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Abstract: Evidence transfer for clustering is a deep learning method that manipulates the latent
representations of an autoencoder according to external categorical evidence with the effect of
improving a clustering outcome. Evidence transfer’s application on clustering is designed to be
robust when introduced with a low quality of evidence, while increasing the effectiveness of the
clustering accuracy during relevant corresponding evidence. We interpret the effects of evidence
transfer on the latent representation of an autoencoder by comparing our method to the information
bottleneck method. Information bottleneck is an optimisation problem of finding the best tradeoff
between maximising the mutual information of data representations and a task outcome while at
the same time being effective in compressing the original data source. We posit that the evidence
transfer method has essentially the same objective regarding the latent representations produced by
an autoencoder. We verify our hypothesis using information theoretic metrics from feature selection
in order to perform an empirical analysis over the information that is carried through the bottleneck
of the latent space. We use the relevance metric to compare the overall mutual information between
the latent representations and the ground truth labels before and after their incremental manipulation,
as well as, to study the effects of evidence transfer regarding the significance of each latent feature.

Keywords: deep neural networks; evidence transfer; relevance; feature selection; information
bottleneck; latent features; deep learning

1. Introduction

Representation learning is directly connected with the effectiveness of specific tasks [1,2],
while often being the primary task of deep learning applications [3,4]. Using meaningful and
lower-dimensional representations extracted from deep learning models enables task performance
by utilising more abstract level features. Nonetheless, the frequent perception of deep learning as
a “black box” operation can limit its applications in domains where interoperability is required.
Domains such as healthcare [5] or tasks such as finger print spoof detection [6] require knowledge
of the operations conducted by deep learning models due to the impact of prediction error.
Model interpretability [7], as well as, understanding, visualising, and interpreting deep learning
models [8] are often neglected or overshadowed by the effectiveness of the model. Interpreting the
effects of Deep Learning methods favours “System Verification” and “System Improvement” that
can result in informed predictions, explainable prediction errors, and a fine-tuning of the model
architecture and objectives.
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In this paper, we investigate an information theoretic interpretation of evidence transfer, a deep
representation learning method [9] that manipulates the latent representations of an autoencoder
according to external categorical evidence. We posit that Information Bottleneck [10] shares the same
objective with evidence transfer, which is to compress the original data through a “bottleneck” while,
at the same time, maintaining “relevant” information regarding a task outcome. To test our hypothesis,
we perform an empirical analysis over the features of the latent representations from the perspective of
feature selection. Feature selection, through finding the most discriminating features for a certain task,
offers insight regarding the operations of a predictive model. For that reason, we use the relevance
metric [11] in our empirical analysis in order to study the effects of evidence transfer, both from the
overall feature perspective, as well as, studying the latent features individually.

This work makes the following contributions:

1. We provide an information-theoretic interpretation of the effects of evidence transfer on the
latent space;

2. We study the overall relevance of latent features after the manipulation conducted by
evidence transfer;

3. We inspect the ranking variations of individual latent features caused by evidence transfer.

Background

Feature selection and Feature ranking algorithms have been widely used in combination with
more traditional machine learning algorithms such as k-means [12] or Support Vector Machines and
K-nearest-neighbours [13]. With the rise of popularity of deep learning applications, feature selection
algorithms also started to be deployed in multiple stages of deep learning models. In order
to compensate against feature sparsity occurring in the word-vec representation of documents,
feature selection has been used in Deep Belief Networks as a preprocessing step before model
training [14]. Feature selection is also suggested as a preprocessing step before the application of an
autoencoder in the case of fraud detection using accounting data [15].

Multiple domains, including the feature selection/ranking, made the intermediate layers of
deep learning models a point of interest for experimentation. For example, on precision medicine,
the most important features of latent representations extracted from a Stacked Autoencoder are used for
supervised classification training [16]. Ranking representations extracted from deep learning models
was also suggested in gene selection, where high-level abstract representations from a Deep Belief
Network are ranked before being used in an active learning approach [17]. Eliminating redundant
features from Restricted Boltzmann Machine embeddings before being used to train a Deep Belief
Network is also proposed in Reference [18].

