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Abstract: Background: Cancer stem cells (CSCs) are a small subpopulation of cancer cells that
have the potential for self-renewal and a strong proliferative capacity, and sustain tumorigenesis
capabilities. This ability of CSCs to escape immune responses makes the CSCs a primary source of
functionally altered, immune-resistant, chemoresistant, aggressive tumor cells. These characteristics
determine the potential advantage of targeting CSCs for the treatment of solid tumors. Method:
First, we downloaded different gene expression datasets of CSCs from the NCBI-GEO (National
Center for Biotechnology Information–Gene Expression Omnibus) database and identified common
genes by using a suitable Venn tool. Subsequently, we explored the prognostic significance of the
particular genes in particular cancers and analyzed the expression of these genes at the protein level
in human solid tumors by using KM plotter (Kaplan-Meier plotter) and an HPA (The Human Protein
Atlas) database, respectively. Finally, using a comparative toxicogenomic database, we selected
several important drugs or chemicals. Result: From this study, we identified APOC1 as a common
upregulated gene in breast cancer and SLC44A5 and CAV2 as common up- and downregulated genes
in lung cancer. In ovarian cancer, PRRG4 is a commonly upregulated gene, and ADCY7, AKAP12,
TPM2, and FLNC are commonly downregulated genes. These genes also show prognostic significance
in respective cancers. Several drugs that are capable of targeting the expression or signaling network
of designated genes of CSC were also identified, which may contribute in CSC-targeted cancer
therapy. Conclusion: Our study suggests a need for more in-depth experimental investigations to
determine the actual functional activity and the mechanism of action of these CSC-associated genes.

Keywords: cancer stem cell; bioinformatics; breast cancer; lung adenocarcinoma; ovarian cancer

1. Introduction

Cancer stem cells (CSCs) are a group of self-renewing cells with strong tumorigenic
potential and an unlimited proliferation capacity. CSCs originate from either differentiated
cells or adult tissue with resident stem cells at the stage of tumor onset [1]. A tumor is
a heterogeneous mixture of cells with unsynchronized cycling cells that are in different
phases of the cell cycle. Cells within the tumor mass also differ in terms of mutation,
plasticity, level of dedifferentiation, and responses to stress. Compared to other cells inside
a tumor, CSCs are more resistant to therapies and have greater adaptability based on their
surrounding environment [2], and these cells are much more dedifferentiated. Because of
their significant roles in resistance to tumor chemotherapy and radiation therapy, as well
as tumor recurrence, CSCs have gained much attention [3]. Cancer stem cells maintain
their self-renewal properties through different signaling pathways like TGFB signaling,
Wnt/B catenin signaling, Notch signaling, Hedgehog signaling, etc. [4]. Chemotherapy
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or radiotherapy may not always completely destroy CSCs, and after treatment, a small
subset of residual CSCs may survive, which can cause cancer relapse and ultimately lead
to invasiveness and therapy resistance [5]. CSCs induce relapse, metastasis, radiation
resistance, and multidrug resistance due to their capacity to remain arrested in the G0
phase of the cell cycle and enter the cell cycle at an opportune moment. Ever since their
discovery in leukemia in 1994, CSCs have been viewed as potential targets for cancer
treatment. There are many intracellular and extracellular factors that control the activity of
CSCs, so these factors can serve as drug targets [6]. Thus, in the past several years, CSC-
targeted therapy has gained increasing interest from the research community, especially as
potential targets in aggressive metastatic cancer.

Following skin cancer, the second most frequent type of cancer in women is breast
cancer; in 2020, more than 2 million new cases were registered globally. Based on GLOBO-
CAN 2020 data, breast cancer ranks fifth globally in terms of cancer-related fatalities [7].
The majority of patients find out about their disease in routine screening, while the rest of
such cases are discovered from a breast lump, a change in breast size, or discharge from
the nipple. Genetic mutations and DNA damage, which further activate the secretion
of estrogen, are the cause of breast cancer [8]. Based on GLOBOCON 2018 data, in the
category of lung cancer, 2.09 million new cases and 1.76 million deaths were registered
globally. In both genders, lung cancer is the most common cancer and also the leading
cause of cancer-related deaths. Especially in women, this is the third most frequent cause of
cancer and the second most lethal cancer [9]. A total of 90% of lung cancer cases are caused
due to smoking. Men are affected more than women [10]. Ovarian cancer, another frequent
type of cancer in women, ranks eighth in terms of cancer-related deaths, with a less than
45% five-year survival rate [11]. Ovarian cancer can strike anyone at any age; persons over
50 are more likely to have it [12]. Currently, the majority of clinical studies are concentrated
on targeted methods, such as the latest attempts at immune therapies.

Here, we chose three types of cancer, including breast, lung, and ovarian cancer,
for our study. These three types of cancer are highly aggressive, and there are various
challenges linked with their treatment and early detection, including features that are
closely linked with CSCs, such as the development of drug resistance and high metastatic
potential [13]. Breast cancer and ovarian cancer are more frequent and deadly cancers
among women, although ovarian cancer is less common than breast cancer. Lung cancer
has a high mortality rate in both men and women. In summary, other types of solid tumors
are also crucial, but breast, lung, and ovarian cancer are specifically mentioned here because
of their high mortality rate, broad impact, and ongoing challenges related to enhancing
early detection and treatment outcomes.

The functional activity of cancer stem cells in tumor progression was first described
in acute myeloid leukemia (AML) [14]. After that study, several studies identified the
involvement of CSCs in tumor growth, metastasis, and treatment resistance [15]. There
are different types of identification markers for each type of cancer stem cells reviewed
elsewhere [16]. CD34 and CD38 are the first identified cancer stem cell surface markers,
and they are used to recognize the stem cells in AML [17]. Transcription factors like OCT4,
Sox2, Klf4, Nanog, and MYC regulate the different activities of cancer stem cells [6]. In cases
of breast cancer, CD44-high, CD24-low, and ALDH+ cells are characterized as markers
of cancer stem cells [18]. CSCs of lung cancer are characterized by specific markers like
CD133, CD44, ABCG2, and ALDH1A1. Cells with all these markers have the capability to
form spheroid-like structures and also colonies [19]. Combinations of markers are used for
the identification of ovarian cancer stem cells like CD24, CD44+/CD24−, CD44+/CD117+,
CD117/c-kit, etc. [20]. Furthermore, the expressions of biomarkers of CSCs are variable
and change depending on the cancer type and external conditions. Various signaling
pathways that regulate the survival, proliferation, self-renewal, and differentiation of
cancer stem cells include the Wnt signaling pathway, the Notch signaling pathway, the
JAK/STAT signaling pathway, Hedgehog signaling, the TGF β/SMAD signaling pathway,
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etc. All these signaling pathways stimulate the expression of various downstream genes
like cytokines, apoptosis-related genes, growth factors, metastatic genes, etc., in CSC [6].

