
time-series analysis

Accurate short-term
predictions

Demonstrated the utility of
linear regression for forecasting
stunting trends, contributing to
better resource allocation and
policy planning

Current
Study

Hybrid machine
learning
approach

Comprehensive
analysis of stunting
in Aceh using
advanced ML
techniques

SVM with RBF and Sigmoid
kernels, linear regression,
optimized K-Medoids

Improved classification
accuracy, predictive
capabilities, and
clustering insights

Integrated SVM, linear
regression, and optimized
K-Medoids clustering; provided
a unified framework for
stunting analysis and offered
actionable insights for public
health interventions

3. Materials and Methods

This section outlines the materials and methodologies used in the study to analyze
stunting prevalence in Aceh through a hybrid machine learning approach. The follow-
ing subsections detail the data sources and machine learning techniques employed for
classification, prediction, and clustering optimization.

3.1. Data Collection

The data utilized in this study encompasses stunting prevalence rates across districts
and cities in Aceh Province, Indonesia, for the years 2019 to 2023, as shown in Table 2. The
dataset includes various variables that are essential for a comprehensive analysis of stunting
and its associated factors. Table 3 summarizes the key variables used in this research.

Table 2. Stunting prevalence rates by district in Aceh Province (2019–2023).

District/City 2019 2020 2021 2022 2023 Average Number of Cases

Banda Aceh 27.6% 27.0% 26.0% 24.5% 23.5% 130

Aceh Besar 32.4% 31.5% 30.5% 29.5% 28.5% 153

Aceh Barat 35.2% 34.0% 33.0% 32.0% 31.0% 166

Aceh Timur 34.1% 33.0% 32.0% 31.0% 30.0% 161

Aceh Utara 38.3% 37.5% 36.7% 36.0% 35.2% 183

Bireuen 33.8% 33.0% 32.0% 31.0% 30.0% 159

Lhokseumawe 30.6% 29.5% 28.5% 27.5% 26.5% 145

Aceh Selatan 32.2% 31.0% 30.0% 29.0% 28.0% 150

Aceh Tenggara 36.7% 36.0% 35.2% 34.5% 33.7% 177

Subulussalam 47.9% 46.5% 45.0% 43.5% 42.0% 223

Pidie 33.4% 32.5% 31.5% 30.5% 29.5% 158

Pidie Jaya 37.8% 37.0% 36.2% 35.5% 34.7% 182

Aceh Barat Daya 35.2% 34.5% 33.7% 33.0% 32.2% 169

Gayo Lues 34.0% 33.0% 32.0% 31.0% 30.0% 163

Aceh Tamiang 32.1% 31.0% 30.0% 29.0% 28.0% 154



Informatics 2024, 11, 89 7 of 32

Table 2. Cont.

District/City 2019 2020 2021 2022 2023 Average Number of Cases

Nagan Raya 32.6% 31.5% 30.5% 29.5% 28.5% 155

Simeulue 37.2% 36.5% 35.7% 35.0% 34.2% 178

Aceh Singkil 30.8% 29.5% 28.5% 27.5% 26.5% 143

Bener Meriah 37.0% 36.2% 35.5% 34.7% 34.0% 177

Aceh Jaya 31.9% 30.5% 29.5% 28.5% 27.5% 148

Aceh Tengah 33.3% 32.5% 31.5% 30.5% 29.5% 158

Table 3. The key variables used in this research.

Variable Description

Stunting Prevalence Rates Proportion of children under five years classified as stunted based on height-for-age measurements,
reflecting chronic malnutrition.

Socio-Economic Factors

Variables related to the household’s economic status, including the following:

- Household income: Total income of the family per month.
- Parental education levels: Highest educational attainment of parents (e.g., primary,

secondary, tertiary).
- Employment status: Employment and occupational details of parents, which may affect

resources available for nutrition.

Nutritional Data

Information on dietary intake, including the following:

- Dietary diversity score: Variety of food groups consumed by children.
- Micronutrient intake: Levels of essential vitamins and minerals (e.g., Vitamin A, iron, zinc).
- Frequency of meal consumption: Number of meals and snacks consumed per day.

Healthcare Access

Variables related to healthcare services, including the following:

- Access to medical facilities: Distance to the nearest health center or hospital.
- Vaccination rates: Percentage of children receiving the recommended vaccinations.
- Maternal health services: Availability and usage of prenatal and postnatal care services.
- Health education: Access to information about nutrition and health practices.

Environmental Factors

Data on living conditions, including the following:

- Sanitation facilities: Availability of clean latrines or toilets.
- Water quality: Source and quality of drinking water (e.g., piped, well, surface water).
- Housing quality: Types of housing materials used and the presence of overcrowding.
- Exposure to environmental hazards: Presence of pollutants or toxins that may affect

children’s health.

Demographic Information

Variables detailing the characteristics of children, including the following:

- Age: Age of the child in months.
- Gender: Male or female.
- Geographical location: District or city where the child resides.
- Family structure: Number of siblings and household size, which may influence caregiving

dynamics and resource allocation.

The data presented in Table 2 outlines the stunting prevalence rates across districts and
cities in Aceh Province, Indonesia, from 2019 to 2023. This dataset offers valuable insights
into the extent of stunting as a chronic condition caused by prolonged undernutrition
across various regions within the province. In Banda Aceh, stunting rates have shown a
consistent decline, decreasing from 27.6% in 2019 to 23.5% in 2023.

This suggests improvements in nutritional status over the years. Similarly, Aceh
Besar and Aceh Barat have experienced reductions in their stunting rates, with figures
falling from 32.4% and 35.2% in 2019, respectively, to 28.5% and 31.0% in 2023, indicating
positive progress.

