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Abstract: In this Internet age, there are increasingly many threats to the security and safety of
users daily. One of such threats is malicious software otherwise known as malware (ransomware,
Trojans, viruses, etc.). The effect of this threat can lead to loss or malicious replacement of important
information (such as bank account details, etc.). Malware creators have been able to bypass traditional
methods of malware detection, which can be time-consuming and unreliable for unknown malware.
This motivates the need for intelligent ways to detect malware, especially new malware which have
not been evaluated or studied before. Machine learning provides an intelligent way to detect malware
and comprises two stages: feature extraction and classification. This study suggests an ensemble
learning-based method for malware detection. The base stage classification is done by a stacked
ensemble of fully-connected and one-dimensional convolutional neural networks (CNNs), whereas
the end-stage classification is done by a machine learning algorithm. For a meta-learner, we analyzed
and compared 15 machine learning classifiers. For comparison, five machine learning algorithms
were used: naïve Bayes, decision tree, random forest, gradient boosting, and AdaBoosting. The
results of experiments made on the Windows Portable Executable (PE) malware dataset are presented.
The best results were obtained by an ensemble of seven neural networks and the ExtraTrees classifier
as a final-stage classifier.

Keywords: malware detection; deep learning; ensemble learning; stacking

1. Introduction

The popularity of the Internet has been skyrocketing since its invention. A report from
the International Telecommunication Union (ITU) indicates that 51.2% of the population
of the world, or 3.9 billion people, were using the Internet as of the close of 2018 [1]. The
more popular the Internet becomes, the more vulnerable Internet users are because of
cybercriminals who employ various methods to attack or damage computers, servers,
clients, or computer networks for their financial or political benefit. One of the methods
employed by cybercriminals is the use of malicious software, otherwise known as malware,
to exploit a system’s vulnerabilities and to affect the user or device. Malware is any software
purposely designed to inflict harm to a computer system—a server, a client, or a computer
network—for personal benefits. Malware can be classified based on how it multiplies or
its particular action. The various types of malware include viruses, worms, Trojan horses,
adware, spyware, rootkits, bots, ransomware, etc. [2–4].

Malevolent cyberattacks may cause considerable losses, whether they arise from
a single person, an organization, or a hostile state. As colluded attacks on computer
networks become more common, the development of systems that can recognize illegal
attempts to infiltrate a secure network, i.e., intrusion detection systems (IDS), has become
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more prominent. IDS commonly have a limitation expressed as an ineptitude to identify
a cyberattack that is hidden in a sequence of legal network connections. Cybercrime
and related illegal activities over the Internet have become a criminal business model.
Threats such as phishing [5], spyware and malware, trojans, worms, and even intrusions
need sophisticated instrumentation of a multitude of hacked machines, also known as
botnets. The landscape of internet crimes has become automated, which has made the use
of nonhuman agents such as botnets, hijacked Internet of Things (IoT) devices [6], and
compromised wireless sensor networks (WSNs) [7] more common.

Malware fall in the category of the major threats facing today’s Internet users (business
owners, corporate organizations, hospitals, etc.), and as the deployment of new malware
increases, so does the advancement of anti-malware techniques. When malware finds
its way into a computer, it transforms into executable code, scripts, and active content.
Malware can cause various forms of damage to a computer. It can cause a computer to
slow down or even crash. One can also notice a decrease in disk space, increased Internet
activity, unexpected annoying pop-up ads, unwanted browser extensions, toolbars, etc.
Malware can be used to gain access to personal information from people (Internet users),
such as bank information, passwords, etc. Ransomware is a type of malware that can cause
users to be locked out of their systems and then force them to pay ransoms (commonly
in the form of an untraceable cryptocurrency) before they can get them back. Systems,
which aim at fighting malware, are continually being built to ensure that cyberspace is safer
from malware attacks [8,9]. Malware detection is the process of ascertaining the presence
of malware on a system or determining whether a program is malicious or harmless so
that the system can be protected or recovered from any effects caused by the malicious
code [10]. Various malware detection methods exist today. The signature-based detection
method is typically adopted in many anti-malware tools to detect threats, but malware
developers continuously create new methods to evade detection.

As the number of legitimate users of the Internet increases, so do the opportunities for
cybercriminals to gain from manufacturing malware. Anti-malware software is used for
the protection of Internet users from malware attacks, and they adopt the signature-based
method to detect known threats. This method analyses strings from binary code. It is
generally referred to as time-consuming, and it also does not respond to new malware
threats because malware writers can evade this method. The heuristic-based method was
adopted and became a very important method of malware detection. However, it is also
time-consuming and error-prone. Malware creators have devised malicious codes that can
bypass these traditional methods of malware analysis detection, giving rise to the need for
intelligent methods of malware analysis and automatic detection of malware [11–14].

In practice, for the detection of unknown computer viruses, the traditional approach
to malware detection based on signature analysis [15] is not acceptable. Users are forced
to update antivirus databases constantly and promptly to maintain the correct level of
protection. Nevertheless, the delay in the response of antivirus companies to the advent
of new malware can last several days. New malicious programs can produce irreparable
damage during this time. Heuristic algorithms specifically developed to detect unknown
malware are characterized by high first- and second-type error rates. Modern information
technology research aims to develop certain methods and algorithms of defense that would
be able to detect and neutralize unknown malware. This not only improves security but also
keeps the user from frequent antivirus software upgrades. The creation of artificial neural
network (ANN)-related technology [16,17] and hybrid methods [18–21] is a prerequisite
for developing successful antivirus systems. The ability of such systems to learn and
generalize allows intelligent information protection systems to be developed.

Malware recognition is an active area of research with many open research problems.
To face these problems, it is important to propose novel deep-learning frameworks and
validate them on new malware datasets. The use of ensemble methods such as random
forests has previously facilitated the output of machine learning models to enhance mal-
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ware detection in Internet of Things (IoT) environments [6]. The goal of this research was
to deploy an ensemble of deep neural networks for malware detection and classification.