In some cases, feature selection has been a part of the neural network architecture or training
objective. A feature selection algorithm that derives from the reconstruction error of a Deep Belief
Network is used in remote sensing scene classification [19]. To rank input features, a feature
ranking layer connects the input with the intermediate layers. The additional weights are used
as a regularisation term in the training objective, which leads to fine-tuned weights that are later used
for ranking [20]. A variational dropout layer has also been utilised to perform ranking of individual
features [21].

Measuring the overall relevance or individual relevance of each feature has been used in
a number of feature selection algorithms with an information theoretic perspective. Among others,
some examples of relevance being used to build feature selection algorithms are feature selection
based on ant colony optimisation, during which a multivariate filter method is deployed on a graph
representation of the relevance and similarity of features [22]. Evaluating the relevance and redundancy
of each feature compared to others is also the objective for both the Infinite Feature Selection [23] and
Infinite Latent Feature Selection [24], which utilise affinity graphs that represent features as nodes.

Information bottleneck recently received a lot of attention in the domain of deep learning.
It was utilised in order to provide a theoretical point of view regarding the state-of-the-art
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performance of neural networks [25]. Furthermore, it was used to interpret the process of learning
disentangled representations in the neural network configuration of B-VAE [26]. Additionally,
the methods in References [27-29] are also explained from an information theoretic perspective
using information bottleneck.

Evidence transfer uses task outcomes as external categorical evidence to manipulate latent
representations, which can be perceived as an ensemble (when multiple sources are available). In deep
learning, using ensembles has been suggested as a regularisation method through the distillation
of multiple versions of a deep learning model [30], as well as, introducing new methodologies for
ensembles, such as Boosted Residual Networks [31].

In this paper, we utilise concepts from deep learning, information theory, and feature
selection in order to interpret the effects of a representation learning method that involves external
categorical evidence.

2. Materials and Methods

In this section, we introduce the method of evidence transfer, as well as, the information bottleneck.
We discuss the common theme between these two methods while also providing an interpretation
of the effects of evidence transfer by comparing it to the information bottleneck. Interpreting and
understanding the effects of evidence transfer by using the feature selection metric of relevance
encourages model interpretability and an understanding of the operations of a representations learning
method that uses external categorical evidence.

2.1. Evidence Transfer

Evidence Transfer [9] is an unsupervised method of learning representations according to external
categorical evidence. These manipulated representations can be utilised for the task of clustering.
It deviates from supervised feature aggregation methods by overcoming the assumptions of availability
of external data and dependence between external and primary data. It was designed with the notion
that, in practice, external data is either not guaranteed or that we may observe the outcome of external
processes without having explicit access to the corresponding dataset. Given this assumption, external
categorical evidence provided to the evidence transfer method may be irrelevant to the primary dataset
or may not provide any additional information that can be utilised to improve the clustering outcome
of the primary dataset. For that reason, evidence transfer applied on clustering satisfies three principal
criteria, namely Effectiveness, Robustness, and Modularity.

The effectiveness criterion refers to the ability of the method to be able to discover and
utilise meaningful relations between the primary dataset and the external categorical evidence;
the effectiveness should be scalable with multiple meaningful relations. Robustness refers to the ability
of the method to maintain its prior effectiveness when introduced with low quality pieces of evidence.
Since the availability of evidence is not guaranteed, evidence transfer should be deployed as a fine-tune
step for an incremental manipulation of the latent representations, when evidence is available. To satisfy
these criteria, we consider the metric of cross entropy. Cross entropy is an asymmetrical metric
involving the entropy of a distribution that is considered as “true” and its divergence to an “auxiliary”
distribution. In the case of evidence transfer, the additional evidence is considered as the “true”
distribution and the latent space is considered as the “auxiliary” distribution. Measuring cross
entropy allows for a quantification of both the uncertainty in the external evidence distribution as well
as the divergence between external evidence and latent space. As a task outcome, the evidence
distribution is considered as fixed and its entropy is constant. Therefore, minimising cross entropy
relies on reducing the divergence between the evidence distribution and the latent space distribution
that belongs to parametric families that involve the trainable parameters of the neural network.