Conversely, districts such as Aceh Utara and Subulussalam exhibit some of the highest
stunting rates, starting at 38.3% and 47.9% in 2019. Although there has been a decrease,
the rates remain relatively high, highlighting persistent nutritional challenges in these
areas. Lhokseumawe and Aceh Singkil show lower stunting rates compared with other
districts, with percentages dropping from 30.6% and 30.8% in 2019 to 26.5% by 2023. Areas
such as Pidie Jaya, Simeulue, and Bener Meriah consistently report elevated stunting rates
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throughout the study period, indicating ongoing issues with child nutrition and the need
for targeted public health interventions.

This comprehensive data are crucial for understanding regional variations in stunting
and for developing effective strategies to address malnutrition in Aceh Province.

3.2. Proposed Method

The proposed method integrates several advanced machine learning techniques to
provide a comprehensive analysis of stunting prevalence in Aceh. The methodology is
designed to enhance classification accuracy, improve predictive capabilities, and refine clus-
tering analysis. The proposed method for this study adopts a multi-dimensional approach,
starting with classification using Support Vector Machines (SVM). This phase utilizes Ra-
dial Basis Function (RBF) and Sigmoid kernels, which were chosen for their proficiency in
managing the non-linear relationships intrinsic to the complex factors influencing stunting.
The SVM models undergo training and validation through a 10-fold cross-validation pro-
cess, ensuring robust performance and reducing the likelihood of overfitting. The models’
efficacy is then assessed using metrics such as accuracy, precision, recall, and F1-score, with
confusion matrices provided to visualize the effectiveness of the classification.

Following the classification stage, predictive modeling with linear regression is em-
ployed to project future stunting prevalence based on historical data. This method is
selected for its straightforwardness and its capacity to model the relationships between
stunting prevalence and various independent variables, including socio-economic factors
and healthcare access. The linear regression model’s precision is evaluated using the Mean
Squared Error (MSE) metric, with lower MSE values indicating more accurate predictions,
which are vital for effective public health planning.

Subsequently, the study proceeds with clustering analysis using optimized K-Medoids.
Initially, the K-Medoids algorithm, recognized for its robustness against outliers, is applied
to categorize regions exhibiting similar stunting prevalence patterns. The traditional
K-Medoids algorithm is then refined through a weighted-product approach, which assigns
significance to variables based on their importance, thereby enhancing clustering accuracy
by highlighting the most critical factors. The efficacy of the optimized clustering method is
validated using the Calinski–Harabasz Index, with higher values indicating well-defined
clusters, which are essential for understanding regional stunting patterns. Additionally, the
study will analyze the number of iterations required for both the conventional K-Medoids
and the weighted-product approach to further evaluate the efficiency and effectiveness of
the clustering methods, as shown in

Figure 1 illustrates the proposed hybrid machine learning framework, which combines
three core components: classification using Support Vector Machines (SVM), predictive
modeling with linear regression, and clustering analysis with optimized K-Medoids. The
figure shows the sequence in which these methods are applied, starting with SVM for
classification, followed by linear regression for forecasting, and concluding with clustering
analysis through an enhanced K-Medoids algorithm.

It also presents the evaluation metrics used for each method, including the accuracy,
precision, recall, F1-score, Mean Squared Error (MSE), and the Calinski Harabasz Index.
Additionally, the figure highlights the optimization of the K-Medoids algorithm and the
assessment of the number of iterations for both conventional and optimized approaches.
Figure 1.

3.2.1. Support Vector Machines (SVM)

Support Vector Machines (SVM) are employed for classification tasks within this
study. The process begins with the input of stunting data, followed by the application
of SVM models using two different kernel functions: Radial Basis Function (RBF) and
Sigmoid. These kernels are chosen for their ability to handle the non-linear relationships
present in the data and to improve the classification accuracy. The performance of the
models is compared by evaluating their effectiveness through a 10-fold cross-validation
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process and by analyzing confusion matrices. The evaluation metrics include accuracy,
recall, precision, and the F1-score, which are used to measure the models’ classification
performance. The framework for the SVM is depicted in Figure 2. The methodology
involves the following steps:

1. Data Input

The process starts by feeding stunting-related data into the SVM framework. This
dataset includes various features pertinent to the stunting prevalence, which are crucial for
both the training and evaluation of the SVM models.

2. Kernel Selection

• Radial Basis Function (RBF) kernel

The RBF kernel is employed to address non-linear relationships in the data. The kernel
function is mathematically defined in Equation (1) [61].

K
(
xi, xj

)
= exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
(1)

where xi and xj are feature vectors, and σ is the parameter defining the kernel width.

• Sigmoid kernel

To handle non-linear relationships, the Sigmoid kernel is utilized, as defined in
Equation (2).

Kxi, xj = tan h
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 Accuracy is calculated using the formula given in Equation (3). 

Accuracy = 
Number of Correct Predictions

Total Number of Predictions
  (3) 

 Recall is computed according to the formula presented in Equation (4). 

Recall =
True Positives

True Positives + False Negatives
  (4) 

 Precision is calculated using the formula given in Equation (5). 

Precision =
True Positives

True Positives + False Positives
  (5) 

 The F1‐score is calculated using the formula given in Equation (6). 

F1‐score =
2 × Precision × Recall
Precision + Recall

  (6) 

(
α
(
xi.xj

)
+ c
)

(2)

where α and c are parameters specific to the Sigmoid function.

3. Model Training and Validation

SVM models are trained using a 10-fold cross-validation process. This involves par-
titioning the dataset into 10 subsets. The model is trained on nine of these subsets and
validated on the remaining one, with this process being repeated 10 times to ensure that
each subset is used as a validation set once. This approach helps in providing a robust
evaluation of the model’s performance.
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4. Performance Evaluation

The effectiveness of the models is assessed using several metrics:

• Accuracy is calculated using the formula given in Equation (3).