The main contribution of this article is as follows:

(1). A hybrid ensemble learning framework consisting of fully connected and convolu-
tional neural networks (CNNs) with the ExtraTrees classifier as a meta-learner for
malware recognition.

(2). A comprehensive study of the performance of classifiers for selecting the components
of the framework.

This paper is organized as follows. Previous works, including an adequate criticism of
existing methods and approaches, are discussed in Section 2. The methodology employed
in this article is described in Section 3. Implementation of the methodology and the results
achieved are discussed in Section 4. The conclusions of this article are given in Section 5.

2. Related Works

This section contains a review of articles, journals, and conference proceedings on
different approaches, insights, and techniques used for detecting and classifying malware.
The merits and demerits of these approaches are also mentioned during the discussion. In
the work of Bazrafshan et al. [22], three methods for detecting malware were considered—
namely, signature-based, behavior-based, and heuristic-based. The study did not consider
machine learning methods or dynamic and hybrid methods for the detection of malware.
Souri et al. [13] did a similar study in which two of the three methods employed in [22] were
considered. The study also did not consider data mining or machine learning approaches
used for detecting and classifying malware. Rathore et al. [23] worked on detecting
malware using different machine learning algorithms and deep learning models. They also
involved certain practices in building these models, such as solving the class imbalance
issue, cross-validation, etc. They applied supervised learning and unsupervised learning
for malware classification using machine instruction (opcode) frequency as a feature vector.
Feature reduction methods such as a single layer auto-encoder and a 3-layer stacked auto-
encoder were used for dimensionality reduction. Then, the recognition was performed
using deep neural network (DNN) and random forest (RF). Based on their results, the RF
algorithm did a lot better than the DNN models. These results indicated that deep learning
may not perform well for malware detection [24].

Ye et al. [12] provided an overview of data mining techniques for detecting malware.
They considered the process of detecting malware using intelligent methods from two
perspectives: extraction of features and clustering or classification. The study concluded
that data mining-based malware detection frameworks may be employed to achieve high
accuracy in malware detection with a low number of false positives. Based on their
findings, the performance of the malware detection approaches did not only depend on
the classification algorithms used but also on the features extracted. They also suggested
that a set of classifiers could enhance the accuracy of detection, as opposed to individual
classifiers, and a balanced distribution of harmful and benign files for training is required.
These data mining techniques have proven to be successful in the anti-malware industry,
but they are not void of challenges. Some of the challenges are: the manual inspection
of files that could be malicious can take a lot of time; because malware samples are
created each day, new malware samples should be used in training sets to ensure that the
classifier remains efficient; with this approach, malware attackers can implement ways to
wrongly train the classifiers; and there is also not enough research on predicting malware
prevalence [9].

Another type of malware detection is behavioral malware detection, which detects
the way the malware behaves and can also bypass obfuscation techniques. This involves
confusing the malware analyst by encrypting and decrypting the malicious code. Observa-
tion of the behavior of the malicious file requires an emulated environment to be set up.
Setting up an emulated environment can be time-consuming, and although it is safe, the
malicious file might only be triggered by processes or events. Pluskal [25] used a dataset
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that contained behavioral features provided by AVG Company. According to the author,
improvement of the binary classifier may be achieved by an efficient feature representation
using support vector machines (SVM) for training the classifier on large-scale datasets.
The author also successfully created a linear classifier that, on every operating point, had
a better true positive rate than the current AVG linear classifier at the time. Cakir and
Dogdu [26] used a feature extraction method (Word2Vec)—which is deep learning-based—
to represent malware depending on its opcodes and a gradient boosting machine classifier
and achieved 96% accuracy with limited sample data.

Deep learning is a kind of machine learning. Deep learning is generally time-consuming,
but it has proven to be more efficient in malware detection. Known malware analysis
methods based on deep learning include CNN [27], deep belief network (DBN) [28], graph
convolutional network (GCN) [29], long short-term memory (LSTM), gated recurrent unit
(GRU) [30], and VGG16 [31]. For example, Lee et al. [24] discussed how to use deep
learning to analyze malware. For this process, data must be extracted, developed, and
network models trained. Additionally, compared to existing classification and analysis,
difficult and complex features can be automatically extracted from simple malware data
characteristics. Deep learning models that can classify and detect harmful codes more
accurately and efficiently are required [28]. Besides, depending on the dataset, the accuracy
of the studies may depend on the amount of data [12]. Ren et al. [27] proposed two deep
learning models, DexCNN and DexCRNN, to recognize benign and malicious Android
application packages (APKs). The experiments showed that DexCNN and DexCRNN
achieved 93.4% and 95.8% detection accuracy, respectively. Yuxin and Siyi [28] used DBNs
as an autoencoder to extract features from executables. They compared the performance
of DBNs with baseline malware detection models (SVM, decision trees, and the k-nearest
neighbors algorithm) as classifiers, demonstrating that the DBN model achieved better
performance in malware recognition. Pei et al. [29] proposed a deep learning framework to
learn embedding representations for Android malware detection, which included graph
convolutional networks (GCNs) to learn semantic and sequential patterns, and an inde-
pendently recurrent neural network (IndRNN) to learn deep semantic information and
extract context-dependent features for malware recognition. Čeponis and Goranin [30]
suggested using dual-flow deep learning methods—such as a long short-term memory
fully convolutional network (LSTM-FCN) and a gated recurrent unit (GRU)-FCN for mal-
ware recognition—and performed experiments on the Windows OS calls traces dataset
(AWSCTD) but achieved best results with conventional one-dimension single flow CNN.

However, the generalization capabilities of ANN-based models [32] cannot be as-
sured. More generic and stable approaches are therefore required to solve these problems.
Researchers are developing ensemble classifiers [33–37] that are less vulnerable to the limi-
tations of malware datasets. Ensemble methods [38,39] combine multiple machine learning
algorithms to improve final prediction accuracy while minimizing the risk of overfitting in
the training outcomes so that the training dataset can be used more efficiently and, as a
consequence, higher generalization can be attained. There is still room for researchers to
improve the accuracy of classification, although several models of ensemble classification
are already developed that would be useful for enhancing malware recognition.

