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Abstract

:

With advances in science and technology and changes in industry, research on promising future technologies has emerged as important. Furthermore, with the advent of a ubiquitous and smart environment, governments and enterprises are required to predict future promising technologies on which new important core technologies will be developed. Therefore, this study aimed to establish science and technology development strategies and support business activities by predicting future promising technologies using big data and deep learning models. The names of the “TOP 10 Emerging Technologies” from 2018 to 2021 selected by the World Economic Forum were used as keywords. Next, patents collected from the United States Patent and Trademark Office and the Science Citation Index (SCI) papers collected from the Web of Science database were analyzed using a time-series forecast. For each technology, the number of patents and SCI papers in 2022, 2023 and 2024 were predicted using the long short-term memory model with the number of patents and SCI papers from 1980 to 2021 as input data. Promising technologies are determined based on the predicted number of patents and SCI papers for the next three years. Keywords characterizing future promising technologies are extracted by analyzing abstracts of patent data collected for each technology and the term frequency-inverse document frequency is measured for each patent abstract. The research results can help business managers make optimal decisions in the present situation and provide researchers with an understanding of the direction of technology development.
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1. Introduction


Owing to the development of science and technology and changes in industry, research on promising future technologies has become important. With the advent of a ubiquitous and smart environment, governments and enterprises are required to predict future promising technologies on which new important and core technologies will be developed [1]. Technology forecasting focuses on supporting business managers to make optimal decisions in the present situation and helps researchers understand the direction of technology development by predicting the future in detail through quantitative techniques. Through technological forecasting, it is possible to effectively link science and technology with economic development by forecasting the future situation and integrating economic needs and research opportunities. Technology forecasting is becoming an important tool to support the forecasting of industry and technological development [2]. As globalization accelerates and the industrial paradigm changes rapidly, technology forecasting for rapidly changing important technologies has emerged in response to the needs of the private and public sectors [3,4]. With quantitative analysis techniques being applied to technical forecasting [5,6], the reliability and validity of technical forecasting using papers and patents are increasing [7]. As patents and papers are representative data of technical information, these attempts of forecasting help solve the problem of subjective bias of experts [8,9]. In recent years, scholars have begun predicting technology based on the number of publications of papers and patents [10]. The common methods of technology forecasting through analysis of the number of papers and patents are regression, machine learning, and deep learning [11]. Deep learning has a more in-depth network structure than machine learning, which can significantly improve the prediction accuracy for the problems that require complex solutions [12]. Mudassir et al. [13] used a long short-term memory (LSTM) network for forecasting bitcoin price fluctuations. Cai et al. [14] forecasted wind power using a generalized regression neural network (GRNN) and showed that the deep learning approach has higher prediction accuracy. Gui and Xu [15] used a deep learning text classification model to extract relevant Science Citation Index (SCI) papers from the Web of Science database for the period 1996–2019 for topic classification and used Ensemble Empirical Mode Decomposition (EEMD) and LSTM neural networks to predict the future development of each research field. Zhou et al. [16] used a deep learning algorithm to predict emerging technologies in Gartner’s hype curve in 2017 based on patent data from 2000 to 2016. Lee et al. [17] devised a deep learning model based on meta-knowledge (i.e., text information including citations, abstracts, and area codes) for prediction of future growth potential.



This study aimed to establish science and technology development strategies and support business activities by predicting future promising technologies using big data and deep learning models. Herein, the promising technology names of the “TOP 10 Emerging Technologies” from 2018 to 2021 selected by the World Economic Forum (WEF) are used as keywords to analyze the patents collected from the United States Patent and Trademark Office (USPTO) and SCI papers collected from the Web of Science database by time-series forecast (TSF). For each technology, the number of patents and SCI papers in 2022, 2023 and 2024 are predicted using the LSTM model with the number of patents and SCI papers collected from 1980 to 2021 as input data. Promising technologies are determined based on the number of predicted patents and SCI papers for the next three years. This study has differences in previous works, in that big data are collected from the vast databases of the USPTO and the Web of Science and future promising technologies are derived based on it using a deep learning model. Furthermore, this study aimed to extract the keywords characterizing future promising technologies—this is achieved by calculating the term frequency-inverse document frequency (TF-IDF) of each word in a patent abstract by using the abstracts of patent data collected for each technology from the USPTO to compose the corpus.