The use of bioinformatics for in silico studies in translational drug delivery is becoming
more and more important in both the pharmaceutical industry and academics [21]. The
roots of bioinformatics were discovered more than a half a century ago, although DNA
sequencing techniques were not available at that time [22]. An increasing amount of data
generated through the drug discovery process can now be computationally utilized to
address major difficulties. In the present study, we focused on identifying CSC-linked genes,
the expression of these genes, and their roles as prognostic biomarkers and potential targets
for drug intervention in breast, lung, and ovarian cancer through in-depth in silico analysis.

2. Materials and Methods
2.1. Collection of Datasets

For this study, three datasets for breast, lung, and ovarian cancer gene expression
profiles were downloaded from the Gene Expression Omnibus (GEO) database (https:
//www.ncbi.nlm.nih.gov/geo/ accessed on 2 January 2024). The GEO database is freely
available for high-throughput gene expression and other computational datasets concerning
genomes. GEO is a joint collaboration of National Centre for Biotechnology Information
(NCBI) and National Library of Medicine (NLM). It collects the raw and processed data of
experiments designed for the purpose of high-throughput gene expression and genomics
studies [23]. Specific inclusion or exclusion criteria were not employed in our study, as
available datasets in public databases were few, and data were also not selected on the basis
of geographical location or demography. The datasets utilized are described in Table 1.

Table 1. Datasets used in this study.

Serial
No.

Accession
No. Cancer Type Sample Groups Used in This Study Platform

1. GSE7513 Breast Cancer Cancer stem cell (n = 14) vs. noncancer
stem cell (n = 15).

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array.

2. GSE15192 Breast Cancer Cancer stem cell (n = 4) vs. noncancer
stem cell (n = 4).

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array.

3. GSE136287 Breast Cancer Cancer stem cell (n = 9) vs. noncancer
stem cell (n = 9).

GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0
ST Array [transcript (gene) version].

4. GSE35603 Lung Cancer Cancer stem cell (n = 3) vs. parental
tumor cell (n = 3).

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array.

5. GSE50627 Lung Cancer Normal stem cell (n = 6) vs. cancer stem
cell (n = 9).

GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0
ST Array [transcript (gene) version].

6. GSE160320 Lung Cancer Cancer stem cell (n = 3) vs. noncancer
stem cell (n = 3).

GPL26963 Agilent-085982 Arraystar human IncRNA V5
microarray.

7. GSE28799 Ovarian Cancer Cancer stem cell (n = 3) vs. noncancer
stem cell (n = 3).

GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array.

8. GSE53759 Ovarian Cancer Cancer stem cell (n = 3) vs. noncancer
stem cell (n = 3).

GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0
ST Array [transcript (gene) version].

9. GSE80373 Ovarian Cancer Cancer stem cell (n = 4) vs. noncancer
stem cell (n = 4).

GPL13667 [HG-U219] Affymetrix Human Genome
U219 Array.

2.2. Identification of Differentially Expressed Genes (DEGs)

The DEGs were identified using the LIMMA [24] and DESeq2 [25] packages of R
(Version 4.2.2) Programming. DESeq2 uses Wald statistics and LIMMA uses t statistics to
generate p-values. Here, we use the log2 fold change with the cut-off of 0.5 and p-value
kept under 0.05. Common genes were identified by using Bioinformatics and Evolutionary
Genomics to generate Venn diagrams (https://bioinformatics.psb.ugent.be/webtools/
Venn/ accessed on 22 April 2024). Generally, for the identification of differentially expressed
genes, there should be a cut-off value for the log2 fold change. This cut-off varies according

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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to the requirements of the study and the type of analysis. There is no universal cut-off for
the log2 fold change. Higher threshold values reduce the noise. Here, in our study, we
used 0.5 as the threshold value for the log2 fold change so that we could identify the subtle
changes in gene expression profiles. Various studies have also used 0.5 as the minimum
threshold value for log2 fold change to identify suitable genes for analysis [26,27].

2.3. Validation of the Genes from the TCGA Database

The Cancer Genome Atlas (TCGA) database was utilized for validation of the genes.
The Cancer Genome Atlas, or TCGA, was launched by The National Institute of Health
(NIH) in 2005 for the advancement of comprehensive understanding of the genetics of
cancer to discover innovative cancer therapies, methods, and preventions using genome
analysis technologies [28]. We used Gene Expression Profiling Interactive Analysis (GEPIA),
a freely available web-based tool for fast and customizable outcomes based on TCGA.
Features including differential expression analysis, profile plotting, correlation analysis,
survival analysis, and gene detection are offered by GEPIA [29]. The ShinyGO (Version
0.81) [30] web server was used further for the identification of related signaling pathways.

2.4. Survival Analysis

Kaplan–Meier Plotter (KM Plotter) (https://kmplot.com/analysis/ accessed on 20
May 2024) was used to perform survival analysis based on gene expression levels of three
types of cancer. KM Plotter is an online global database that contains both survival data
and gene expression data of ovarian, breast, lung, and gastric cancers, which are used to
evaluate the relationship between the prognostic significance and genes of cancers. The
Kaplan–Meier method was used to generate the survival plot and hazard ratio with 95%
confidence intervals; in addition, the logrank p-values were calculated. Here, high vs. low
expression is defined by using a cut-off point that divides the patients into two groups
based on the median values of mRNA expression of a particular gene [31]. Overall survival
defines the time duration from the date of cancer diagnosis or the start of treatment to the
date of death. If the patient is still alive, the time duration should be from the diagnosis to
the date of last contact [32]. Here, we chose 0.01 as the cut-off point that determines the
more significant statistical threshold. It also minimizes the risk of obtaining higher false
positive rates. One study also utilized 0.01 as the threshold value for survival analysis [33].