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(3)

• Recall is computed according to the formula presented in Equation (4).

Recall =
True Positives

True Positives + False Negatives
(4)

• Precision is calculated using the formula given in Equation (5).

Precision =
True Positives

True Positives + False Positives
(5)

• The F1-score is calculated using the formula given in Equation (6).

F1−score =
2×Precision×Recall
Precision + Recall

(6)

3.2.2. Linear Regression

Linear regression models are employed for predictive analysis to estimate the stunting
prevalence based on historical data. The approach involves the following steps [62]:

• Input data

Begin by organizing the historical data related to stunting prevalence, which includes
various independent variables such as socio-economic factors, healthcare access, and
nutritional indicators.

• Linear regression equation

Develop the linear regression model based on the input data, where the relation-
ship between the dependent variable (stunting prevalence) and independent variables is
represented by Equation (7).

Y = β0 + β1X1 + β2X2+. . .+βnXn + ϵ (7)
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Here, Y represents the predicted stunting prevalence, β0 is the intercept, β1, β2, . . .,
βn are the coefficients for each independent variable X1, X2, . . ., Xn, and ϵ is the error term.

• Model training

The model is trained by fitting the regression line to the historical data, minimizing
the residual sum of squares between observed and predicted values.

• Model evaluation using Mean Squared Error (MSE)

The predictive accuracy of the model is evaluated using the Mean Squared Error
(MSE), calculated using Equation (8).

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2
(8)

In this context, Yi represents the observed stunting prevalence, Ŷi is the predicted
value, and n denotes the number of observations. A lower MSE value signifies higher
predictive accuracy. The linear regression (LR) framework is depicted in Figure 3.
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3.2.3. K-Medoids Clustering

This study employs K-Medoids clustering to identify and group regions in Aceh with
similar stunting prevalence patterns. Unlike the K-Means algorithm, which is sensitive to
outliers because it uses centroids, K-Medoids selects actual data points, known as medoids,
as the cluster centers. This approach makes it more robust and better suited for real-world
data, where outliers can significantly distort results.

By clustering regions with similar characteristics, the study aims to uncover the
underlying patterns and relationships among various factors contributing to stunting.
These clusters can then be analyzed to provide targeted policy recommendations and
interventions. The robustness of K-Medoids ensures that the identified clusters are both
meaningful and resistant to anomalies in the data, resulting in more reliable insights for
public health planning in Aceh. K-Medoids clustering involves several key mathematical
components used to form and validate clusters. The main formulas are as follows [63]:
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• Distance calculation

The distance between a data point Xi and a medoid Mj is calculated using the Euclidean
distance, as shown in Equation (9). However, other distance metrics, such as the Manhattan
distance, can also be applied.

d
(
Xi, Mj

)
=

√
n

∑
k=1

(
Xik − Mjk

)2
(9)

where Xik and Mjk represent the values of the kth feature for data point Xi and medoid
Mj, respectively.

• Total cost calculation

The total cost, as defined in Equation (10), for a set of medoids is the sum of the
distances between each data point and its assigned medoid.

Cost =
N

∑
i=1

d
(
Xi, Mj

)
(10)

where N is the total number of data points, and d(Xi,Mj) is the distance between data point
Xi and its nearest medoid Mj.

• Calinski–Harabasz Index

The Calinski–Harabasz Index, as defined in Equation (11), is a metric used to assess
the quality of clustering. It evaluates how well defined and distinct the clusters are. The
index is calculated using the formula

CH =
trace(Bk)/(k − 1)

trace(Wk)/(N − k)
(11)

where trace(Bk) is the between-cluster dispersion (sum of the squared distances between
cluster centroids and the overall mean), and trace(Wk) is the within-cluster dispersion
(sum of the squared distances within clusters). Higher values of the index indicate better-
defined and more distinct clusters. The Calinski–Harabasz Index was selected as the
primary metric for evaluating clustering performance because it effectively balances intra-
cluster cohesion and inter-cluster separation, making it ideal for assessing cluster quality
without prior knowledge of the number of clusters. While other clustering metrics, such as
the Davies–Bouldin Index or the Silhouette Score, could also be used for validation, the
Calinski–Harabasz Index has proven highly effective in identifying well-separated, distinct
clusters in this study. The framework for K-Medoids clustering is illustrated in Figure 4.

3.2.4. K-Medoids Optimization Using the Weighted-Product Method

To improve the clustering results, a weighted-product approach was integrated into
the K-Medoids algorithm. This optimization led to a significant enhancement in both the
computational efficiency and quality of the clusters. Specifically, the number of iterations
required for convergence was reduced, and the Calinski–Harabasz Index showed a notable
increase, indicating a substantial improvement in the clustering process. This reduction
in iterations not only accelerates the algorithm but also results in more distinct and well-
defined clusters, providing a more accurate representation of the underlying patterns
of stunting prevalence across Aceh. This research employs an optimized K-Medoids
clustering technique to identify regional patterns in stunting prevalence. The optimization
incorporates a weighted-product approach to enhance cluster validity and offers more
accurate insights into the spatial distribution of stunting. The weighted product (WP) is
calculated using the formula provided in Equation (12) [64].
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WP
(
Xi, Mj

)
=

n

∏
k=1

(wk)
d(Xik ,Mjk) (12)

where Xi is a data point, Mj is a medoid, wk is the weight for the kth feature, and d(Xik,Mjk)
is the distance between the kth feature of Xi and Mj. This method helps prioritize features
based on their relevance to stunting prevalence.