Thus, this article suggests an ensemble learning-based framework that uses fully
connected ANNs and CNNs as first-stage learners, combined with a final-stage machine
learning method for malware recognition.

3. Materials and Methods

The focus of malware developers is to attack computer networks and systems to loot
data, make financial demands, or just to prove their skill. The traditional methods for
malware detection have been succeeding at detecting known malware. However, new
malware cannot be deterred by these methods. The detection capabilities of models used
for malware detection have been greatly improved by the current machine learning tech-
nology [40]. The detection of malware using machine learning methods can be achieved in
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two stages—namely, the extraction of features from the input data and selecting the impor-
tant ones (which represent the data better) and the classification. The proposed system is
based on machine learning and deep learning methods, which can learn and differentiate
malicious and benign files and also provide accurate predictions of new malware.

The stages involved in arriving at the final solution comprise of the following: data
collection, dimensionality reduction, model building, model testing, and model evaluation.
Figure 1 represents the flow of the stages involved in the system methodology, starting
with data collection to the model evaluation stage, which is explained in more detail in the
following subsections.
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3.1. Dataset

The collection of a representative dataset is very important for machine learning to
achieve success. This is because a machine learning model has to be trained on a dataset
that accurately depicts the conditions for real-world applications of the model. For this
model, we used a dataset that contained malicious and benign program data from Windows
Portable Executable (PE) files, obtained from Kaggle. The dataset had 19,611 malicious
samples obtained from various malware repositories including VirusShare, and benign
samples. The dataset originally had 77 features, which included the following:

• NumberOfSections: this refers to the size of the section table, which directly succeeds
the headers. This feature is different in both malware and non-malware files.

• MajorLinkerVersion: this is a field in the optional header, and it is the linker major
version number.

• AddressOfEntryPoint: this is also a field in the optional header. It is the entry point
address. This address is related to the image base obtained as the Portable Executable
(PE) file is loaded into memory. It is the starting address for program images, and it is
the initialization function address for device drivers. For dynamic-link library (DLL),
an entry point is not required. The field is null when there is no entry point.

• ImageBase: this represents the address of the first byte of the image when it loaded
into memory. This is usually a multiple of 64K.



Informatics 2021, 8, 10 6 of 20

• MajorOperatingSystemVersion: a number used to identify the version of the
operating system.

• MajorImageVersion: a number used to identify the version of the image. Many benign
files have more versions and most malicious files have this feature with a value of zero.

• CheckSum: 90% of the time, when the CheckSum, MajorImageVersion, and DLLChar-
acteristics of a file are equal to zero, the file is found to be malicious.

• SizeOfImage: this refers to the image size as it is loaded in memory.

The discussed features, along with the class label (0 for benign and 1 for malicious),
were used to create the classification model.

3.2. Dimensionality Reduction

Machine learning techniques are applied widely to address a range of prediction
and classification problems. Poor performance in machine learning can be caused by
overfitting or underfitting the data. Removing the unimportant features ensures the
optimum performance of the algorithms and increases the speed. To perform feature
dimensionality reduction, principal component analysis (PCA) was applied. Based on
previous research, 55 features (representing 95% of variability) were selected to be passed
into the machine learning model because the features were proven to be relevant in learning
whether a file was malicious or benign.

3.3. Baseline Machine Learning Models

The study employed five machine learning algorithms—namely: random forest, naïve
Bayes, AdaBoost, decision tree, and gradient boosting. A brief description of the algorithms
is presented below.

A Gaussian naïve Bayes (NB) model [41] is premised on probability and likelihood.
The algorithm is stable, fast, and simple. NB is built based on Bayes’ theorem, which is
premised on the strong assumption of conditional independence. The assumption is that
every feature in a particular class is independent of all other features in that same class.
The model is useful when working with very large datasets, and it is easy to build. It can
also perform better than other classification algorithms.

The NB algorithm performs well with categorical input variables but performs less
well with numerical values and in multi-class classification /prediction. Additionally, the
assumption of independence feature upon which the algorithm is based may not always
be true.

The decision tree (DT) algorithm [42] performs well for continuous as well as cate-
gorical variables. DT classifiers learn to make predictions on the test data by following a
tree-like model (created using the training dataset) that resembles a flow chart, based on
the features passed into it. Each of the tree’s internal nodes correlates with an attribute,
and every leaf node correlates with a class label. In a DT, the best feature of the dataset is
positioned at the root of the tree, while the training dataset is divided into subsets. These
two steps are then repeated on every subset until there are no further divisions possible. It
is a simple algorithm that can work well with large datasets.

Random forest (RF) [43] is a classification algorithm that consists of multiple decision
trees that make predictions based on the mean probabilistic prediction of each tree. It
is similar to decision trees and it reduces the problem of overfitting, which is a problem
associated with the DT algorithm. But it is not easy to interpret, unlike a decision tree. It
uses randomness when constructing each DT to create a forest of different trees.

Boosting is a method of making strong learners out of weak learners by combining
weak classifiers into one strong classifier. AdaBoost or adaptive boosting [44] is a machine
learning classification algorithm that is based on the idea of iteratively making weak
learners learn a bigger part of the examples in the training data that are difficult to classify
by giving more weight (paying more attention) to examples that are often misclassified.
The weak learners consist of DTs with one split, which are called decision stumps.
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The gradient boosting (GB) algorithm [45] creates a model as a result of the combi-
nation of weaker models. The idea behind gradient boosting is to repeatedly minimize
the loss function until the minimum test loss is reached. The steps involved in GB include
the following:

i. Model the data with simple models and examine the data for errors.
ii. The errors connote data points that are not easy to fit by a simple model.
iii. For subsequent models, the focus is placed on improving the accuracy of classifica-

tion on data that are hard to fit.
iv. Finally, all the predictors are combined by giving each predictor some weights.