2.5. Identification of Pathological Stages

For the identification of pathological stages, the UALCAN (https://ualcan.path.uab.
edu/ accessed on 12 July 2024) web server was used, which detects correlation of the genes
with different stages of cancer [34]. UALCAN is an important web portal that analyzes
TCGA gene expression data from different cancer. Different functions, like analysis of
relative expression of particular genes across normal and tumor samples and also analysis
of their expression in different tumors based on tumor grade, race, patient’s age, nodal
metastatic status, body weight, individual cancer stages, etc., were performed. Using the
UALCAN web tool, we also analyzed the relation of the genes with nodal metastatic status
in particular cancers. The Student’s t-test was used to generate p-values.

2.6. Identification of the Protein Expression Levels of the Genes Using Human Protein Atlas (HPA)

The HPA database is used to identify the protein expression of particular genes
in particular cancers. The immunohistochemical images were downloaded from HPA.
HPA contains various immunohistochemical images of various cancers. Based on the
staining intensity, the results were divided into low, moderate, and high. In our study, we
used the HPA database for the identification of protein expression of prognostic genes in
particular cancers [35]. We used tissue sections from the database for the normal tissue
images (https://www.proteinatlas.org/humanproteome/tissue accessed on 16 July 2024)
and the pathology section for cancerous tissue images (https://www.proteinatlas.org/
humanproteome/pathology accessed on 16 July 2024).

https://kmplot.com/analysis/
https://ualcan.path.uab.edu/
https://ualcan.path.uab.edu/
https://www.proteinatlas.org/humanproteome/tissue
https://www.proteinatlas.org/humanproteome/pathology
https://www.proteinatlas.org/humanproteome/pathology
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2.7. Immune Infiltration Analysis

TIMER 2.0 was used for the analysis of the association of different immune cell
infiltration levels with the expression of the particular genes in particular cancers. TIMER
2.0 mainly uses the TCGA data of different cancers and estimates the level of infiltration
of different immune cells. Here, we used the CIBERSORT-ABS and TIMER algorithms to
identify the M2 macrophage, dendritic cell, and neutrophil infiltration [36].

2.8. Drug Target Identification

To identify drugs targeting particular genes of each type of cancer, we searched in the
Comparative Toxicogenomic Database (CTD) [37]. CTD (https://ctdbase.org/ accessed on
21 May 2024) is a free literature-based database resource that shows correlations among
chemicals, genes/proteins, and diseases. This method combines cross-species reductionist
data from the literature with high-throughput studies to improve understanding of the
molecular actions of chemicals. We used the “Chemical-Gene interaction” part of the
“Search” section, where we inputted our queries according to our requirements and ob-
tained the chemicals or drugs. After the identification of targeting drugs or chemicals, the
drugs were visualized via Cytoscape (Version 3.10.0) [38].

3. Results
3.1. Identification of DEGs from Cancer Stem Cell Gene Expression Datasets

Datasets of each cancer stem cells were examined individually to identify the differ-
entially expressed genes (DEGs). Three types of cancer datasets were selected, including
breast cancer, lung cancer, and ovarian cancer. The datasets of the breast cancers are
GSE7513, GSE15192, and GSE136287. We identified 7578 DEGs (2555 upregulated and 3935
downregulated) in GSE7513, 11,509 DEGs (3950 upregulated and 4207 downregulated) in
GSE15192, and 1312 DEGs (266 upregulated and 73 downregulated) in GSE136287. The
datasets of lung cancers are GSE35603, GSE50627, and GSE160320, with 10,419 DEGs (5321
upregulated and 5098 downregulated) in GSE35603, 8100 DEGs (1809 upregulated and 1832
downregulated) in GSE50627, and 12,482 DEGs (1528 upregulated and 674 downregulated)
in GSE160320. Similarly, the datasets of ovarian cancers are GSE28799, GSE53759, and
GSE80373, with 9881 DEGs (3410 upregulated and 3422 downregulated) in GSE28799, 5884
DEGs (1123 upregulated and 813 downregulated) in GSE53759, and 13,308 DEGs (2310 up-
regulated and 2054 downregulated) in GSE80373. The numbers of up- and downregulated
genes from each dataset are listed in Table 2.

Table 2. The numbers of up- and downregulated genes from each dataset.

Sl No. Accession No. DEG (p-Value < 0.05) Up (logFC > 0.5) Down (logFC < −0.05)

1 GSE7513 7578 2555 3935

2 GSE15192 11,509 3950 4207

3 GSE136287 1312 266 73

4 GSE35603 10,419 5321 5098

5 GSE50627 8100 1809 1832

6 GSE160320 12,482 1528 674

7 GSE28799 9881 3410 3422

8 GSE53759 5884 1123 813

9 GSE80373 13,308 2310 2054

Using Bioinformatics and Evolutionary Genomics, we generated Venn diagrams of
common genes from 3 datasets of each type of cancer, where we obtained 5 upregulated
common genes from the breast cancer datasets, 12 upregulated and 7 downregulated
common genes from the lung cancer datasets, and 29 upregulated and 20 downregulated
common genes from the ovarian datasets, as depicted in Figure 1. The common up-

https://ctdbase.org/
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and downregulated genes from each cancer are given in Supplementary Data S1, and
the functional annotations of the common genes of cancer stem cells are described in
Supplementary Table S1.
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Figure 1. Common differentially expressed genes of different cancer stem cell gene expression datasets.
(A) Common upregulated genes between three breast cancer stem cell gene expression datasets (there
are no common downregulated genes found between the three BCSCs). (B) Common upregulated
and (C) common downregulated genes among three lung cancer stem cell gene expression datasets.
(D) Common upregulated and (E) common downregulated genes among three ovarian cancer stem
cell gene expression datasets.

3.2. Validation of the CSC-Associated Genes from the TCGA Database

Genes that did not have sufficient clinical information for our analysis were excluded
first. The final study included a total of 12 genes (up- and downregulated) from 9 datasets.
We identified one upregulated gene from breast cancer, one upregulated and one downreg-
ulated gene from lung cancer, and four upregulated and five downregulated genes from
ovarian cancer. The signaling pathways related to the up- and downregulated genes are
listed in Table 3, where each gene can be involved in multiple signaling pathways, such
as ABCB7, which is involved in the ABC transporter and the TGFB and HIF1 signaling
pathways [39–41]. In the case of upregulated genes of breast cancer, the numbers of genes
are too low for signaling pathways to be determined by the ShinyGO software. Validation
of the genes from the TCGA database are shown in the box plots depicted in Figure 2.
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Table 3. List of common up- and downregulated genes and related signaling pathways of three
types of cancer. The mentioned genes are involved in multiple signaling pathways; for example,
ABCB7 is involved in various signaling pathways like the ABC transporter and the TGFB and HIF1
signaling pathways.