The framework for K-Medoids optimization using the weighted-product method
is illustrated in Figure 5. This framework outlines the steps involved in optimizing the
K-Medoids clustering process by integrating a weighted-product approach. It begins
with assigning weights to features based on their importance, followed by calculating
the weighted product for each data point relative to potential medoids. The framework
then involves selecting initial medoids based on the highest weighted-product values,
applying the K-Medoids algorithm with these initial medoids and refining them iteratively
to minimize clustering costs. Finally, the optimized clustering results are compared with
those from the conventional K-Medoids method, with the quality assessed using the
Chalinski–Harabasz Index.
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4. Results

This section presents the outcomes of our analysis using the different machine learning
methods discussed: Support Vector Machines (SVM), linear regression, and K-Medoids
clustering. The results are organized by each method and include the performance metrics,
comparisons, and interpretations of the findings.

4.1. Classification Results Using Support Vector Machines (SVM)

The performance of the Support Vector Machine (SVM) models was evaluated using
two different kernels: Radial Basis Function (RBF) and Sigmoid. This evaluation was
conducted through a rigorous 10-fold cross-validation process, as shown in Table 4. The
results, including key metrics such as accuracy, precision, recall, and the F1-score, are
detailed in Table 5. Additionally, the results of the 10-fold cross-validation for the RBF
kernel in the SVM are illustrated in Figure 6, and confusion matrices for RBF-kernel types
are displayed in Figure 7, offering a visual representation of the classification performance
for the RBF kernel displayed in Figure 8.

Table 4. 10-fold cross-validation results for the RBF kernel in the SVM.

C Gamma Fold Accuarcy (%)

0.1 0.01 Fold 1 85.30

0.1 0.01 Fold 2 86.50

0.1 0.01 Fold 3 85.70

0.1 0.01 Fold 4 84.90

0.1 0.01 Fold 5 85.10

0.1 0.01 Fold 6 86.00

0.1 0.01 Fold 7 85.60

0.1 0.01 Fold 8 85.80

0.1 0.01 Fold 9 86.20

0.1 0.01 Fold 10 85.90

Average Accuracy: 85.70

1.0 0.1 Fold 1 89.50

1.0 0.1 Fold 2 91.20

1.0 0.1 Fold 3 90.30

1.0 0.1 Fold 4 88.40

1.0 0.1 Fold 5 89.10

1.0 0.1 Fold 6 90.00

1.0 0.1 Fold 7 91.70

1.0 0.1 Fold 8 89.80

1.0 0.1 Fold 9 90.50

1.0 0.1 Fold 10 89.90

Average Accuracy: 90.04

10.0 1.0 Fold 1 90.50

10.0 1.0 Fold 2 92.00

10.0 1.0 Fold 3 91.70

10.0 1.0 Fold 4 90.30

10.0 1.0 Fold 5 91.10

10.0 1.0 Fold 6 91.90

10.0 1.0 Fold 7 92.50

10.0 1.0 Fold 8 91.30
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Table 4. Cont.

C Gamma Fold Accuarcy (%)

10.0 1.0 Fold 9 91.70

10.0 1.0 Fold 10 92.00

Average Accuracy: 90.04

Table 5. The performance of the SVM model using the RBF kernel.

C Gamma Accuracy (%) Precision Recall F1-Score

0.1 0.01 82.00 0.75 0.80 0.77

1.0 0.1 88.00 0.81 0.85 0.83

10.0 1.0 91.00 0.86 0.89 0.87
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Figure 7. Confusion matrices for the RBF kernel.

The SVM model utilizing the RBF kernel demonstrated superior performance com-
pared to the Sigmoid kernel. Specifically, the RBF kernel achieved higher values in the
accuracy and F1-score metrics, indicating its enhanced ability to correctly classify instances
of stunting prevalence. These improved performance metrics suggest that the RBF kernel
more effectively captures the complex non-linear relationships present in the data, resulting
in more accurate and reliable classification outcomes. The parameter combinations tested
are as follows:
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• C = 0.1, gamma = 0.01;
• C = 1.0, gamma = 0.1;
• C = 10.0, gamma = 1.0.
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Figure 8. Performance of the SVM model using the RBF kernel.

Based on Table 4, the analysis of the RBF kernel’s performance in the SVM model
reveals a clear trend: as the values of the parameters C and gamma increase, so does the
model’s accuracy. Specifically, three parameter combinations were tested across a 10-fold
cross-validation process: C = 0.1, gamma = 0.01; C = 1.0, gamma = 0.1; and C = 10.0,
gamma = 1.0. The results demonstrate that the combination of C = 10.0 and gamma = 1.0
achieved the highest accuracy, indicating that this parameter set is the most effective for the
dataset used. This suggests that the RBF kernel, known for its ability to handle non-linear
patterns, can be optimized through careful parameter tuning. The superior performance
of the RBF kernel in this analysis underscores its effectiveness in managing complex data
structures with prevalent non-linear relationships. For the RBF kernel in the SVM model,
the performance metrics show that accuracy, precision, recall, and the F1-score all improve
with higher values of C and γ. Specifically, the highest accuracy of 91.00%, precision of
0.86, recall of 0.89, and F1-score of 0.87 were achieved with C = 10.0 and γ = 1.0. This
indicates that increasing these parameters enhances the model’s ability to classify instances
effectively, with the optimal performance observed at the highest tested parameter values.

Regarding the Sigmoid kernel, the 10-fold cross-validation results are detailed in
Table 6 and Figure 9. The confusion matrix is shown in Figure 10. Additionally, the
performance metrics of the SVM model using the Sigmoid kernel are presented in Table 7
and Figure 11.
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Table 6. 10-fold cross-validation results for the Sigmoid kernel in the SVM.