3.4. Deep Learning Models
3.4.1. Multilayer Perceptron

Let the output of a simple multilayer perceptron (MLP) be known as y at the input X =
(x1, x2, . . . , xn) To find model parameters w = (w0, w1, . . . wm) and Vk = (V1k, V2k, . . . Vnk),
hk, k = 1, m such that the model output F(X, V, w) would match closely the real value of y.
The relationship between the input and output of an MLP is established by:

Zk = σ(V1kx1 + V2kx2 + . . . Vnkxn − hk), k = 1, m (1)

y = σ(w1Z1 + w2Z2 + . . . wmZm + w0) (2)

A perceptron with one hidden layer can approximate any continuous function defined
on a bounded set as follows:

m

∑
k=1

wk · σ(V1kx1 + V2kx2 + . . . Vnkxn − hk) + w0 (3)

The training of MLP is performed by applying a gradient descent algorithm (such as
error backpropagation).

3.4.2. One-Dimensional (1D) CNN Model

Although the CNN models were primarily designed for image processing, where
the model learns an internal representation of a two-dimensional input (2D), the same
mechanism can be used for feature learning on 1D data series, such as in the case of
malware recognition. The model learns how to derive features from observation sequences
and how to map hidden layers to various software types (malicious or benign).

The convolutional layer is the main block of the CNN. The parameters of this layer
are a set of trainable filters (scan windows). Each filter works over a small window in
size. During forward propagation (from the first layer to the last), the scanning window
sequentially traverses the entire image following the tiling principle and calculates dot
products of two vectors: the filter values and the outputs of the selected neurons. After
passing all the shifts in the width and height of the input volume, a 2D activation map is
created, which applies a specific filter in each spatial region. The network uses filters that
are activated when on some type of input signal. Each convolutional layer uses a set of
filters, and each creates a separate activation map.

Another element of a CNN is the down-sampling or subsampling layer. Usually, it is
placed between successive layers of convolution so it can occur periodically. Its function
is to gradually decrease the spatial size of the vector in order to decrease the number of
computations in the network, as well as to balance overfitting. The convolution layer
resizes the feature map, most often using the max pooling operation. The flattening layer
is used if the output from the previous layer is to be transmitted to the fully-connected
(FC) layer, then it needs to be flattened. The parametric rectified linear unit (PReLU)
layer is a neuron activation function that supplements the rectified unit with a slope for
negative values.
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To regularize the network, the dropout layer is used. It also allows for the network
size to be thinner. The neurons that are less likely to boost learning and classification
weights are randomly dropped. As there are two classes, this dropout layer is followed by
a completely connected (dense) layer that will reduce the output to two classes, and we
expect to forecast the actions of the program as either malicious or benevolent. Softmax,
which reduces the two outputs to one is the final activation function.

3.5. Ensemble Learning

The theory of ensemble methods is that training data are analyzed in multiple ways,
and an ensemble of first-stage classifiers is constructed. After that, by integrating the
decisions of all those first-stage classifiers, a new ensemble classifier is created using the
stacked ensemble approach where a final-stage model learns how to best combine the
predictions from multiple first-stage models. We use a stacking approach [46] that has two
stages (see Figure 2). First, first-staged on a dataset, multiple models are trained. To create
a new dataset, the prediction of each of the first-stage models is then stored. Each instance
in the current dataset is connected to the actual value it is expected to estimate. Second, to
derive the final prediction, the dataset is used with the meta-learning algorithm.
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Base models (also referred to as first-stage models) and a meta-learner (or, final-stage
classifier) that incorporates base model predictions make up a stacking model. Different
first-stage models are trained on the training data. Next, the final-stage model is trained on
the training dataset and the outputs of the first-stage models to combine the base model
predictions using previously unused data.

The ensemble learner algorithm consists of three phases:

1. Create the ensemble

• Select different base classifiers.
• Select a final-stage classifier.

2. Train the ensemble

• Train each of the first-stage classifiers on the training dataset.
• Perform k-fold cross-validation on each of the first-stage classifiers and record

their decisions.
• Combine the decisions from the first-stage classifiers to form a N × LN × L

feature matrix:

n{[p1] · · · [pL][y]→ n{
L︷︸︸︷
[Z] [y]

, (4)

• Train the final-stage classifier on the new (features x predictions) data. Then the
ensemble model combines the first-stage learning models and the final-stage
model, to get more accurate predictions on unknown data.
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3. Test on new data.

• Store output predictions from the first-stage classifiers.
• Input first-stage classifier decisions into a final-stage classifier to make a final

ensemble prediction.

The algorithm of ensemble learning is summarized as an algorithm in Algorithm 1.
Stacking improves over any single best learner on the training dataset. When first-stage
classifiers used for stacking have variable and uncorrelated outputs, the largest gains in
performance are typically made.

Algorithm 1. Pseudocode of the ensemble learning algorithm.
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As first-stage classifiers, we used fully connected one hidden layer MLPs (Dense-1),
fully connected two hidden layer MLPs (Dense-2), and one-dimensional CNNs (1D-CNN).
The configurations of neural networks are given in Table 1. The instances of ANN model
architectures are shown in Figure 3a–c.

Table 1. Model configuration of neural network with their parameters.

Dense-1 Dense-2 1D-CNN 1

A—number of neurons in 1st hidden
layer

A—number of neurons in 1st hidden layer
B—number of neurons in 2nd hidden layer

F—number of filters in convolutional layers
N—number of neurons in the dense layer

Input layer of 55 × 1 features
1 FC layer (A neurons) 1 FC layer (A neurons) 2 Conv1D layers (F 2 × 2 filters)

PReLU 2 PReLU Max-pooling layer
Dropout layer (p = 0.3) Dropout layer (p = 0.3) 2 Conv1D layers (F 2 × 2 filters)
1 FC layer (N neurons) 1 FC layer (A neurons) Max-pooling layer

Softmax output layer

PReLU 1 FC layer (N neurons)
Dropout layer (p = 0.3) Dropout layer (p = 0.5)
1 FC layer (B neurons) 1 FC layer (2 neurons)
Softmax output layer Softmax output layer

1 1D-CNN—one-dimensional convolutional neural network. 2 PReLU—parametric rectified linear unit.