Cancer Type Upregulated
Common Genes Signaling Pathways Downregulated

Common Genes Signaling Pathways

Breast cancer VWA5A, LXN, CLIC4,
APOC1, MCFD2.

• NFkB signaling pathway
[VWA5A, LXN [42,43].

• Apoptotic, angiogenic
pathways [CLIC4 [44]].

• MAP kinase pathway
[APOC1 [45]].

• Intracellular cargo
transport pathway
[MCFD2 [46]].

------- --------

Lung cancer

ABCB7, SLC44A5,
AIF1L, SYNE1, ID2,

ID4, RPS6KA6, PPM1D,
TP53BP2, ANGPT1,

RHOBTB3, SLCO4C1.

• TGFB signaling pathway.
• Hippo signaling pathway.
• Signaling pathway

regulating pluripotency
of cancer stem cell.

• ABC transporter.
• P53 signaling pathway.
• HIF-1 signaling pathway.

TRAM2, CAV2, CAP1,
GLIPR1, TFPI2, PLAUR,

MAN2A1.

• Proteoglycans in
cancer.

• N-Glycan
biosynthesis.

• Focal adhesion.
• Complement and

coagulation
cascades.

• Endocytosis.
• Prion disease.

Ovarian cancer

ABCA3, DUSP4,
EPHA4, ASAH1,

FOXO1, MECOM,
SLC6A12, PRRG4,

ZDHHC14, AKR1C3,
FRAS1, TSC22D1,
MBD5, SLC5A3,

PRDM1, ZFX, CTNS,
AKR1B1, TGFBR3,

AKR1C1, CAT, PKD2,
C7ORF26, TMEM222,

ARID5B, CCNG2,
ABHD11, CDK19, PXK.

• Folate biosynthesis.
• FoxO signaling pathway.
• Chemical carcinogenesis:

reactive oxygen species.
• Steroid hormone

biosynthesis.
• Longevity regulating

pathways.
• Metabolic pathways.
• MAPK signaling

pathways.

ITGA3, ANXA3,
NFE2L3, GJC1, CYR61,

DARS2, UGCG,
DEPDC1B,

DUSP1(MKP-1), BUB1,
TBC1D1, ADCY7, TPX2,

AURKA, AKAP12,
TPM2, FLNC, PGM2,

COTL1, HJURP.

• Progesterone-
mediated oocyte
maturation.

• Dilated
cardiomyopathy.

• Oocyte meiosis.
• Focal adhesion.
• Purine

metabolism.
• Adrenergic

signaling in
cardiomyocytes.

3.3. Survival Analysis of the CSC-Associated Genes

Survival analysis revealed 12 genes from different types of cancer, among which
only 8 genes (APOC1, SLC44A5, CAV2, PRRG4, ADCY7, AKAP12, TPM2, and FLNC) had
significant influence (p-value < 0.01) on the overall survival of patients of respective cancers,
and the remaining 4 genes (MECOM, SLC6A12, ABHD11, and MKP-1) did not significantly
influence overall survival. Therefore, in this study, eight prognostically significant genes
were used for further analysis. As shown in Figure 3, the higher expression of APOC1 is
related to poor overall survival of breast cancer patients. In lung adenocarcinoma patients,
the higher expression of SLC44A5 is related to decreased overall survival and the higher
expression of CAV2 is associated with increased overall survival. However, in case of
ovarian cancer, we found the opposite results: PRRG4 expression is upregulated in both
ovarian cancer and ovarian CSCs, but a higher expression of PRRG4 is associated with
increased overall survival. On the other hand, ADCY7, AKAP12, TPM2, and FLNC are
downregulated in ovarian cancer and also in ovarian CSCs but their higher expression is
significantly associated with decreased overall survival. These observations suggest that
more experimental investigation is necessary, particularly in the case of ovarian cancer
stem cells.



Informatics 2024, 11, 95 8 of 24
Informatics 2024, 11, x  9 of 28 
 

 

 
Figure 2. Expression of the selected genes validated from TCGA by using the GEPIA database for 
the respective cancers: APOC1 in breast cancer; SLC44A5 and CAV2 in lung adenocarcinoma; 
MECOM, SLC6A12, PRRG4, ABHD11, DUSP1, ADCY7, AKAP12, TPM2, and FLNC in ovarian 
cancer. Here, the red color represents tumor sample, the black color represents normal samples, and 
red asterisks indicate that the expression of the gene is significant in the particular cancer. BRCA: 
Breast Cancer, LAUD: Lung Adenocarcinoma, OV: Ovarian Cancer 

3.3. Survival Analysis of the CSC-Associated Genes 
Survival analysis revealed 12 genes from different types of cancer, among which only 

8 genes (APOC1, SLC44A5, CAV2, PRRG4, ADCY7, AKAP12, TPM2, and FLNC) had 
significant influence (p-value < 0.01) on the overall survival of patients of respective 
cancers, and the remaining 4 genes (MECOM, SLC6A12, ABHD11, and MKP-1) did not 
significantly influence overall survival. Therefore, in this study, eight prognostically 
significant genes were used for further analysis. As shown in Figure 3, the higher 
expression of APOC1 is related to poor overall survival of breast cancer patients. In lung 

Figure 2. Expression of the selected genes validated from TCGA by using the GEPIA database for the
respective cancers: APOC1 in breast cancer; SLC44A5 and CAV2 in lung adenocarcinoma; MECOM,
SLC6A12, PRRG4, ABHD11, DUSP1, ADCY7, AKAP12, TPM2, and FLNC in ovarian cancer. Here,
the red color represents tumor sample, the black color represents normal samples, and red asterisks
indicate that the expression of the gene is significant in the particular cancer. BRCA: Breast Cancer,
LAUD: Lung Adenocarcinoma, OV: Ovarian Cancer.