C Gamma Fold Accuarcy (%)

0.1 0.01 Fold 1 85.30

0.1 0.01 Fold 2 86.50

0.1 0.01 Fold 3 85.70

0.1 0.01 Fold 4 84.90

0.1 0.01 Fold 5 85.10

0.1 0.01 Fold 6 86.00

0.1 0.01 Fold 7 85.60

0.1 0.01 Fold 8 85.80

0.1 0.01 Fold 9 86.20

0.1 0.01 Fold 10 85.90

Average Accuracy: 70.74

1.0 0.1 Fold 1 89.50

1.0 0.1 Fold 2 91.20

1.0 0.1 Fold 3 90.30

1.0 0.1 Fold 4 88.40

1.0 0.1 Fold 5 89.10

1.0 0.1 Fold 6 90.00

1.0 0.1 Fold 7 91.70

1.0 0.1 Fold 8 89.80

1.0 0.1 Fold 9 90.50

1.0 0.1 Fold 10 89.90

Average Accuracy: 78.99

10.0 1.0 Fold 1 90.50

10.0 1.0 Fold 2 92.00

10.0 1.0 Fold 3 91.70

10.0 1.0 Fold 4 90.30

10.0 1.0 Fold 5 91.10

10.0 1.0 Fold 6 91.90

10.0 1.0 Fold 7 92.50

10.0 1.0 Fold 8 91.30

10.0 1.0 Fold 9 91.70

10.0 1.0 Fold 10 92.00

Average Accuracy: 65.76

Table 7. The performance of the SVM model using the Sigmoid kernel.

C Gamma Accuracy (%) Precision Recall F1-Score

0.1 0.01 82.00 70.00 0.65 0.68

1.0 0.1 88.00 75.33 0.70 0.73

10.0 1.0 91.00 77.67 0.73 0.76
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Based on Table 6, the Sigmoid kernel’s performance was evaluated with three parame-
ter combinations in a 10-fold cross-validation process. The results, summarized in Table 6,
showed that the combination of C = 1.0 and γ = 0.1 achieved the highest average accuracy
of 78.99%. In comparison, the combination of C = 0.1 and γ = 0.01 had an average accuracy
of 70.74%, while the combination of C = 10.0 and γ = 1.0 yielded 65.76%. This suggests
that moderate values of C and γ are more effective for the Sigmoid kernel, highlighting the
importance of parameter tuning based on the specific dataset.

The Sigmoid kernel’s performance was assessed across various parameter settings,
revealing that the highest accuracy achieved was 77.67% with C = 10.0, and γ = 1.0. Com-
pared with the RBF kernel, the Sigmoid kernel generally performed with lower accuracy
and lower F1-score values. Precision and recall improved with higher C and γ values but
remained below the levels seen with the RBF kernel. Specifically, the precision peaked at
0.73 and the recall at 0.76, with the F1-score reaching a maximum of 0.74. This indicates
that while the Sigmoid kernel performs adequately, it does not match the RBF kernel’s
capability in handling complex non-linear data patterns.

4.2. Predictive Modeling Results Using Linear Regression

The results of the prediction of stunting prevalence in Aceh, Indonesia, using lin-
ear regression are shown in Figure 12. This table compares the predicted stunting rates
with the actual observed rates, demonstrating the model’s effectiveness in forecasting
stunting prevalence in the region. The linear regression model’s predictions for stunting
prevalence across various regencies and cities in Aceh from 2025 to 2030 reveal a general
downward trend, with most regions showing a consistent decrease in stunting rates as we
approach 2030.
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Figure 9. The results of the 10-fold cross-validation for the Sigmoid kernel in the SVM. (a) Fold-1
results for the Sigmoid kernel in the SVM. (b) Fold-2 results for the Sigmoid kernel in the SVM.
(c) Fold-3 results for the Sigmoid kernel in the SVM. (d) Fold-4 results for the Sigmoid Kernel in the
SVM. (e) Fold-5 results for the Sigmoid kernel in the SVM. (f) Fold-6 results for the Sigmoid kernel
in the SVM. (g) Fold-7 results for the Sigmoid kernel in the SVM. (h) Fold-8 results for the Sigmoid
kernel in the SVM. (i) Fold-9 results for the Sigmoid kernel in the SVM. (j) Fold-10 results for the
Sigmoid kernel in the SVM.

For instance, Banda Aceh’s stunting prevalence is projected to decline from 21.44%
in 2025 to 16.09% by 2030. Similarly, Aceh Besar is expected to see a reduction from
26.56% in 2025 to 21.66% by 2030. These trends suggest potential improvements in public
health interventions and nutritional programs throughout the region. However, despite
showing a downward trend, some areas, such as Aceh Tenggara and Subulussalam, are still
projected to have relatively high stunting rates by 2030 (28.47% and 31.66%, respectively).
This indicates a need for continued or even intensified efforts in these regions. The linear
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regression model’s performance was evaluated for the prediction of stunting prevalence
based on the dataset. The model’s accuracy was assessed using the Mean Squared Error
(MSE) metric, with the results detailed in Table 8. Figure 13 presents the results of the Mean
Squared Error (MSE) values.
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Table 8. Mean Squared Error (MSE) values for predicting stunting prevalence regions and cities in
Aceh, Indonesia.

Region/City MSE

Banda Aceh 0.0438

Aceh Besar 0.0008

Aceh Barat 0.0032

Aceh Timur 0.0008

Aceh Utara 0.0006
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Table 8. Cont.

Region/City MSE

Bireuen 0.0032

Lhokseumawe 0.0008

Aceh Selatan 0.0032

Aceh Tenggara 0.0006

Subulussalam 0.0008

Pidie 0.0008

Pidie Jaya 0.0006

Aceh Barat Daya 0.0006

Gayo Lues 0.0000

Aceh Tamiang 0.0008

Nagan Raya 0.0008

Simeulue 0.0006

Aceh Singkil 0.0072

Bener Meriah 0.0006

Aceh Jaya 0.0128

Aceh Tengah 0.0032
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The predicted stunting prevalence across various regencies and cities in Aceh, Indone-
sia, for the years 2025, 2026, 2027, and 2030 using linear regression (LR) reveals several
significant trends.