2. Data and Methods


2.1. Data


In this study, the input dataset of LSTM was constructed using the number of patents collected from the USPTO registered between 1980 and 2021 for each technology and the number of SCI papers collected from the Web of Science database by keyword search for the promising technology names of the “TOP 10 Emerging Technologies” from 2018 to 2021 selected by the WEF, as shown in Table 1.



Table 2 shows the total number of patents collected from the USPTO between 1980 and 2021 for each technology and the total number of SCI papers collected from the Web of Science database for technology in Table 1. The input dataset of the LSTM model was created by composing the number of patents and SCI papers collected for technology and year as follows. To predict the number of patents for the next three years for each technology, vector       t ,    patent  _   num  t    ,     t + 1 ,    patent  _   num   t + 1     , ⋯ ,     t + 9 ,    patent  _   num   t + 9           with length   10   was constructed for year    t      t = 1980 ,   1981 ,   ⋯ ,   2012    .



To predict the number of SCI papers for the next three years for each technology, vector       t ,    paper  _   num  t    ,     t + 1 ,    paper  _   num   t + 1     , ⋯ ,     t + 9 ,    paper  _   num   t + 9           with length   10   was constructed for year    t      t = 1980 ,   1981 ,   ⋯ ,   2012    . The LSTM model was modeled to predict the number of patents for the next three years       t + 10 ,    patent  _   num   t + 10     ,     t + 11 ,    patent  _   num   t + 11     ,     t + 12 ,    patent  _   num   t + 12           for input data       t ,    patent  _   num  t    ,     t + 1 ,    patent  _   num   t + 1     , ⋯ ,     t + 9 ,    patent  _   num   t + 9           and the number of SCI papers for the next three years       t + 10 ,    paper  _   num   t + 10     ,     t + 11 ,    paper  _   num   t + 11     ,     t + 12 ,    paper  _   num   t + 12           for input data       t ,    paper  _   num  t    ,     t + 1 ,    paper  _   num   t + 1     , ⋯ ,     t + 9 ,    paper  _   num   t + 9          . An increase in the number of patents and SCI papers predicted for the next three years compared to that of 2021 indicated a promising technology in the future. To extract keywords that characterize future promising technologies, the abstract of each patent was considered one document for each technology and the set of abstracts as a corpus through data mining to calculate the term frequency (TF), document frequency (DF), and term frequency-inverse document frequency (TF-IDF). Keywords characterizing future promising technologies were extracted from words with a calculated TF-IDF.




2.2. Model


A recurrent neural network (RNN) is a deep learning model that uses time-series data from the past as input and outputs future data; for example, a river level prediction model [18,19], solar power generation prediction model [20,21], fine dust prediction model [22,23], energy demand prediction model [24], and stock price prediction model [25,26]. In this study, using the dataset in Section 2.1 as input data, the predictions made by LSTM for promising future technologies showed excellent performance even with a dataset having long-term dependencies.



The mathematical model of the LSTM is expressed as Equation (1) and illustrated in Figure 1. The output    h t   , output gate    o t   , new memory content      c t   ˜   , forget gate    f t   , and input gate    i t    of the LSTM are expressed as Equation (1).










	Output
	    h t  =  o  t     t a n h    c t      
	



	Output gate
	    o t  = σ    W o   x t  +  U o   h  t − 1   +  V o   c t      
	



	Memory cell
	    c t  =  f t   c  t − 1   +  i t    c ˜  t    
	



	New memory content
	     c ˜  t  = t a n h    W c   x t  +  U c   h  t − 1       
	(1)



	Forget gate
	    f t  = σ    W f   x t  +  U f   h  t − 1   +  V f   c  t − 1       
	



	Input gate
	    i t  = σ    W i   x t  +  U i   h  t − 1   +  V i   c  t − 1       
	






Equation (1) can be illustrated as an image in Figure 1.



To improve the prediction accuracy of LSTM, a stacked LSTM, as shown in Figure 2, was used as a model by stacking two LSTM layers with a hidden size of 100. The experiment was configured as follows, and it was confirmed that the predicted values converged when the epochs were set to 200.



Epochs: 200, Hidden size: 100, Loss function: MSE, Optimizer: SGD, Learning rate: 0.001.




2.3. Patent Analysis Results


Technologies with less than three patents in the patent dataset were excluded from the analysis due to difficulties in constructing a sufficient training dataset for the LSTM. Table 3 shows the results of calculating the rate of increase   ( patent _   num   2024   − patent _   num   2021   ) / 4   in the number of patents in 2024 compared to 2021 based on the number of patents expected to be applied in the next three years using the LSTM model for 16 technologies. In Table 3, the accuracy was calculated as follows.