3.4. Correlation Between the Expression of CSC-Associated Genes and Pathological Stages
of Carcinomas

Using the UALCAN, we investigated the correlation between the expression of these
eight genes and different pathological stages of particular cancers. The expression of
APOC1 was significantly increased (p-value < 0.01) in different stages of breast cancer from
the normal persons but there were no significant changes between the stages (Figure 4A).
A total of four stages are mentioned in this plot: stage 1, stage 2, stage 3, and stage
4. The SLC44A5 expression was significantly upregulated and CAV2 expression was
significantly downregulated (p-value < 0.01) in different stages of lung adenocarcinoma
patients compared to normal individuals (Figure 4B,C). However, there was no significant
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variation between the stages of lung adenocarcinoma in the case of the expression of
SLC44A5 and CAV2. The other genes (PRRG4, ADCY7, AKAP12, TPM2, and FLNC) did
not significantly differ between the stages of ovarian serous cystadenocarcinoma. In the
case of ovarian serous cystadenocarcinoma, sufficient data were not available from normal
individuals, indicating the need for more investigation into the detailed roles of identified
genes in ovarian cancer (Figure 4D–H).
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Figure 3. Prognostic value of mRNA expression of the genes in breast, lung adenocarcinoma, and
ovarian cancer patients analyzed by KM plotter. (A) APOC1 in breast cancer; (B) SLC44A5 and
(C) CAV2 in lung adenocarcinoma; (D) PRRG4, (E) ADCY7, (F) AKAP12, (G) TPM2, and (H) FLNC
in ovarian cancer. Here, logrank p value e- represents e−. For example, logrank p value ‘4.76e-06’
should be read as ‘4.76 × 10−6’.

We also investigated the expression of these genes between tumor and normal samples
on the basis of nodal metastatic status using UALCAN. Nodal metastatic status is indicated
by the N0–N3 labels, where N0 represents no lymph node metastasis, N1 represents
metastasis to 1–3 lymph nodes, N2 represents metastasis in 4–9 lymph nodes, and, lastly,
N3 represents metastasis in 10 or more axillary lymph nodes. The results revealed that in
patients with breast cancer, APOC1 is significantly increased (p-value < 0.01) in N0, N1,
N2, and N3 stages in comparison to normal healthy individuals (Figure 5A). Compared
with the normal individuals, the expression of SLC44A5 and CAV2 in lung adenocarcinoma
patients is significantly increased and decreased (p-value < 0.01), respectively, in all the
nodal metastatic stages compared to normal persons (Figure 5B,C). In both breast cancer
and lung adenocarcinoma, these three genes did not significantly change within the N0, N1,
N2, and N3 stages. There are no data available for the genes associated with ovarian cancer.
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Figure 4. Expression of the genes associated with the different stages of particular cancers. (A) APOC1
in breast cancer; (B) SLC44A5 and (C) CAV2 in lung adenocarcinoma; (D) PRRG4, (E) ADCY7,
(F) AKAP12, (G) TPM2, and (H) FLNC in ovarian cancer.

3.5. Immunohistochemical Analysis

Using the HPA database, we explored the protein expression of the eight genes in
respective cancers (depicted in Figure 6) and found that APOC1 is not detected in normal
breast tissue samples but shows medium expression in breast cancer tissue samples. The
expression of SLC44A5 shows lower expression in normal lung tissue but it shows medium
expression in lung adenocarcinoma patients. However, CAV2 expression is high in normal
lung and shows medium expression in the case of patients with lung adenocarcinoma.
The TCGA data revealed that the expression of PRRG4 is upregulated in ovarian cancer,
and the HPA data also support the TCGA report that in normal ovary, the expression of
PRRG4 is not detected but ovarian cancer patients show high intensity of PRRG4. However,
other genes of ovarian cancer, like ADCY7, AKAP12, TPM2, and FLNC, show contrasting
expression. Using the TCGA, these four genes were found to be downregulated in ovarian
cancer. Using the HPA, we found that the expression of ADCY7 and FLNC is not detected
in normal ovary, but in the case of ovarian cancer patients, their expression is medium
and low, respectively. AKAP12 and TPM2 expression is high in both normal and ovarian
cancer samples.
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(A) APOC1 in case of breast cancer patients; (B) SLC44A5 and (C) CAV2 in case of lung adenocarci-
noma patients. There are no data regarding the nodal metastatic status of ovarian cancer patients.

3.6. Correlation Between the Expression of Particular CSC-Associated Genes and Immune
Infiltration Status in the Tumor Microenvironment

TIMER analysis revealed that expression of the identified genes was either positively
or negatively correlated with the immune cell infiltration in particular cancers, as shown
in Figure 7. Infiltration of M2 macrophages in the tumor microenvironment (TME) pro-
motes tumor growth and metastasis by releasing the various proangiogenic factors and
also suppressing the proliferation of T cells [47]. Neutrophils in the TME stimulate tumor
angiogenesis by releasing MMP9 (Matrix metalloproteinases 9). They induce the recruit-
ment of M2 macrophages and Treg cells and can also inhibit the function of NK cells [48].
Tumor-infiltrating dendritic cells have the capacity of immune suppression in the TME
rather than stimulating the immune cells [49]. Our results revealed that APOC1 in breast
cancer (n = 1100) is positively correlated with the infiltration of M2 macrophage, neutrophil,
and dendritic cells. In lung adenocarcinoma (n = 515), the expression of CAV2 is positively
correlated with the infiltration of M2 macrophage, neutrophil, and dendritic cells. However,
the expression of SLC44A5 is negatively correlated with the infiltration of these immune
cells. On the other hand, M2 macrophage, neutrophil, and dendritic cell infiltration is
positively related to the expression of PRRG4 and ADCY7 in ovarian cancer (n = 303).
The expression of AKAP12 is positively related to the infiltration of neutrophil cells but
is negatively related to the infiltration of dendritic cells. TPM2 expression is positively
related to the infiltration of M2 macrophage and neutrophil cells, but their infiltration is not
significantly related with the expression of FLNC in the case of ovarian cancer. However, the
expression of AKAP12 and FLNC is negatively correlated with the infiltration of dendritic
cells in patients of ovarian cancer.
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Figure 6. Protein expression of the genes acquired from the Human Protein Atlas database.
(A) APOC1 in breast cancer; (B) SLC44A5 and (C) CAV2 in lung adenocarcinoma; (D) PRRG4,
(E) ADCY7, (F) AKAP12, (G) TPM2, and (H) FLNC in ovarian cancer. Here, staining is in four
parts: not detected, low intensity, moderate intensity, and high intensity.