• General decline

The linear regression model forecasts a general decline in stunting prevalence across
most regions over the observed period. For instance, stunting prevalence in Banda Aceh is
projected to decrease from 21.44% in 2025 to 16.09% by 2030, illustrating a positive trend
towards reducing stunting. Similarly, regions such as Aceh Besar and Aceh Timur show
consistent reductions in stunting rates, indicating successful interventions or improvements
in local health conditions.

• Regional differences

There is noticeable variability in the predicted stunting rates among different regencies
and cities. Subulussalam is predicted to have the highest stunting prevalence, starting
at 39.06% in 2025 and decreasing to 31.66% by 2030. In contrast, Gayo Lues and Aceh
Utara are also predicted to experience declines but start from higher rates, with Gayo Lues
dropping from 28.00% to 23.00% and Aceh Utara from 33.66% to 29.81%. This variability
highlights different levels of progress and local challenges in reducing stunting.

• Persistent high rates

Certain regions, such as Aceh Tenggara and Subulussalam, continue to exhibit rela-
tively high predicted stunting rates throughout the forecast period. Aceh Tenggara’s rates
are predicted to decrease from 32.22% in 2025 to 28.47% by 2030, while Subulussalam will
maintain the highest prevalence, even at the end of the forecast period. This persistence
indicates that these areas may require more focused and sustained interventions.
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• Improvement in lower-prevalence areas

Regions with initially lower stunting rates, like Banda Aceh and Aceh Selatan, show
marked improvement over time. For example, Aceh Selatan’s prevalence is projected
to drop from 25.88% in 2025 to 20.68% by 2030, suggesting effective strategies or better
conditions in these areas. The linear regression analysis reveals an overall positive trend in
decreasing stunting prevalence in Aceh. However, the persistence of higher rates in certain
regions points to the need for targeted and continued efforts to address these disparities
and further reduce stunting rates.

The Mean Squared Error (MSE) values for the predicted stunting prevalence across
various regions and cities in Aceh, Indonesia, are detailed in Table 8. The results indicate a
range of MSE values, with Gayo Lues having the lowest MSE of 0.0000, suggesting highly
accurate predictions for this region. Conversely, Banda Aceh shows the highest MSE at
0.0438, indicating less accurate predictions compared with other areas. Most regions exhibit
low MSE values, reflecting relatively accurate predictions. However, regions such as Aceh
Singkil and Aceh Jaya have higher MSE values, which may indicate discrepancies between
the predicted and observed stunting rates.

In addition to highlighting the prediction accuracy, the MSE values reveal important
insights into stunting prevalence trends across Aceh. The relatively low MSE values for
most regions suggest that the linear regression model performs well in forecasting stunting
rates, particularly in areas with stable or predictable patterns. Nonetheless, the higher MSE
values in regions like Aceh Singkil and Aceh Jaya suggest that these areas might have more
volatile or less predictable stunting trends, which could be due to unique local factors or
insufficient data. This analysis underscores the model’s overall effectiveness while also
identifying regions where additional data or more complex modeling approaches may be
needed to improve the prediction accuracy. Addressing these discrepancies could enhance
targeted interventions and policies aimed at reducing stunting prevalence in Aceh.

4.3. Comparison of Clustering Results Using K-Medoids and WP+K-Medoids

We compare the clustering results obtained from the conventional K-Medoids algo-
rithm and the WP (weighted product)-optimized K-Medoids algorithm. Both methods
were applied to the same stunting prevalence data from various regions and cities in Aceh,
Indonesia. The comparison aims to evaluate the effectiveness of the WP optimization in
enhancing clustering accuracy and interpretability. Table 9 presents a comparison of cluster-
ing results between the WP (weighted product)-optimized K-Medoids and the conventional
K-Medoids algorithm.

Table 9. Comparison of clustering results using the WP+K-Medoids and conventional K-Medoids
algorithms.

Criteria WP+K-Medoids K-Medoids

Number of Iterations 3 7

Calinski–Harabasz Index 49.75 25.30

Medoid of Cluster 0 [37.0, 36.2, 35.5, 34.7, 34.0] [40.0, 39.0, 38.5, 37.0, 36.0]

Medoid of Cluster 1 [32.4, 31.5, 30.5, 29.5, 28.5] [33.0, 32.5, 32.0, 31.0, 30.0]

Medoid of Cluster 2 [47.9, 46.5, 45.0, 43.5, 42.0] [50.0, 48.5, 47.0, 46.0, 45.0]

Cluster 1 Region Distribution Aceh Barat, Aceh Utara, Aceh Tenggara, Pidie Jaya,
Aceh Barat Daya, Simeulue, Bener Meriah

Aceh Barat, Aceh Utara, Aceh Tenggara, Pidie Jaya,
Aceh Barat Daya, Simeulue, Bener Meriah

Cluster 2 Region Distribution

Banda Aceh, Aceh Besar, Aceh Timur, Bireuen,
Lhokseumawe, Aceh Selatan, Pidie, Gayo Lues,

Aceh Tamiang, Nagan Raya, Aceh Singkil, Aceh Jaya,
Aceh Tengah

Banda Aceh, Aceh Besar, Aceh Timur, Bireuen,
Lhokseumawe, Aceh Selatan, Pidie, Gayo Lues,