Algorithm 1 depicts an algorithmic overview of the evidence transfer method and its application
for clustering. Evidence transfer consists of two phases. During the first phase (initialisation), we train
a denoising autoencoder using the reconstruction objective (mean squared error metric). The initialised
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autoencoder can be utilised in order to create an initial solution to the clustering of the primary dataset,
which is referred as the “baseline” solution. The baseline solution consists of deploying k-means
on the initial latent representations. Before we proceed with the evidence transfer step, we perform
a preprocessing technique on each available source of evidence. We use a single-layer autoencoder
to upscale or downscale the categorical evidence to create isometry between the evidence and latent
features. We proceed by using the rescaled representations of the evidence autoencoder instead of raw
categorical evidence. To transfer the evidence in the latent representations of the denoising autoencoder,
we introduce auxiliary layers with the objective to “predict” the external evidence. We jointly optimise
the two objectives (reconstruction and mean cross entropy for each evidence). The last step is to
deploy k-means on the new augmented latent representations of the autoencoder after the evidence
transfer step.

Algorithm 1: The evidence transfer method utilised for clustering
2)

Data: Primary dataset X = {x(!), x( ., x(N)} External categorical pieces of evidence
V = {V, V,,..., Vk}, where for each piece of evidence V = {v(l), 0@ ., v(M)}
Result: Incrementally manipulated latent representations Z using pieces of evidence V,
Clustering outcome C = {c(l), c(z), e, C(N )} using k-means on latent representations
Z
Initialise weights of a Denoising Autoencoder;
while not reached convergence do
Forward Pass: X = Dropout 4¢(X);
Forward Pass: X’ = Decode 4¢ (X);
Back-Propagate: £4p = L(X,X") = L ¥N, (&) — x/())2
end
Z = Encode 4¢(X) (initial latent representations);
Initialise weights of Evidence Autoencoder;
for small amount of epochs do
Forward Pass: V| = Decodeg,iag(Vk);
Back-Propagate: (gyiap = L(Vk, Vi) = ﬁ Zf\ﬁl (vl(g) - v%(o)z;
end
Zy, = Encodegyiae(Vk);
Introduce additional layers on Denoising Autoencoder Q = {Qj, ..., Qx } for each latent
categorical variable Zy, ;
Initialise weights of each layer in Q;
while not reached convergence do
Forward Pass: X = Dropout sg(X);
Forward Pass: X’ = Decode zr (X);
Forward Pass: Qg = Predict sg(Zv,);
lap = L(X, X)) = £ 2N, (30 — 2/0)2;
Iy = % Z]I-il H (ZV]., Q]-), where H is the information theoretic metric cross entropy;
Backpropagate: {ryitram = CaE + A * £, where A is a hyperparameter regulating the
cross entropy loss;

end
Z = Encode 4p (X) (manipulated latent representations);
C = k-means(Z);
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2.2. Information Bottleneck

The information bottleneck method is an information theoretic method that was designed in order
to propose a formalisation of quantifying the tradeoff between compressing a random variable into
a short code while at the same time maintaining its “relevant information”.

Inspired from the domain of language processing among others, the quantification of “relevant
information can be determined by having access to an additional variable. The only constraint over

17

using an additional variable is that any additional variable used should not be independent of the
original signal, meaning that their mutual information should be positive.

Lp(x|x)] = I(X; X) = pI(X;Y) 1)

The definition of information bottleneck involves an original signal/dataset X, a code X,
and additional variable Y. The objective of information bottleneck is defined by X having to compress
X as much as possible, while it captures as much information about Y as possible. Perceiving this
objective as an optimisation problem leads to minimising Equation (1). In Equation (1), the § coefficient
regulates the tradeoff between compressing the original dataset and transmitting relevant information
from variable Y.

2.3. Evidence Transfer Interpretation

From the introduction of both information bottleneck and evidence transfer, we can derive
a common theme regarding the use of external or additional information to aid a primary task.
Information bottleneck quantifies how “relevant” information is carried through some code by using
an additional/external variable. The inspiration for information bottleneck comes from scenarios
where such additional variables are often available. Evidence transfer is also based on the same notion
where, during the objective of learning latent representations for a primary dataset (that can be used
for discriminative tasks such as clustering), observations of external categorical evidence might be
available; their relation to the primary dataset are quantified and utilised in cases where it represents
corresponding relations.