3.7. Identification of Drugs That Target the Particular CSC-Associated Genes

Using CTD, we identified several drugs that can influence the expression of particular
genes. We selected the drugs on the basis of expression pattern of the target gene in CSCs
and TCGA, i.e., inhibitors in the case of genes whose expression is upregulated, and for
those genes whose expression is downregulated in CSC and cancer cells, we selected drugs
that can induce the expression of these genes. From the analysis, we identified that APOC1,
SLC44A5, and PRRG4 are upregulated, so we searched for drugs that could decrease their
expression (Figure 8A,B,D). Moreover, CAV2, ADCY7, AKAP12, TPM2, and FLNC genes
are downregulated, so, here, we searched for the drugs that could increase their expression
(Figure 8C,E–H). We found that cyclosporine, valproic acid, ivermectin, and acetaminophen
increase the expression of ADCY7. Doxorubicin, tretinoin, valproic acid, and cisplatin
were found to induce the expression of CAV2. We found that drugs such as valproic acid,
quercetin, and cyclosporin are able to decrease APOC1. Our results further revealed that
cyclosporin, bisphenol S, sunitinib, and quercetin decrease expression of the SLC44A5. CTD
results revealed various other drugs that can target the expression of the remaining genes.
The drug datasheets derived from the CTD are given in Supplementary Data S2.
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Figure 7. Prediction of immune cell infiltration with the expression of the genes in particular cancers.
Correlation of immune cell infiltration with the expression of (A) APOC1 in breast cancer; (B) SLC44A5
and (C) CAV2 in lung adenocarcinoma; (D) PRRG4, (E) ADCY7, (F) AKAP12, (G) TPM2, and (H) FLNC
in ovarian cancer. Here, the blue line indicates the trend in this correlation analysis, and each dot in
the scatter plot represents a single tumor sample. Here, a positive correlation is denoted by rho > 0,
and a negative correlation is denoted by rho < 0. Here, p value e- represents e−. For example, p value
9.11e-08 should be read as 9.11 × 10−8.
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4. Discussion

CSCs are a small subpopulation of cancer cells that have the capability of self-renewal,
which leads to their resistance to chemotherapy. Different signaling pathways like JAK-
STAT, Hedgehog, TGFB, Notch, Wnt-B catenin, and VEGF regulate the development of CSCs.
Different inhibitors, siRNAs, monoclonal antibodies, and enzyme inhibitors that interfere
with those signaling pathways can target cancer stem cells. Recent studies involve ongoing
clinical trials targeting CSCs [50]. Breast, lung, and ovarian cancer originate from epithelial
cells and turn into the most aggressive types of cancer via the induction of epithelial–
mesenchymal transition (EMT) [51–53]. Different strategies are available for targeting
the stem cells of these cancers, although most of these strategies are yet to be clinically
approved, and the plasticity and biology of CSCs need to be explored in more detail for
the identification of novel targets. In the present study, we first downloaded the CSC
gene expression datasets of these three different types of cancer and analyzed genes that
are associated with CSCs from different datasets of the respective cancer types in order
to identify genes that can be important intervention targets in these cancers. We aimed
to identify important genes that are specifically expressed in cancer stem cells of these
three types of cancer. There are few in silico analyses of different cancer-specific genes,
and these studies identify several prognostic biomarkers and their significance in several
cancers. However, notwithstanding our extensive search of the literature, we could not
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find any such in silico studies that focus on the comparison of gene expression analyses
of cancer stem cells. Cancer stem cell-specific genes in several cancers were identified
through the comparison of gene expression datasets of cancer cells and normal cells. Few
cancer stem cell-specific genes were identified using the stem-cell-related pathways or
the mRNAsi (mRNA stemness index) or by using other criteria [54–57]. Recently, cancer
stem cell (CSC)-targeted therapy has gained much attention since CSCs confer high drug
resistance and show augmented metastatic capabilities. CSC-specific gene expression
datasets are relatively scanty in public databases. Until now, no study has used CSC-
specific gene expression datasets and identified CSC-specific genes and validated their
prognostic significance in particular cancers. This study provides a comparative account of
CSC-associated genes in breast, ovarian, and lung cancer and identifies several important
CSC-specific gene targets in breast, lung, and ovarian cancer that can be further explored
to determine their usefulness in CSC-targeted therapy. The datasets we analyzed did not
reveal common differentially expressed genes between these three types of cancer stem
cells. This observation necessitates further exploration of the possibility that some CSC-
associated genes may be expressed in a cancer-tissue-specific manner. Next, we identified
common important up- and downregulated genes in CSCs of particular types of cancer,
i.e., breast, lung, and ovarian cancer, and investigated their relationships with different
pathological stages of the respective types of cancer. We validated the identified genes in
TCGA datasets of the respective cancers and carried out survival analysis to determine the
prognostic significance of these genes. Finally, we identified several potential candidate
drugs that can target these CSC-associated genes in particular cancers and are potentially
able to reduce CSC-mediated cancer proliferation and metastasis.

From our analysis, we identified the APOC1 (Apolipoprotein C1) gene in breast
CSCs; SLC44A5 and CAV2 genes in lung CSCs; and MECOM, SLC6A12, PRRG4, ABHD11,
DUSP1(MKP-1), ADCY7, AKAP12, TPM2, and FLNC genes in ovarian CSCs as some of the
most important genes. Out of these twelve genes, eight genes (APOC1, SLC44A5, CAV2,
PRRG4, ADCY7, AKAP12, TPM2, and FLNC) showed significant overall prognostic value
in respective cancers.