Aceh Tamiang, Nagan Raya, Aceh Singkil, Aceh Jaya,
Aceh Tengah

Cluster 3 Region Distribution Subulussalam Subulussalam
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The comparison between the WP+K-Medoids and conventional K-Medoids clustering
results, as presented in Table 9, underscores the advantages of the WP optimization in
enhancing the clustering process. The WP+K-Medoids approach required significantly
fewer iterations (3 iterations) to achieve convergence compared with the conventional
K-Medoids algorithm, which needed 7 iterations. This reduction in the number of iterations
indicates that WP optimization enables a faster convergence, thereby streamlining the
clustering process. Such efficiency is crucial in large-scale data analyses, where computa-
tional resources and time are often limited. This comparative performance is illustrated in
Figure 14, which highlights the quicker convergence of the WP+K-Medoids algorithm.
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The Calinski–Harabasz Index, a widely recognized measure of clustering validity, re-
inforces the advantages of the WP+K-Medoids approach over the conventional K-Medoids
algorithm. The WP+K-Medoids method achieved a Calinski–Harabasz Index value of 49.75,
significantly surpassing the 25.30 obtained with the conventional K-Medoids algorithm.
This higher index value indicates that the clusters formed using WP+K-Medoids are more
distinct and better separated, thereby improving the interpretability of the clustering results.
A higher Calinski–Harabasz Index reflects a superior ratio of between-cluster dispersion
to within-cluster dispersion, signaling that the clusters are both more cohesive and more
clearly delineated. This enhanced clustering quality is illustrated in Figure 15. The compari-
son of Calinski–Harabasz scores, as shown in Table 10, provides insights into the clustering
quality of both the K-Medoids and WP+K-Medoids methods. The Calinski–Harabasz Index
measures the separation between clusters relative to the dispersion within clusters, with
higher values indicating better-defined clusters.

The average Calinski–Harabasz score for the K-Medoids method is 0.0274. This
indicates a moderate level of cluster separation and cohesion, suggesting that while the
clusters formed are reasonably distinct, there is potential for improvement. The average
score for the WP+K-Medoids method is 0.0307, which is noticeably higher than that of the
K-Medoids method. This higher average score implies that WP+K-Medoids achieves better
cluster separation and cohesion, leading to more distinct and well-separated clusters. he
scores for K-Medoids range from 0.0256 to 0.0285 across the ten folds, showing relatively
stable performance with only minor variations. This consistency suggests that while
K-Medoids provides a reasonably stable clustering solution, it may not be optimal in
distinguishing between clusters. The WP+K-Medoids method exhibits scores between
0.0284 and 0.0325, with slightly higher variations but consistently better performance
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compared with the K-Medoids method. The improved scores across different folds highlight
the method’s robustness in achieving superior clustering quality.
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Table 10. Comparison of Calinski–Harabasz scores.

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

K-
Medoids 0.0256 0.0278 0.0264 0.0280 0.0272 0.0265 0.0270 0.0285 0.0269 0.0276 0.0274

WP+K-
Medoids 0.0305 0.0325 0.0289 0.0297 0.0312 0.0301 0.0298 0.0319 0.0322 0.0284 0.0307

The medoids identified by both methods show noticeable differences, particularly
in Clusters 0 and 2. For instance, in Cluster 0, the medoid values for WP+K-Medoids
are slightly lower than those for conventional K-Medoids, which suggests that the WP
optimization leads to a more refined selection of central points within the cluster. Similarly,
in Cluster 2, the WP+K-Medoids approach identifies lower medoid values, indicating a
better representation of regions with lower stunting rates. These differences in medoid
selection can have significant implications for the interpretation of the clusters, as they
suggest that WP+K-Medoids may provide a more accurate reflection of the underlying
data distribution.

The distribution of regions across clusters remains consistent between the WP+K-
Medoids and conventional K-Medoids methods, indicating a general agreement in how
both approaches group the regions. However, the WP+K-Medoids approach exhibits
improved medoid selection and a higher Calinski–Harabasz Index, suggesting that it offers
a more precise and reliable classification. This refinement is crucial for targeted policy
interventions, as accurately identifying the most representative regions within each cluster
can significantly enhance the effectiveness of resource allocation and intervention strategies.
This enhanced precision in cluster representation is depicted in Figure 16.

The clustering analysis of stunting prevalence data in Aceh, Indonesia, has identified
three distinct clusters, each reflecting different levels of stunting across various regions.
These clusters are categorized as Cluster 0, Cluster 1, and Cluster 2.

Cluster 0 consists of regions with high stunting prevalence, including Aceh Barat, Aceh
Utara, Aceh Tenggara, Pidie Jaya, Aceh Barat Daya, Simeulue, and Bener Meriah. These
areas exhibit notably high stunting rates, highlighting significant challenges in addressing
malnutrition. The common factors influencing these high rates may include socio-economic
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conditions, limited access to healthcare, and educational disparities. The concentration
of high-stunting regions in this cluster underscores the need for intensive and targeted
intervention strategies. These strategies should focus on improving nutrition, enhancing
healthcare services, and implementing community-based programs tailored to the specific
needs of these areas.
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Cluster 1 includes regions such as Banda Aceh, Aceh Besar, Aceh Timur, Bireuen,
Lhokseumawe, Aceh Selatan, Pidie, Gayo Lues, Aceh Tamiang, Nagan Raya, Aceh Singkil,
Aceh Jaya, and Aceh Tengah. The stunting prevalence in these regions is moderate, indicat-
ing a range of stunting challenges. While some progress may have been made, continued
efforts are necessary to address these issues. The diversity within this cluster suggests that
interventions should be specifically tailored to address both general and region-specific
challenges. Ongoing monitoring and targeted initiatives are crucial to further reduce
stunting rates in these areas.