CeviTRAM = AE + A * Ly )

We hypothesise that the two objectives of information bottleneck and evidence transfer are
equivalent regarding their effect on the latent representations of the autoencoder. We parallelise the
short code defined in information bottleneck with the latent space of the autoencoder in evidence
transfer. Our hypothesis is that Equations (1) and (2) are equivalent, and therefore, the effect of learning
representations to improve a clustering outcome using evidence transfer has the same effect on the
latent space of the autoencoder as information bottleneck.

1(Z;X) = H(Z) — H(Z|X) = H(X) — H(X|Z)

= H(X) = (L p(2) og 7

= H(X) — [}_p(x,2)log p(x,z) =} p(x,2) log p(z)] )
= H(X) - [Ep(x,z) [10g P(x’Z) log p(Z)] - Ep(x,z) [log P(Z)H

= H(X) - [Ep(x,z) [log P(xlz)] + Il:]:p(ac,z) [log P<Z>] - IE:;7()5,2) [log P(Z)”

= H(Xl _Ep(x,z) [log p(x|z)]

s f
2

Using the parallelisation of the code bottleneck and the latent space, we rewrite Equation (1) as
such: L[p(z|x)] = I(Z;X) — BI(Z;Y), where we consider Y to be the classification task assigned
with the X primary dataset and Z to be the latent representations. First, we consider how the
lap term in the evidence transfer objective might approximate the I(Z; X) term of information
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bottleneck. Mutual information can equivalently be expressed using entropy and conditional entropy.
By unravelling the entropy expression, in Equation (3), we reach a point of mutual information being
expressed with the sum of a constant (primary dataset entropy) and an expected log-likelihood of x
given z (where x and z are random variables corresponding to samples of the primary dataset and the
latent representations of an autoencoder; the expectation is taken over the joint probability distribution
of x data/observed samples and z latent/unobserved samples). Therefore, the maximisation of mutual
information between X and Z relies on minimising the expected log-likelihood.

L(0) = —Ep(x x, log Pp(X|X)] 4)

Evidence transfer utilises denoising autoencoders for learning representations. Denoising autoencoders
are generative models [32], meaning that their latent code approximates the true data generating
distribution (noted as P(X)). The formal objective of such autoencoders is defined as “learning to
predict X given X by possibly regularised maximum likelihood”; this maximisation is achieved by
minimising the expected log-likelihood in Equation (4), where X refers to data samples and X is
the corrupted version of said dataset. The Py(X|X) refers to learning parameters 0 (e.g., weights
and biases) such that they will be able to predict original data samples X from corrupted samples X.
The minimisation is performed with an expectation over the joint probability distribution P(X, X).
While not explicitly, the latent code Z is involved in the decoding process of an autoencoder. In order
to perform a decoding of the samples, one must first encode the input (for both denoising and regular
autoencoders). This means that the Z = P(Z|X) or Z = P(Z|X) encoding process is always performed
before decoding, i.e., computing Py(X|Z). Comparing these two objectives, we come to the conclusion
that the reconstruction objective of denoising autoencoders is equivalent to maximising the mutual
information between primary dataset X and latent code /bottleneck Z (i.e., compressing X).

The evaluation of evidence transfer applied on clustering task depends on the satisfaction of
the predefined criteria. To investigate their satisfaction, we use the unsupervised clustering accuracy
metric [33] and the normalised mutual information metric, which are measured before and after the
incremental manipulation of the latent representations. Both of these metrics make use of the ground
truth labels of the primary dataset. Considering the satisfaction of the effectiveness criterion, as well
as the metrics that is evaluated on, we posit that, after the incremental manipulation according to
external categorical evidence, the latent representations contain information regarding the Y task of
the primary dataset. We empirically study our hypothesis regarding the correlation between I(Z;Y) of
information bottleneck and evidence transfer training objective.

3. Results

In this section, we present the experimental methodology and evaluation results that show that
latent representations after the manipulation of evidence transfer method carry information regarding
the task of the primary dataset.

3.1. Experimental Setup

In this section, we briefly discuss the setup of our experiments. We introduce the datasets and
evidence that were used during the evidence transfer, as well as the dataset tasks in terms of ground truth
labels (noted as Y in previous sections) that are used in order to measure the relevance of latent features.