APOC1 has recently been identified in various types of cancers, including colorectal
cancer [58], cervical cancer [59], and breast cancer [45]. An experimental study revealed
that nanoparticle-mediated inhibition of APOC1 reduces breast cancer growth and metas-
tasis through the MAPK/ERK and NFkB pathways [60]. In esophageal cancer, reduced
expression of APOC1 has been found to be correlated with cancer inhibition [61]. Another
experimental study revealed that GD2 is highly expressed in a small number of breast
cancer cells, and these cells are also CD44hiCD24low. The Ganglioside GD2 helps in the
identification of breast cancer stem cells, which ultimately induces tumorigenesis. The
gene expression analysis of this study (GSE36643) revealed that APOC1 expression is
higher in the CD44hiCD24low cell population compared to the CD44lowCD24hi population
(Supplementary Table S2) [62]. In our analysis, we identified that APOC1 is upregulated
in human breast CSC as well as in breast tumor samples in the TCGA database (Figure 2).
When we analyzed the effect of the expression status of this gene on overall survival, we
found that higher expression of this gene is linked to worse overall survival (Figure 3A).
We further analyzed the relationship between pathological stages of breast cancer with the
expression of this gene, and found that its expression is significantly increased in different
stages compared with normal condition, and nodal metastatic status is also increased in N0,
N1, N2, and N3 stages of breast cancer. Protein expression data from HPA revealed that in
normal breast tissue it is not detected, but in breast cancer tissue it is moderately expressed
(Figure 6A). TIMER analysis revealed that in breast cancer patients, expression of APOC1 is
positively correlated with the infiltration of M2 macrophages, neutrophils, and dendritic
cells, which contributes to the tumor-promoting environment in breast cancer (Figure 7A).
We identified drugs that can decrease the expression of APOC1, including valproic acid,
cyclosporin, quercetin, and isotretinoin.
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Differential expression of SLC44A5 (Solute Carrier Family 44 Member 5) and CAV2
(Caveolin 2) is found in lung cancer stem cells, where SLC44A5 shows upregulated ex-
pression and CAV2 shows downregulated expression. SLC44A5 is one type of choline
transporter which plays an important role in increasing the viability and invasion of hepa-
tocellular cancer cells and also inhibits their apoptosis. Knockdown of SLC44A5 results in
the suppression of cell viability and induces apoptosis [63]. There are no experimental data
regarding the expression of SLC44A5 in lung cancer. A gene expression study (GSE21656)
involving a comparison between cisplatin-resistant H460 lung cancer cells and parental
H460 cells revealed that the IGF1 signaling pathway is responsible for the resistance of
H460 cancer cells. After analysis of gene expression data from cisplatin-resistant lung
cancer cells (lung cancer stem cells), we found that the SLC44A5 gene was unregulated
in resistant cells compared with parental cells (Supplementary Table S2) [64]. The TCGA
data show that its expression is significantly upregulated in lung adenocarcinoma samples
compared with normal samples, and its higher expression is significantly associated with
decreased overall survival of lung cancer patients. The expression of SLC44A5 is signifi-
cantly increased in the various pathological stages of lung adenocarcinoma patients but
there are no significant changes within the stages of lung adenocarcinoma (Figure 4B). The
expression of SLC44A5 is also positively correlated with the nodal metastatic status of
patients of lung adenocarcinoma. Several drugs like cyclosporine, sunitinib, bisphenol A,
and quercetin can decrease the activity or expression of this gene. Caveolins are markers
of caveolae which are small infoldings of the cell membrane involved in endocytosis, cel-
lular trafficking, and signal transduction. CAV2 is involved in the inhibition of the TGFB
signaling pathway and it reduces the proliferation of mouse lung endothelial cells [65]. We
were not able to find any experimental studies about the expression of CAV2 in cancer stem
cells; however, Liu et al. reported that CAV2 knockout mice are unable to develop Lewis
lung cancer, and B16F10 melanoma exhibits reduced tumor angiogenesis [66]. CAV2 is also
involved in the growth-promoting activities of renal cell carcinoma through the PI3K/Akt
pathway [67]. The cisplatin-resistant lung cancer cells also show slightly upregulated
expression of CAV2, although changes are slight (Supplementary Table S2). Our analysis
and TCGA data revealed that its expression is downregulated in both lung cancer stem
cells and lung adenocarcinoma patients and its higher expression is significantly related
to increased overall survival, indicating that it could be an important prognostic marker
for the patients of lung adenocarcinoma. Therefore, more experimental investigations are
needed to determine the expression of this gene in lung cancer stem cells. Moreover, the
expression of CAV2 is significantly decreased across pathological stages and various nodal
metastatic conditions from normal healthy individuals. The expression of the CAV2 protein
is found to be highly and moderately expressed in normal lung tissue and lung adeno-
carcinoma patients, respectively (Figure 6C). Immune infiltration analysis shows that the
infiltration of M2 macrophage, neutrophil, and dendritic cells is positively correlated with
the expression of CAV2 but negatively correlated with the expression of SLC44A5 in lung
adenocarcinoma patients. As this gene is downregulated in lung cancer, we tried to identify
drugs that could increase its expression, leading to perturbation in cancer proliferation.
Drugs that can increase the expression of CAV2 include doxorubicin, cisplatin, tretinoin,
and valproic acid.

Next, PRRG4 (Proline Rich and Gla Domain 4), ADCY7 (Adenylate cyclase 7), AKAP12
(A Kinase Anchor Protein 12), TPM2 (Tropomyosin 2), and FLNC (Filamin C) genes were
identified in ovarian cancer stem cells. PRRG4 is upregulated and ADCY7, AKAP12,
TPM2, and FLNC are downregulated in ovarian cancer stem cells when compared with the
nonstem cells. PRRG family proteins are involved in cell signaling and regulation, although
the specific function of PRRG4 has not been fully elucidated. Zhang et al. reported that
upregulated expression of PRRG4 induces breast cancer metastasis through downregulation
of Robo1 via NEDD4 [68]. As PRRG4 is responsible for breast cancer metastasis, it may be
involved in cancer stem cell development. Another study revealed that PRRG4 regulates
the mitochondrial function and migratory behavior of breast cancer cells via the Src–STAT3–
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POLG axis [69]. In ovarian cancer, this gene has not been studied so far. In our study,
this gene was found to be upregulated in ovarian cancer stem cells, but higher expression
of this gene is significantly linked with increased overall survival, which highlights the
paradoxical significance of this gene in ovarian cancer patients. However, few researchers
have attempted to identify the characteristics of Aldehyde dehydrogenase 1 high ovarian
cancer stem cells, which can be used for stem-cell-targeted therapy. They performed a
microarray of ALDHhigh SKOV3 ovarian cancer cells and ALDHlow SKOV3 ovarian cancer
cells (GSE82304). Differential gene expression analysis revealed that PRRG4 is upregulated
in ALDHhigh SKOV3 ovarian cancer cells compared with ALDHlow SKOV3 ovarian cancer
cells (Supplementary Table S2) [70]. The HPA data show that PRRG4 is highly expressed
in ovarian cancer, whereas it is not detected in normal ovary tissue (Figure 6D). PRRG4
induces the M2 macrophage, neutrophil, and dendritic cell infiltration in the ovarian cancer
microenvironment. Valproic acid, acetaminophen, and paclitaxel can reduce the activity of
this gene in cancer.