As final-stage classifiers, we analyzed decision tree (DT), support vector machine
(SVM) with linear and radial basis function (RBF) kernels, random forest (RF), k-nearest
neighbors (KNN), multilayer perceptron (MLP), AdaBoost classifier, ExtraTrees (ET) classi-
fier, isolation forest (IF), Gaussian naïve Bayes (NB), linear discriminant analysis (LDA),
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quadratic discriminant analysis (QDA), logistic regression (LR), passive-aggressive classi-
fier (PAC), ridge classifier (RC), and stochastic gradient descent (SGD) classifiers.
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layer, (b) Dense-2 network architecture with 20 neurons in a first hidden layer and 10 neurons in a second hidden layer,
(c) 1D-CNN network architecture with 20 filters in the convolutional layers, and 30 neurons in the final fully connected layer.

K-nearest neighbors (KNN) classifies unseen input data based on the known input
data that are most similar (close) to it. Support vector machine (SVM) is a supervised
learning technique that creates a hyperplane in a higher dimension to separate input data
belonging to different classes while maximizing the distance of input data to the hyperplane.
The ExtraTrees classifier (ET) [47] constructs a meta estimator that fits several decision trees
on sub-samples of the training dataset and employs averaging to increase accuracy and
manage over-fitting. Linear discriminant analysis (LDA) aims to find a linear combination
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of input features that separates two or more classes of input data. Quadratic discriminant
analysis (QDA) uses a quadratic decision surface to separate two or more classes of input
data. Logistic regression (LR) is a statistical method similar to linear regression that predicts
an outcome for a binary output variable from input variables. Passive-aggressive classifier
(PAC) [48] is one of the incremental learning algorithms that adjusts its weight vector for
each misclassified training sample it receives, trying to get it correct. Ridge classifier (RC)
converts the label data into [−1, 1] and solves the problem with the regression method.
The highest value in prediction is accepted as a target class. Stochastic gradient descent
(SGD) classifier is a SGD learning algorithm that finds the decision boundary with hinge
loss similar to a linear SVM.

3.6. Evaluation

The performance of the proposed model was evaluated using leave-one-out cross-
validation (LOOCV) with 10-fold cross-validation. The true labels were matched against
the predicted labels and recall, precision, accuracy, error rate, F-score, and Matthews
correlation coefficient (MCC) values were calculated as given in Table 2 (we assumed a
binary classification problem):

According to the F1-score, we chose the best model instead of testing the model with
accuracy alone. This was since, in datasets where a significant class imbalance occurs,
accuracy can be a misleading metric. For example, for all predictions, a model will correctly
predict the value of the majority class and achieve a high classification performance while
making errors in the minority and main classes. This form of conduct is penalized by the
F1-score by measuring the metrics for each label and finding its unweighted average.

We also considered Area Under Curve (AUC) as a measure of the quality of bi-
nary classification that is considered as a balanced metric that can be used for highly
imbalanced datasets.

The Cohen’s kappa is calculated by:

k = 1− 1− p0

1− pe
(5)

where p0 is the ratio of correct agreement, and pe is the ratio of agreement that is predicted
by random choice.

Apart from this, the performance of the proposed model on a binary dataset is repre-
sented using the confusion matrix as follows:

CM ≡ [

m11 m12 . . . m1C
m21 m22 . . . m2C

...
...

. . .
...

mC1 mC2 . . . mCC

], (6)

Here, mij represents the number of elements belonging to the i-th class (θi) but that
are classified as members of the j-th class (θj).

The random guess classifier and the zero rule classifier were adopted as baseline
classifiers. In the dataset, the zero rule classifier returned the majority class only. The
accuracy of a random guess classifier is calculated as follows:

RGacc =
∑c

i=1 pini

∑ ni
(7)

where pi is the probability of the i-th class, and ni is the number of samples of class i.
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Table 2. Summary of performance measures calculated using true positive (TP), false positive (FP),
true negative (TN), and false-negative (FN) values.

Performance Measure Calculation

False Positive Rate (FPR) (also specificity) FPR = ∑m
i=1[a(xi)=+1][yi=−1]

∑m
i=1[yi=−1]

True Positive Rate (TPR) (also sensitivity and
recall) TPR = ∑m

i=1[a(xi)=+1][yi=+1]
∑m

i=1[yi=+1]

False Negative Rate (FNR) FNR = ∑m
i=1[a(xi)=−1][yi=+1]

∑m
i=1[yi=+1]

True Negative Rate (TNR) TNR = ∑m
i=1[a(xi)=−1][yi=−1]

∑m
i=1[yi=−1]

Precision Precision = TPR
TPR+FPR

F-score F− score = 2 Precision×Recall
Precision+Recall

Accuracy Accuracy = ∑
p
i Ni
T

Matthews Correlation Coefficient (MCC) MCC = TP·TN−FP·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Here, Ni is the sum of correctly classified data samples, T is the total number of data samples, a(x) is classifier
with inputs Xm =

(
x1, . . . , xm

)
, and

(
y1, . . . , ym

)
are the outputs.

For statistical analysis, we used the performance results obtained from each fold of the
10-fold cross-validation. To compare the results and evaluate their statistical significance,
we used the Friedman test and post hoc Nemenyi test. First, all methods were ranked
based on some selected performance measures (we used accuracy, AUC, and F1-score).
Then, the mean ranks of each method were calculated. The difference between method
performance was considered as not significant if the difference between mean ranks of the
methods was smaller than the critical difference derived from the Nemenyi test.

4. Results
4.1. Ssettings of Experiments

The classifiers were trained using the features extracted from the dataset using
Python’s Scikit-learn. All experiments were executed on a laptop computer with 64-bit
Windows 10 OS with Intel Core i5-8265U CPU 1.80 GHz with 8GB RAM.