With the maximum number of patents   patent _   num  t    collected under each technology for year    t      t = 1980 ,   1981 ,   ⋯ ,   2012     as max, the number of patents, which was the input data of the LSTM, and the number of patents, the output data, were multiplied by   100 / max   to normalize the number of patents to a number from 0 to 100. Let     difference  t    be the absolute value of the difference between normalized   patent _   num  t   , which represents input data, and normalized   patent _   num  t   , which represents output data in the same year. Prediction accuracy was calculated as   accuracy = 100 − mean     difference  t     .



Based on the predicted increase in the number of patents over the next three years, “Augmented reality” was predicted to be the most promising technology in the future, followed by “Plasmonic materials,” “Virtual patients,” “Spatial computing,” “Quantum sensing,” “Social robots,” “Personalised medicine,”  ⋯ . Figure 3 shows the input data of future promising technologies and the predicted number of patents as a graph. Since the model used in this study is a predictive model based on past data, it tends to underestimate when a sudden increase in a short period of time is observed in the input data.



The number of patents in the next three years predicted by the LSTM model using the number of patents of the past 10 years as input data showed a tendency to conservatively predict the number of patents with a smaller variation from the number of patents actually observed.



In this study, the abstracts of patent data collected by technology were used to compose the corpus to calculate the TF of each abstract word appearing in the corpus; the DF, the number of documents in which each abstract word appeared; and the TF-IDF [28], a statistical number indicating how important each abstract word was in the corpus, and to extract the keywords characterizing future promising technologies. Table 4 shows the results of extracting the keywords of future promising technologies based on the TF-IDF for each technology. Keywords for technologies are not shown in Table 4 but are included in the Supplementary Data in the online resource.




2.4. Results of SCI Paper Analysis


Among the data of the SCI papers in Section 2.1, technologies with less than four published papers were excluded from the analysis due to difficulties in constructing a sufficient training dataset for LSTM. Table 5 shows the results of calculating the rate of increase   ( paper _   num   2024   − paper _   num   2021   ) / 4   in the number of papers in 2024 compared to 2021 based on the number of papers predicted to be published in the next three years using the LSTM model for 32 technologies. Table 5 shows the accuracy calculations, similar to the calculations presented in the patent analysis results.



Based on the predicted increase in the number of SCI papers over the next three years, the most promising technology was predicted to be “Augmented reality,” followed by “Spatial computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic materials,” “Quantum sensing,”  ⋯ . Figure 4 shows the input data of future promising technologies and the predicted number of SCI papers. As in Figure 3, when a sudden increase in a short period of time is observed in the input data, the predicted value tends to be underestimated.



As shown in Table 6, the technologies predicted by the LSTM to grow in both number of patents and SCI papers in the next three years included: “Augmented reality,” “Spatial computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic materials,” “Quantum sensing,” “Electric aviation,” “Green hydrogen,” “Personalized medicine,” “Gene drive,” “Electroceuticals,” and “Whole-genome synthesis.” Figure 5 shows a graph of the predicted number of patents and SCI papers for the top 10 technologies with a high growth rate among these 13 technologies.





3. Conclusions


This study used the promising technology names of the “TOP 10 Emerging Technologies” from 2018 to 2021 selected by the WEF as keywords to analyze the patents collected from the USPTO and SCI papers collected from the Web of Science database by TSF. Using the number of patents and SCI papers collected for 40 technologies as input data, the number of patents and SCI papers in the next three years was predicted for each technology using a two-layer LSTM model. Promising technologies were derived based on the increase rate of the predicted number of patents and the increase rate of the predicted number of SCI papers. This study is meaningful in that it determines promising technologies with an average accuracy of 86.42% using a deep learning model for two databases for 40 broad technologies.



The 13 technologies predicted to grow in both the number of patents and the number of SCI papers in the next three years, namely, “Augmented reality,” “Spatial computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic materials,” “Quantum sensing,” “Electric aviation,” “Green hydrogen,” “Personalized medicine,” “Gene drive,” “Electroceuticals,” and “Whole-genome synthesis,” can be considered future promising technologies. Using the research results, business managers can make optimal decisions in the present situation and researchers can understand the direction of technology development. Through technological forecasting, it is possible to effectively link science and technology with economic development by forecasting the future situation more similarly and integrating economic needs and research opportunities.