ADCY7, AKAP12, TPM2, and FLNC genes showed reduced expression in ovarian
cancer stem cells and also from the TCGA data. ADCY7 is a membrane protein of the
adenylate cyclase family that induces signal transduction. Reports indicate that ADCY7
is associated with poor prognosis of myeloid leukemia patients [71]. An experimental
study revealed that hypoxic conditions induce transient silencing of ADCY6 and ADCY7,
resulting in a reduction in cAMP/PKA signaling and reducing the migratory capacity of
hypoxic cancer cells (HeLa and C33a cervical cancer, RKO colorectal cancer, MCF7 breast
cancer cells). From the EMBL-EBL expression atlas and Oncomine database, it was also
found that ADCY7 mRNA expression is upregulated in ovarian cancer samples [72]. There
are no experimental studies regarding the functional activity of ADCY7 in ovarian cancer.
However, in ALDHhigh SKOV3 ovarian cancer cells, ADCY7 expression is significantly
downregulated (Supplementary Table S2). AKAP12 acts as a tumor-suppressor gene in
different types of cancer and can inhibit the proliferation, migration, invasion, and angio-
genesis of cancer cells as well as block the cell cycle through the activation of protein kinase
C [73]. Our study indicates that AKAP12 expression is downregulated in ovarian cancer
stem cells. A similar result was observed, where AKAP12 was involved in the suppression
of ovarian cancer cell proliferation via the Hippo pathway. It inhibited the proliferation,
migration, and invasion of ovarian cancer cells [74]. Another gene expression study of
ALDHhigh SKOV3 ovarian cancer cells reported that its expression was downregulated
(Supplementary Table S2). Tropomyosins are actin-binding proteins that regulate the force
generation and sensing stiffness. Downregulated expression of TPM2 has been found to
enhance the proliferation and migration of colorectal cancer cells [75] and also promote
breast cancer metastasis and chemoresistance [76]. TPM2 expression was noticed to be
downregulated in our ovarian cancer stem cell gene expression study. Prostate cancer
patient data reveal severe downregulation of TPM2. In vitro experiments concerning the
overexpression of TMP2 found it to be related with the inhibition of prostate cancer cell
growth and proliferation [77]. The spread of glioblastoma in the brain was also found to be
correlated with the loss of TPM2 expression [78]. These data reveal that TPM2 is downreg-
ulated in several cancers. A gene expression study of ALDHhigh SKOV3 ovarian cancer cells
revealed that its expression is downregulated (Supplementary Table S2). Although detailed
studies on TPM2 expression in ovarian cancer, specifically on ovarian cancer stem cells, are
not available, the abovementioned studies indicate that the upregulation of TPM2 could
provide favorable prognostic value in cancer. FLNC is an actin crosslinking cytoskeletal pro-
tein that maintains cellular morphology. In a study of gastric cancer, Filamin C suppressed
metastasis and angiogenesis by reducing the expression of MMP2 (Matrix metallopro-
teinase 2). Immunohistochemical and qRT-PCR analysis revealed that FLNC expression
was reduced in gastric cancer cells. Silencing of Filamin C affects the proliferation and
colony-formation capabilities of gastric cancer cells [79]. ALDHhigh SKOV3 ovarian cancer
cells also showed slightly reduced expression of FLNC (Supplementary Table S2). However,
no detailed studies about the expression of FLNC in ovarian cancer are available, and our
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study might help in the development of better experimental approaches for the study of
ovarian cancer stem cells. Paradoxically, from the Kaplan–Meier plot, we found that high
expression of the ADCY7, AKAP12, TPM2, and FLNC genes was significantly associated
with decreased overall survival, indicating the need for detailed study of the functions
of these genes in CSCs, tumor microenvironment, and survival of cancer cells. There is
a lack of sufficient data concerning the relationships of these genes with different patho-
logical stages and nodal metastatic status of ovarian cancer patients. However, when we
investigated the immune infiltration status of these genes in ovarian cancer, we found that
ADCY7 expression was positively related to the infiltration of M2 macrophage, neutrophil,
and dendritic cells but AKAP12 expression was positively correlated with the infiltration
of only neutrophils. TPM2 expression was also positively related to M2 macrophage and
neutrophil infiltration but not significantly related to dendritic cell infiltration, whereas the
expression of FLNC was not significantly related to infiltration of M2 macrophages and
neutrophils and was negatively related to dendritic cell infiltration in ovarian cancer. From
immunohistochemical images, we found that ADCY7 expression is not detected in normal
ovary and is moderately expressed in cancerous tissue. AKAP12 and TPM2 are highly
expressed in both normal ovaries and ovarian cancer. However, the expression of FLNC is
not detected in normal conditions, and in ovarian cancer it shows lower intensity. Drugs
like doxorubicin, quercetin, sunitinib, cyclosporine, and fulvestrant can target the AKAP12,
and cyclosporine, valproic acid, and acetaminophen can increase the effect of ADCY7. Also,
doxorubicin, valproic acid, and bisphenol A can effectively target the TPM2 and FLNC
genes of ovarian cancer stem cells. From our study, valproic acid, sunitinib, and quercetin
emerged as drug candidates that can target most of the CSC-associated genes or signaling
pathways in breast, ovarian, and lung cancer. It is important to note that quercetin has been
actively explored as a potential candidate drug in cancer, but so far, clinical studies have
failed to replicate the same level of impact shown in preclinical and in vitro studies [80],
implying that the literature and high-throughput-study-based drug data bank may identify
many well-researched candidate drugs that have failed to replicate the promising results
revealed in in vitro/preclinical studies in clinical settings, and careful screening must be
conducted to identify novel promising candidate drugs or small molecules.

5. Conclusions

Overall, our analysis suggests that there are no significant CSC-associated genes
that have common expression patterns in the ovarian, lung, and breast cancer datasets,
but we identified common genes amongst different datasets of ovarian, lung, and breast
cancer, respectively. Our analysis of CSC gene expression revealed several important CSC-
associated genes that are promising prognostic biomarkers for breast, lung, and ovarian
cancers, and we also identified several candidate drugs that can modulate the function and
expression of these genes or their protein products. Our study also indicates the need for
thorough experimental analysis of the roles of these genes in different types of cancer stem
cells, the molecular mechanisms of their actions, and their relationships with metastasis,
survival, chemoresistance, and cancer relapse.
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