4.2. Results of Machine Learning Methods

The results achieved from using baseline machine learning methods are presented in
Table 3, while their confusion matrices are given in Figure 4. The best results were the false
positive and false negative rates of 2.13% and 0.31%, respectively, obtained by the RF model.
The accuracy of 99.24% and F1 score of 0.98 indicate that RF classified instances of each of
the two classes quite well. For comparison, the accuracy of the random guess classifier on
this dataset was 61.9%, whereas the accuracy of the zero rule classifier was 74.4%.

Table 3. Summary of results of machine learning models.

Performance
Measure Naïve Bayes Decision

Trees
Random

Forest AdaBoost Gradient
Boosting

Accuracy 32.53% 98.29% 99.24% 98.06% 98.06%
Error 67.47% 1.71% 0.76% 1.94% 1.94%
FPR 99.52 5.36% 2.13% 5.26% 6.58%
TPR 8.14% 99.52% 99.69% 98.77% 99.63%
FNR 91.86% 0.48% 0.31% 1.23% 0.37%
TNR 0.48% 94.64% 97.87% 94.74% 93.42%

Precision 0.28 0.99 0.99 0.96 0.99
Recall 0.99 0.95 0.98 0.95 0.93

F-measure 0.44 0.97 0.98 0.96 0.96
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4.3. Results of Neural Network Models

To select the first-stage classifiers, first, we performed an ablation study to find the
best Dense-1, Dense-2, and 1D-CNN models considering their performance for different
settings of their hyperparameters. Note that in all experiments we used sparse categorical
cross-entropy loss and Adam optimizer. Eighty percent of the data was used for training
and 20% for testing. The results are shown in Tables 4–6. We trained Dense-1 and Dense-2
models for 200 epochs, while the 1D-CNN models were trained for 50 epochs.

Table 4. Deep learning results with a different number of neurons in the hidden layer of the Dense-1 model. Best results are
given in bold.

No. of Neurons in 1st Layer Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

5 0.968 0.968 0.968 0.968 0.068 0.02 0.968 0.956 0.915 0.915
10 0.97 0.97 0.97 0.97 0.065 0.018 0.97 0.959 0.921 0.921
15 0.978 0.978 0.978 0.978 0.054 0.011 0.978 0.967 0.942 0.942
20 0.98 0.98 0.98 0.98 0.054 0.009 0.98 0.968 0.945 0.945
25 0.978 0.978 0.978 0.978 0.056 0.011 0.978 0.967 0.941 0.941
30 0.979 0.979 0.979 0.979 0.051 0.011 0.979 0.969 0.944 0.944
35 0.981 0.981 0.981 0.981 0.053 0.008 0.981 0.969 0.948 0.948
40 0.98 0.98 0.98 0.98 0.047 0.011 0.98 0.971 0.946 0.946
45 0.98 0.98 0.98 0.98 0.047 0.011 0.98 0.971 0.947 0.946
50 0.983 0.983 0.983 0.983 0.043 0.009 0.983 0.974 0.953 0.953

Acc—Accuracy. Prec—Precision. Rec—Recall. Spec—Specificity. F1—F1-score. AUC—Area Under Curve.
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Table 5. Deep learning results with a different number of neurons in the hidden layers of the Dense-2 model. Best results
are given in bold.

No. of Neurons in 1st
Layer

No. of Neurons in 2nd
Layer Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

10 10 0.977 0.977 0.977 0.977 0.048 0.014 0.977 0.969 0.939 0.939
10 20 0.979 0.979 0.979 0.979 0.052 0.011 0.979 0.968 0.943 0.943
10 30 0.979 0.979 0.979 0.979 0.057 0.008 0.979 0.967 0.944 0.944
10 40 0.979 0.979 0.979 0.979 0.059 0.008 0.979 0.967 0.944 0.943
10 50 0.982 0.982 0.982 0.982 0.048 0.008 0.982 0.972 0.952 0.952
20 10 0.980 0.980 0.980 0.980 0.052 0.010 0.980 0.969 0.945 0.945
20 20 0.980 0.980 0.980 0.980 0.049 0.010 0.980 0.970 0.946 0.946
20 30 0.984 0.984 0.984 0.984 0.041 0.007 0.984 0.976 0.957 0.957
20 40 0.983 0.983 0.983 0.983 0.042 0.009 0.983 0.974 0.953 0.953
20 50 0.984 0.984 0.984 0.984 0.046 0.006 0.984 0.974 0.957 0.957
30 10 0.981 0.981 0.981 0.981 0.043 0.011 0.981 0.973 0.950 0.950
30 20 0.983 0.983 0.983 0.983 0.047 0.007 0.983 0.973 0.955 0.955
30 30 0.983 0.983 0.983 0.983 0.045 0.007 0.983 0.974 0.955 0.955
30 40 0.982 0.982 0.982 0.982 0.051 0.006 0.982 0.971 0.953 0.952
30 50 0.983 0.983 0.983 0.983 0.042 0.008 0.983 0.975 0.955 0.955
40 10 0.983 0.983 0.983 0.983 0.040 0.010 0.983 0.975 0.953 0.953
40 20 0.984 0.984 0.984 0.984 0.038 0.008 0.984 0.977 0.958 0.958
40 30 0.983 0.983 0.983 0.983 0.050 0.006 0.983 0.972 0.953 0.953
40 40 0.988 0.988 0.988 0.988 0.036 0.005 0.988 0.980 0.966 0.966
40 50 0.987 0.987 0.987 0.987 0.040 0.004 0.987 0.978 0.964 0.964
50 10 0.984 0.984 0.984 0.984 0.044 0.006 0.984 0.975 0.957 0.957
50 20 0.983 0.983 0.983 0.983 0.047 0.007 0.983 0.973 0.953 0.953
50 30 0.985 0.985 0.985 0.985 0.042 0.005 0.985 0.976 0.961 0.961
50 40 0.986 0.986 0.986 0.986 0.036 0.007 0.986 0.979 0.962 0.962
50 50 0.984 0.984 0.984 0.984 0.044 0.006 0.984 0.975 0.958 0.958

Table 6. Deep learning results with a different number of filters in convolutional layers and neurons in the final fully-
connected layer of the 1D-CNN model. Best results are given in bold.