3.1.1. Datasets

We test our hypothesis regarding the correlation between the evidence transfer method and the
information bottleneck by experimenting with two categories of data, images and text. For the image
category we use the MNIST [34] dataset which contains images of handwritten digits with task Y
classifying each digit (with the ground truth labels varying from 0 to 9). CIFAR-10 [35] was also used
in our image data experiments. CIFAR-10 contains colour images depicting 10 classes, such as vehicles
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or animals; the task Y is to classify the object that is being depicted in these images (e.g., airplane,
frog, etc.). In our experiments, we utilise features extracted from a pretrained VGG-16 network [36] on
ImageNet [37], instead of the raw CIFAR-10 features.

From the text category, we used the 20 newsgroups [38] dataset, with task Y classifying articles
into 20 news topics. In our experiments, we utilised features coming from a pretrained word2vec
model on Google News corpus [39]. Additionally, Reuters Corpus Volume I [40] was also used
for our experiments. RCV1 has the primary task of classifying text in 103 categories; each of these
103 categories belongs in 4 root categories. In our experiments, we created a subset of 96,933 out of
804,414 documents, with task Y classifying 10 subcategories out of the 103 total. We refer to this subset
as REUTERS-100k, and we use tf-idf features on the 2000 most frequent word stems.

3.1.2. Evidence

We experiment with both the quantity and the quality of evidence. Regarding the quantity of
evidence, we experiment with the use of single, double, and triple pieces of evidence during evidence
transfer. We also use three distinct categories of evidence quality, Real corresponding evidence,
which refers to evidence that corresponds to a meaningful relation between the primary dataset and
the evidence. Random or White Noise evidence refers to pieces of evidence that contain random values
drawn from a uniform distribution. This category represents inconclusive pieces of evidence due to
a high uncertainty that cannot be utilised to increase the effectiveness of a clustering outcome. Lastly,
Random Index evidence refers to real corresponding evidence where the order of evidence samples
was randomised and the relation between the evidence and primary data samples is not corresponding.
This case represents evidence where the uncertainty is low in the distribution of evidence samples yet
where they do not correspond in meaningful relations.

3.1.3. Metrics

To quantify the amount of information that latent representations contain regarding the task of
the primary dataset, we compute the relevance metric. Relevance (Equation (5)) measures the mutual
information between a feature set and the ground truth label set (in our case, the latent features of

representations Z).
1

D(S,¢) = 7 L 1(fize) ®)
|S| fi€s

Due to the fact that mutual information involves the conditional probability of one variable given
the other, frequently, the exact computation of mutual information is intractable. To overcome
the intractability of mutual information, we use tractable estimations. In our experiments of
estimating the mutual information between latent features and ground truth labels, we use the
Nearest Neighbour method as referenced in Reference [41], with hyperparameter K = 3. We used
the Scikit-learn [42] implementation of the Nearest Neighbour mutual information estimation that
involves some stochasticity. For that reason, we report an average value of 50 seeded runs. In some
cases, F-test values were used instead of mutual information [43]. We report both variations of
relevance (mutual information and F-test values); additionally, for comparison purposes, we report the
metrics used in order to evaluate the effectiveness of the evidence transfer for clustering (unsupervised
clustering accuracy and normalised mutual information, noted as ACC and NMI respectively).

3.2. Overall Relevance

In Tables 1-5, we report the results of our experiments. We report the average value of the
relevance metric between all latent features (10 features for all datasets) and ground truth labels, i.e.,
overall relevance. For all datasets, we observe a correlation between the metrics of evidence transfer
effectiveness and the relevance metric, both for mutual information and the F-test. This observation
comes from the fact that, during real corresponding evidence, the overall relevance is increased,
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meaning that the mutual information between the latent features and the ground truth labels is
increased. On the other hand, during white noise or random index evidence, the relevance remains
at the same levels as before introducing any evidence. In Figure 1, we plot both the metrics used
for clustering evaluation and for relevance metrics for each evidence configuration for all datasets.
For visualisation purposes, we scaled all metrics from a varying range of 0 to 1. From this figure,
we observe that, although there is some difference in the scale, all these metrics behave in the same
way when introduced with the same evidence.