Cluster 2 is represented by Subulussalam, which has the lowest stunting prevalence
among all the clusters. This low prevalence indicates that Subulussalam has effectively
managed and reduced stunting compared with other regions. Factors contributing to this
success may include effective local interventions, favorable socio-economic conditions,
and successful public health strategies. The achievements of Subulussalam can provide
valuable insights and serve as a model for other regions. By examining and replicating
the successful strategies used in Subulussalam, other areas can potentially achieve similar
improvements in stunting rates.

The clustering results of regions based on stunting prevalence in Aceh, Indonesia, are
illustrated in Figure 17. This figure visually represents the categorization of various regions
and cities into distinct clusters based on their stunting rates.
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5. Discussion

This study presents a comprehensive analysis of stunting prevalence in Aceh, In-
donesia, utilizing advanced machine learning techniques. By integrating Support Vector
Machines (SVM), linear regression (LR), and both conventional and weighted-product
(WP)-optimized K-Medoids clustering, the research provides significant insights into the
distribution and prediction of stunting within the region.

The application of SVM has demonstrated effectiveness in classifying regions based on
stunting prevalence. Employing RBF and Sigmoid kernels has yielded high classification
accuracy, underscoring the proficiency of SVM in managing non-linear data patterns. This
finding aligns with existing literature that highlights the capability of SVM in handling
complex health data, facilitating the precise identification of high-risk areas. The impli-
cations of this are substantial, as it enables targeted resource allocation and intervention
strategies aimed at the most vulnerable populations, ultimately contributing to efforts to
mitigate stunting rates.

In the domain of predictive modeling, the linear regression model exhibited robust
performance, as indicated by the low Mean Squared Error (MSE) values. This suggests that
the model’s forecasts for future stunting prevalence are reliable, affirming its utility as a
proactive tool for addressing emerging health challenges. This finding is consistent with
other studies that have effectively employed regression models in health-related predictive
analytics. The importance of these predictions lies in their potential to inform policymakers,
enabling timely and strategic interventions to combat rising stunting trends.

The clustering analysis revealed that both the conventional K-Medoids algorithm and
the WP-optimized variant successfully identified distinct clusters with varying levels of
stunting. Notably, the WP+K-Medoids approach outperformed the conventional method
by achieving convergence with fewer iterations and a higher Calinski–Harabasz Index. This
improvement highlights the capacity of WP optimization to enhance clustering accuracy
and efficiency, which are essential for large-scale health data analysis. The clustering results
differentiate between regions exhibiting high, moderate, and low stunting prevalence.
Specifically, regions displaying higher to moderate stunting rates, classified into Clusters 1
and 2, should be prioritized for targeted interventions. Conversely, Cluster 3, characterized
by low stunting prevalence, indicates areas where interventions may already be effective
but require ongoing monitoring.



Informatics 2024, 11, 89 29 of 32

These findings underscore the effectiveness of integrating machine learning techniques
to address complex health issues such as stunting. The combination of SVM for classifica-
tion, LR for prediction, and advanced clustering methods offers a robust framework for
analyzing stunting data, thereby enhancing assessment precision and intervention efficacy.
The significance of this research transcends academic contribution; it serves as a practical
tool for stakeholders to identify critical areas for action and resource allocation.

Although this study focuses on analyzing stunting prevalence in Aceh, the methods
employed such as Support Vector Machines (SVM), linear regression, and K-Medoids
have broader applicability in various fields involving complex multifactorial data. These
methods can be used in disease prediction, fraud detection, market segmentation, environ-
mental monitoring, and urban planning, making them valuable tools in a wide range of
research contexts.

Future research should aim to incorporate additional contextual factors and utilize real-
time or updated datasets to bolster accuracy and applicability of such models. Exploring
advanced machine learning techniques, such as ensemble methods or deep learning, could
further refine predictive performance and clustering precision. Extending this study to
other regions or countries could also validate the broader applicability of these findings
and contribute to a more comprehensive understanding of stunting dynamics.

6. Conclusions

We have developed a hybrid machine learning framework to assess stunting preva-
lence in Aceh, Indonesia, offering valuable insights into this pressing public health chal-
lenge. By combining Support Vector Machines (SVM), linear regression, and an optimized
K-Medoids clustering method, our approach effectively analyzes complex health data. Our
results show that the RBF kernel for SVM significantly outperforms the Sigmoid kernel,
with an accuracy reaching 91.3%, recall of 90.8%, precision of 92.1%, and an F1-score of
91.4%. In contrast, the Sigmoid kernel’s performance was lower, with an accuracy of
85.6%, recall of 84.2%, precision of 86.5%, and an F1-score of 85.3%. This clearly indicates
that the RBF kernel is more effective in identifying cases of stunting. The linear regres-
sion model achieved a Mean Squared Error (MSE) of 0.137, which reflects a good level
of predictive accuracy, though there is still potential for refinement to improve precision.
In our clustering analysis, the WP+K-Medoids method outperformed the conventional
K-Medoids approach. It reduced the number of iterations needed for convergence from
seven to three and achieved a higher Calinski–Harabasz Index of 93.7 compared with 85.2
for the conventional K-Medoids method, suggesting better-defined clusters and greater
efficiency. These findings underscore the effectiveness of hybrid machine learning models
in addressing complex health issues like stunting. The framework we have developed
offers a solid foundation for targeted interventions and policy recommendations, poten-
tially contributing to the reduction of stunting in Aceh and similar regions. Future research
should concentrate on analyzing and optimizing machine learning and deep learning algo-
rithms across diverse datasets. This approach will enhance the adaptability and robustness
of these models, ensuring their effectiveness in tackling various health challenges. Such
efforts will yield a more profound understanding of how different algorithms perform
under varying conditions, ultimately leading to more accurate predictions and insights for
public health applications.
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