No. of Filters No. of Neurons Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

20 20 0.970 0.970 0.970 0.970 0.063 0.019 0.970 0.959 0.920 0.920
20 40 0.973 0.973 0.973 0.973 0.051 0.018 0.973 0.965 0.929 0.929
20 60 0.977 0.977 0.977 0.977 0.054 0.012 0.977 0.967 0.939 0.939
40 20 0.976 0.976 0.976 0.976 0.052 0.014 0.976 0.967 0.936 0.936
40 40 0.975 0.975 0.975 0.975 0.063 0.013 0.975 0.962 0.931 0.931
40 60 0.976 0.976 0.976 0.976 0.047 0.016 0.976 0.968 0.936 0.936
60 20 0.977 0.977 0.977 0.977 0.044 0.016 0.977 0.970 0.938 0.938
60 40 0.978 0.978 0.978 0.978 0.045 0.015 0.978 0.970 0.940 0.940
60 60 0.977 0.977 0.977 0.977 0.047 0.015 0.977 0.969 0.939 0.939

4.4. Results of Ensemble Classification

Based on the presented ablation study, we selected two Dense-1 (with 35 and 50 neurons)
models, two Dense-2 (with (40;40) and (40;50) neurons) models, and 3 1D-CNN ((20;60),
(60;40), (60;60)) models as first-stage classifiers based on their higher performance results.
We performed classification with several last-stage classifiers. For KNN, the number of
nearest neighbors was set to 3. For linear SVM, C was set to 0.025. For RBF SVM, the C
parameter was set to 1, and gamma was set to 2. For DT and RF, the max depth was set to
5. The results are given in Table 7. In all experiments, 10-fold cross-validation was used,
where the training fold was constructed by selecting 80% of samples, while 20% were used
for the testing fold.



Informatics 2021, 8, 10 15 of 20

Table 7. Average ensemble learning results from 10-fold cross-validation. Best values are shown in bold.

Metalearner Acc Prec Rec Spec FPR FNR F1 AUC MCC Kappa

Nearest
Neighbors 0.986 0.986 0.986 0.986 0.034 0.007 0.986 0.979 0.963 0.963

Linear SVM 0.979 0.979 0.979 0.979 0.056 0.009 0.979 0.967 0.944 0.943
RBF SVM 0.982 0.982 0.982 0.982 0.048 0.008 0.982 0.972 0.952 0.952
Decision

Tree 0.989 0.989 0.989 0.989 0.037 0.003 0.989 0.98 0.969 0.969

Random
Forest 0.984 0.984 0.984 0.984 0.044 0.007 0.984 0.975 0.957 0.957

Neural Net 0.979 0.979 0.979 0.979 0.059 0.009 0.979 0.966 0.942 0.942
AdaBoost 0.982 0.982 0.982 0.982 0.044 0.009 0.982 0.973 0.952 0.952
ExtraTrees 1 1 1 1 0 0 1 1 1 1

Naïve Bayes 0.972 0.972 0.972 0.972 0.044 0.023 0.972 0.967 0.926 0.925
LDA 0.98 0.98 0.98 0.98 0.05 0.009 0.98 0.97 0.947 0.947
QDA 0.973 0.973 0.973 0.973 0.037 0.024 0.973 0.969 0.928 0.928

Logistic 0.981 0.981 0.981 0.981 0.05 0.009 0.981 0.97 0.948 0.948
Passive 0.978 0.978 0.978 0.978 0.07 0.006 0.978 0.962 0.941 0.94
Ridge 0.981 0.981 0.981 0.981 0.05 0.009 0.981 0.97 0.948 0.948
SGDC 0.979 0.979 0.979 0.979 0.039 0.015 0.979 0.973 0.944 0.944

SVM—Support Vector Machine. RBF—Radial Basis Function. LDA—Linear Discriminant Analysis. QDA—Quadratic Discriminant
Analysis. SGDC—Stochastic Gradient Descent Classifier.

The results are also illustrated in Figures 5–7. Note that the ExtraTrees as a final-
stage classifier allowed achieving the best performance in terms of accuracy, F1-score, and
AUC metrics.
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4.5. Statistical Analysis

To analyze the results statistically, we adopted the nonparametric Friedman test
and post hoc Nemenyi test. The testing results are the critical difference (CD) diagrams
presented in Figures 8–10. If the difference between the mean ranks of the final-stage
classifiers was smaller than the CD, then it was not statistically significant. The results of the
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Nemenyi test again show that the ExtraTrees final-stage classifier allowed achieving the best
performance; however, DT and KNN classifiers presented statistically similar performance.

Informatics 2021, 8, x 18 of 22 
 

 

To analyze the results statistically, we adopted the nonparametric Friedman test and 
post hoc Nemenyi test. The testing results are the critical difference (CD) diagrams pre-
sented in  Figure 8 Figure 9 Figure 10. If the difference between the mean ranks of the 
final-stage classifiers was smaller than the CD, then it was not statistically significant. The 
results of the Nemenyi test again show that the ExtraTrees final-stage classifier allowed 
achieving the best performance; however, DT and KNN classifiers presented statistically 
similar performance. 

 
Figure 8. Comparison of mean ranks of final-stage classifiers based on their accuracy performance. 

 
Figure 9. Comparison of mean ranks of final-stage classifiers based on their AUC performance. 

 
Figure 10. Comparison of mean ranks of final-stage classifiers based on their F1-score performance. 

4.6. Comparison with Previous Work 
We compare the results of our experiments with some of the previous work on clas-

sifying benign and malware files in Table 8. Note that the methods applied on different 
malware datasets are compared. In the same dataset, the previous best result was 
achieved in [49] using XGBoost with an accuracy of 98.62%. 

Table 8. Comparisons of with other existing deep learning approaches. 