Table 1. The MNIST dataset results: W indicates the number of classes represented by the each evidence
sample vector. Real evidence with width 3 represents the relation of y mod3, while width 4 represents
hash(y) mod4 and width 10 represents y, with y being the digit label for all instances. For comparison
purposes, we report the normalised F-test values using 12 norm.

ID Configuration Relevance (MI) Relevance (F-Test) Rank Variation ACC NMI
(a) Baseline 0473 0.247 - 0.820 0.763
(b) Real evidence (w: 3) 0.582 0.356 0.4 0.956 0.896
(c) Real evidence (w: 10) 0.618 0.405 0.4 0.967 0.918
(d) White noise (w: 3) 0.476 0.249 0 0.823 0.764
(e) White noise (w: 10) 0.476 0.247 0 0.824 0.765
) Random index (w: 3) 0.476 0.248 0 0.822  0.763
(8) Random index (w: 10) 0.476 0.250 0 0.823 0.764
(h) Real (w: 3) + Real (w: 4) 0.662 0.463 0.6 0.977  0.939
(i) Noise (w: 3) + Noise (w: 10) 0.477 0.248 0 0.822 0.764
G) Real (w: 3) + Noise (w: 3) 0.580 0.354 0.4 0.955 0.895

Table 2. The CIFAR-10 dataset results: during the CIFAR experiments, real corresponding evidence
represent supersets of the original dataset labels. The Real corresponding evidence of width 3 represents
a three-group aggregation into namely Vehicles, Pets, and Wild Animals. Width 4 expands the Pets
category into two more sets, while width 10 represents the labelset of CIFAR-10.

ID Configuration Relevance (MI) Relevance (F-Test) Rank Variation ACC NMI
(a) Baseline 0.112 0.039 - 0.228 0.134
(b) Real evidence (w: 3) 0.586 0.435 0.8 0.375 0.463
(c) Real evidence (w: 10) 0.576 0.388 0.7 0919 0.830
(d) White noise (w: 3) 0.113 0.039 0 0.247 0.147
(e) White noise (w: 10) 0.114 0.039 0 0.246 0.145
) Random index (w: 3) 0.118 0.041 0.2 0.265 0.155
(8) Random index (w: 10) 0.113 0.039 0 0.260 0.151
(h) Real (w: 3) + Real (w: 4) 0.799 0.676 1 0.527  0.613
(i) Noise (w: 3) + Noise (w: 10) 0.116 0.040 0 0.251 0.148
G) Real (w: 3) + Noise (w: 3) 0.591 0.441 0.9 0.368 0.462

Table 3. Twenty newsgroup dataset results for the 20-newsgroup experiments’ real corresponding
evidence represents supersets of the original labelset. The width 5 real evidence corresponds to
aggregating labels into Comp(uters), Rec(reational), Sci(ence), Talk, and Misc. groups. For width
6 evidence, we aggregate the labelset into 6 groups of sport, politics, religion, vehicles, systems,
and science. The 20-width evidence represents the labelset of 20 newsgroups.

ID Configuration Relevance (MI) Relevance (F-Test) Rank Variation ACC NMI
(a) Baseline 0.282 0.052 - 0212 0.250
(b) Real evidence (w: 5) 0.871 0.390 0.8 0.342 0.578
(c) Real evidence (w: 20) 1.136 0.554 0.7 0.875 0.898
(d) White noise (w: 3) 0.290 0.056 0 0.222 0.254
(e) White noise (w: 10) 0.297 0.058 0.2 0.229 0.261
) Random index (w: 5) 0.295 0.059 0.2 0.214 0.253
(g) Random index (w: 20) 0.285 0.056 0.2 0.224 0.256
(h) Real (w: 5) + Real (w: 6) 1.083 0.574 0.9 0.466  0.679
(i) Noise (w: 3) + Noise (w: 10) 0.294 0.060 0.4 0232  0.264

()  Real (w: 5) + Noise (w: 3) 0.833 0.438 06 0320 0.543
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Table 4. The REUTERS-100k dataset results: real corresponding evidence with width 4 represent
the four root categories of the RCV1 dataset. The width 10 evidence represents the labelset of
REUTERS-100k (subset of RCV1 labels). Width 5 evidence is a categorisation of width 10 evidence into