Reference Benign Malware Acc. Prec. Recall F-Score 

Yuan et al. (2016) [50] 880 880 96.76 96.78 96.76 96.76 

McLaughlin et al. (2017) [51] 863 1260 98 99 95 97 

Figure 8. Comparison of mean ranks of final-stage classifiers based on their accuracy performance.

Informatics 2021, 8, x 18 of 22 
 

 

To analyze the results statistically, we adopted the nonparametric Friedman test and 
post hoc Nemenyi test. The testing results are the critical difference (CD) diagrams pre-
sented in  Figure 8 Figure 9 Figure 10. If the difference between the mean ranks of the 
final-stage classifiers was smaller than the CD, then it was not statistically significant. The 
results of the Nemenyi test again show that the ExtraTrees final-stage classifier allowed 
achieving the best performance; however, DT and KNN classifiers presented statistically 
similar performance. 

 
Figure 8. Comparison of mean ranks of final-stage classifiers based on their accuracy performance. 

 
Figure 9. Comparison of mean ranks of final-stage classifiers based on their AUC performance. 

 
Figure 10. Comparison of mean ranks of final-stage classifiers based on their F1-score performance. 

4.6. Comparison with Previous Work 
We compare the results of our experiments with some of the previous work on clas-

sifying benign and malware files in Table 8. Note that the methods applied on different 
malware datasets are compared. In the same dataset, the previous best result was 
achieved in [49] using XGBoost with an accuracy of 98.62%. 

Table 8. Comparisons of with other existing deep learning approaches. 

Reference Benign Malware Acc. Prec. Recall F-Score 

Yuan et al. (2016) [50] 880 880 96.76 96.78 96.76 96.76 

McLaughlin et al. (2017) [51] 863 1260 98 99 95 97 

Figure 9. Comparison of mean ranks of final-stage classifiers based on their AUC performance.

Informatics 2021, 8, x 18 of 22 
 

 

To analyze the results statistically, we adopted the nonparametric Friedman test and 
post hoc Nemenyi test. The testing results are the critical difference (CD) diagrams pre-
sented in  Figure 8 Figure 9 Figure 10. If the difference between the mean ranks of the 
final-stage classifiers was smaller than the CD, then it was not statistically significant. The 
results of the Nemenyi test again show that the ExtraTrees final-stage classifier allowed 
achieving the best performance; however, DT and KNN classifiers presented statistically 
similar performance. 

 
Figure 8. Comparison of mean ranks of final-stage classifiers based on their accuracy performance. 

 
Figure 9. Comparison of mean ranks of final-stage classifiers based on their AUC performance. 

 
Figure 10. Comparison of mean ranks of final-stage classifiers based on their F1-score performance. 

4.6. Comparison with Previous Work 
We compare the results of our experiments with some of the previous work on clas-

sifying benign and malware files in Table 8. Note that the methods applied on different 
malware datasets are compared. In the same dataset, the previous best result was 
achieved in [49] using XGBoost with an accuracy of 98.62%. 

Table 8. Comparisons of with other existing deep learning approaches. 

Reference Benign Malware Acc. Prec. Recall F-Score 

Yuan et al. (2016) [50] 880 880 96.76 96.78 96.76 96.76 

McLaughlin et al. (2017) [51] 863 1260 98 99 95 97 

Figure 10. Comparison of mean ranks of final-stage classifiers based on their F1-score performance.

4.6. Comparison with Previous Work

We compare the results of our experiments with some of the previous work on
classifying benign and malware files in Table 8. Note that the methods applied on different
malware datasets are compared. In the same dataset, the previous best result was achieved
in [49] using XGBoost with an accuracy of 98.62%.

Table 8. Comparisons of with other existing deep learning approaches.

Reference Benign Malware Acc. Prec. Recall F-Score

Yuan et al. (2016) [50] 880 880 96.76 96.78 96.76 96.76
McLaughlin et al. (2017) [51] 863 1260 98 99 95 97

Karbab et al. (2017) [52] 37,627 20,089 N/A 96.29 96.29 96.29
Hou et al. (2016) [53] 1500 1500 93.68 93.96 93.36 93.68
Hou et al. (2017) [54] 2500 2500 96.66 96.55 96.76 96.66
Raff et al. (2018) [55] 1,000,020 1,011,766 96.41 n/a n/a 89.02

Krčál et al. (2018) [56] 20 mln. (total) 97.56 n/a n/a 90.71
Azmee et al. (2020) [49] 5012 14,599 98.6 96.3 99 n/a

This paper (2020) 5012 14,599 100.0 100.0 100.0 100.0
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5. Conclusions

There is a rise in demand for intelligent methods that recognize new malware cases
because the current methods are tedious and error-prone. This study explored various
machine learning classifiers and neural network models, which are artificial intelligence
methods that can be used for detecting malware. We proposed an ensemble learning-based
framework with neural networks used as first-stage classifiers and explored 15 machine
learning models as final-stage classifiers. Five different machine learning algorithms were
used for comparison as baseline models. We performed our experiments on a dataset
containing Windows Portable Executable (PE) malware and benign files. The results ob-
tained indicate that the ensemble of fully connected dense ANN and 1-D CNN models with
ExtraTrees as a final-stage classifier achieved the best accuracy value for the classification
process, outperforming other methods.

Most of the known malware recognition methods concentrate on featuring engineer-
ing techniques to improve detection accuracy; the advantage of our deep learning-based
approach is the end-to-end learning process without the need for manual feature engineer-
ing to achieve high malware recognition performance. Thus, ensemble learning techniques
can be adopted as intelligent techniques for malware detection and classification. However,
the proposed framework is limited to supervised learning, which required both benign
and malicious malware to be identified and labeled by experts. In the real-world setting,
some malicious code may not be identified and thus the neural network cannot be trained
on recognizing it. This raises the need for developing unsupervised ensemble learning
frameworks for malware recognition.

Future work will perform the study of explainable artificial intelligence (XAI) tech-
niques to interpret the results of deep learning models for malware recognition to provide
valuable insights for researchers in malware analysis. We also plan to conduct additional
experiments with larger datasets to validate the proposed framework.
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