5 groups.
ID Configuration Relevance (MI) Relevance (F-Test) Rank Variation ACC NMI
(a) Baseline 0.285 0.236 - 0.411 0.327
(b) Real evidence (w: 4) 0.356 0.351 0.5 0.435 0.363
(c) Real evidence (w: 10) 0.379 0.439 0.7 0481 0411
(d) White noise (w: 3) 0.284 0.236 0.2 0.414 0.328
(e) White noise (w: 10) 0.282 0.232 0.4 0416 0.328
) Random index (w: 4) 0.281 0.234 0.2 0415 0.329
(8) Random index (w: 10) 0.281 0.233 0 0415 0.327
(h) Real (w: 4) + Real (w: 5) 0.430 0.486 0.7 0.506 0.419
(i) Noise (w: 3) + Noise (w: 10) 0.282 0.234 0.4 0412 0.327
G) Real(w: 4) + Noise (w: 3) 0.352 0.344 0.4 0.434 0.362

Table 5. The CIFAR-10 dataset results experimenting with three sources of evidence: we use real

corresponding evidence introduced in Table 2. We experiment with more combinations of real and

white noise evidence.

ID Configuration Relevance (MI) Relevance (F-test) Rank Variation ACC NMI
(a) Baseline 0.112 0.024 - 0.228 0.134
(b) Real (w: 3) + Real (w: 4) + Real (w: 5) 0.830 0.467 0.8 0.646 0.743
(c) Real (w: 3) + Real (w: 4) + Noise (w: 3) 0.792 0.402 0.9 0.533 0.619
(d)  Real (w: 3) + Noise (w: 3) + Noise (w: 10) 0.598 0.267 0.8 0.367 0.462
(e) Real (w: 3) + Real (w: 5) + Noise (w: 3) 0.775 0.447 0.7 0.605 0.713
(f)  Real (w: 3) + Noise (w: 3) + Noise (w: 10) 0.594 0.286 0.8 0.447 0.544
(8) Real (w: 4) + Real (w: 5) + Noise (w: 3) 0.765 0.461 0.9 0.634 0.772
(h)  Real (w: 5) + Noise (w: 3) + Noise (w: 10) 0.543 0.232 0.7 0.623  0.654
()  Noise (w: 3) + Noise (w: 10) + Noise (w: 5) 0.116 0.025 0.2 0.252  0.149

This empirical analysis over the relevance of the latent features hints at the correlation between
evidence transfer and information bottleneck. We provided insight in the previous section of how
the autoencoder reconstruction objective is correlated to compressing the mutual information of the
primary dataset. The experimentation with overall relevance indicates that the increased effectiveness
on clustering task when introduced with additional evidence is an outcome of evidence transfer
increasing the mutual information between the latent representations and the class labels. In other
words, minimising the cross entropy between predictors Q and the evidence leads to increasing the
relevant information passed through the bottleneck Z (in cases of real corresponding evidence).
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Figure 1. A comparison of the Relevance metric from feature selection with Unsupervised Accuracy
(ACC) and Normalised Mutual Information used for clustering prediction evaluation: We compare
both approaches of Relevance (Mutual Information and F-test). To interpret the effects of evidence
transfer, we analyse the behaviour of these metrics in five different scenarios. Each subfigure represents
a single scenario, and the comparison of the metrics is performed individually on each scenario.
For visualisation purposes, we normalise all four metrics using the max norm. We observe similar trends
in the behaviour of all these metrics for all predefined experiments and configurations. In subfigure (e),

we plot the results of configurations involving three sources of evidence and, hence, the differences in
shape compared to the other subfigures.

3.3. Individual Latent Feature Relevance

To study the effects of evidence transfer from the perspective of individual latent feature,
we compute the variations in feature ranking during both phases of evidence transfer. First, using the
initialised latent space from the baseline solution, we create a ranking of the latent features according
to the relevance metric (mutual information estimation). Then, we create several rankings, one for
each configuration solution (according to our experiments), again by using relevance as ranking
criterion. We proceed by measuring the changes in the rankings before and after the deployment of
evidence transfer. We calculate the amount of features that shifted ranks, and then, we divide this
amount with the overall amount of latent features; for normalisation purposes, we note this metric as
“Rank Variation”.

We report the results of the latent feature rank variation in Tables 1-5. In Figure 2, we compare
the rank variation with the overall relevance metric. In cases of real corresponding evidence, the rank
variation seems to be consistent with the overall relevance. The behaviour of a high amount of features
shifting their ranks during real corresponding evidence leads to the observation that, during evidence
transfer, latent features are under the effect of a feature re-ranking in order to represent the evidence
that was introduced. Although, in some cases of low quality, some re-ranking may exist (an increased
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variation—in theory, the ranking of each individual latent feature should be close to zero when
compared to the ranks of the baseline solution), we observe that this re-ranking is the product of
single swap between two features or double swap between four features. As these re-ranks do not
produce any changes in the effectiveness metrics, we believe that these re-ranks do not provide any
additional effectiveness and occur due to the fact that further training with the reconstruction objective
is performed.
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~ 0.8 ~ 08
o o
kY K
3 3
206 Q206
] (]
2 2
© ©
: 0.4 4 3 0.4
‘= ‘=
o @
= 0.2 = 0.2
0.0 0.0
b c d e f g h i j b c d e f g h i j
Configuration ID Configuration ID
(a) MNIST (b) CIFAR-10
1.04 1.0
~ 0.8 ~ 08
o o
kY kY
3 3
206 QD06
) (]
2 2
© ©
: 0.4 3 0.4
‘= ‘=
@ @
= 0.2 = 0.2
Rank Variation Rank Variation
co4 &  meees Relevance (MI) 0.0 =rnrn Relevance (MI)

b c d e f ] h i j
Configuration ID

C) 20 newsgroups
(c) group

b c d e f 9
Configuration ID

(d) REUTERS-100k

1.0

o °
o ©

Metric value (scaled)
=}
=

0.2

Rank Variation 3
Relevance (MI) °

b c d e f ] h i
Configuration ID

(e) CIFAR-10 (Three sources of evidence)

Figure 2. A comparison between the Rank Variation and Relevance metric (Mutual Information
estimation): For visualisation purposes, we normalise all four metrics using the max norm.
Individual latent feature significances in cases of of real corresponding evidence seem to be correlated
with the overall relevance measurements. In some cases of low quality evidence, inconsistencies in the
behaviour of the ranking variation on the individual latent feature level are observed, which mostly
represent swapping rankings between two or four features due to incremental reconstruction training.
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4. Conclusions

In this paper, we presented an interpretation of the effectiveness of an unsupervised deep learning
method called evidence transfer. The interoperability of manipulating latent representations according
to external categorical evidence using evidence transfer can be paralleled from an information
theoretic perspective as the information bottleneck method. We tested our hypothesis by performing
an empirical analysis over the relevance of the latent features and the ground truth labels of four
dataset tasks. From our experiments, we concluded that the overall relevance is increased when
evidence transfer is introduced with real corresponding evidence while remaining at the same levels
during a low quality of the evidence in the same manner as the metrics of clustering effectiveness.
Our experiments also lead us to the observation that, during the evidence transfer, latent features are
under the effect of a feature re-ranking as an outcome of increasing the relevance between features
and labels.

The results of these experiments can lead future work towards the optimisation of evidence
transfer. Information bottleneck and evidence transfer involve hyperparameters (8 and A, respectively);
these hyperparameters usually require trial and error techniques in order to optimise. Parameter
sweeping can be performed in order to find the optimal tradeoff between compression and transmitting
relevant information. In trial and error cases where the evaluation involves ground truth labels (such
as ACC, NM], or overall relevance), the optimisation might strain from the unsupervised setting
of evidence transfer. Alternatively, variations of feature ranking in the latent representations may
prove useful during the optimisation of evidence transfer, especially in cases of low quality evidence.
Additionally, relevance metric using the evidence sources (not the ground truth labels) can be tested
as an objective instead of the cross entropy term. Future work will investigate whether the studied
hypothesis of this paper is also the case for evidence that represents nonlinear relations between
themselves and the primary dataset.
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