Furthermore, this study differs from other studies in that keywords characterizing future promising technologies were extracted by calculating the TF-IDF of each word in a patent abstract by using the abstracts of patent data collected for each technology from the USPTO to compose the corpus.



In the future, to determine promising technologies, a wider database will be built and other models that can further improve prediction accuracy will be investigated.
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Figure 1. Long short-term memory (LSTM) model (source: [27]). 
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Figure 2. Architecture of stacked long short-term memory (LSTM):   patent _   num  t    is replaced by   paper _   num  t    for SCI paper analysis. 
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Figure 3. Number of patents in the input data and the predicted number of patents by year for the technologies predicted as the future promising technologies. 
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Figure 4. Number of Science Citation Index (SCI) papers in the input data and the predicted number of SCI papers per year for the technology predicted as a future promising technology. 
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Figure 5. Predicted number of patents and predicted number of Science Citation Index (SCI) papers for ten derived future promising technologies: A, SP, D, V, SO, PL, Q, E, G, and PE refer to “Augmented reality,” “Spatial computing,” “Digital medicine,” “Virtual patients,” “Social robots,” “Plasmonic materials,” “Quantum sensing,” “Electric aviation,” “Green hydrogen,” and “Personalized medicine,” respectively. In the patent number prediction graph, the number of patents in augmented reality exceeded 1000 and it did not appear in the graph. The graph of the predicted number of patents for augmented reality technology is shown in Figure 4. 
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Table 1. World Economic Forum “Top 10 Emerging Technologies” (2018–2021).
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	No.
	2018
	2019
	2020
	2021





	1
	Augmented reality
	Bioplastics for a circular economy
	Microneedles for painless injections and tests
	Decarbonization rises



	2
	Personalized medicine
	Social robots
	Sun-powered chemistry
	Crops that self-fertilize



	3
	AI-led molecular design
	Lenses for miniature devices
	Virtual patients
	Breath sensors diagnose disease



	4
	More capable digital helpers
	Disordered proteins as drug targets
	Spatial computing
	On-demand drug manufacturing



	5
	Implantable drug-making cells
	Smarter fertilizers can reduce environmental contamination
	Digital medicine
	Energy from wireless signals



	6
	Gene drive
	Collaborative telepresence
	Electric aviation
	Engineering better ageing



	7
	Algorithm for quantum computers
	Advanced food tracking and packing
	Lower-carbon cement
	Green ammonia



	8
	Plasmonic materials
	Safer nuclear reactors
	Quantum sensing
	Biomarker devices go wireless



	9
	Lab-grown meat
	DNA data for storage
	Green hydrogen
	Houses printed with local materials



	10
	Electroceuticals
	Utility-scale storage of renewable energy
	Whole-genome synthesis
	Space connects the globe
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Table 2. Number of patents and papers collected for technology in Table 1 (the left shows the number of patents and the right shows the number of papers).
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No.

	
2018

	
2019

	
2020

	
2021

	
Sum






	
1

	
41,088/16,204

	
0/234

	
0/5

	
0/25

	




	
2

	
134/745

	
91/4267

	
0/1

	
0/3




	
3

	
0/14

	
0/31

	
91/8923

	
0/16




	
4

	
0/51

	
0/11

	
209/46,898

	
0/13




	
5

	
0/5

	
0/124

	
49/16,237

	
0/0




	
6

	
152/737

	
6/154

	
7/1594

	
0/0




	
7

	
2/7

	
0/6

	
0/32

	
12/455




	
8

	
360/1735

	
1/980

	
279/4732

	
0/0




	
9

	
0/0

	
18/128

	
40/3314

	
0/0




	
10

	
27/14

	
0/36

	
5/27

	
0/0




	
Sum

	
41,763/19,512

	
116/5971

	
680/81,763

	
12/512

	
42,571/107,758
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Table 3. Rate of increase and prediction accuracy of the predicted number of patents by technology.
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	No.
	Technology
	Rate of Increase
	Accuracy (%)





	1
	Augmented reality
	106.8433
	78.62



	2
	Collaborative telepresence
	0.049675
	73.44



	3
	Digital medicine
	0.2259
	94.50



	4
	DNA data storage
	0.00825
	96.85



	5
	Electric aviation
	0.037975
	82.18



	6
	Electroceuticals
	0.40255
	93.50



	7
	Gene drive
	0.092075
	94.76



	8
	Green ammonia
	−0.00878
	79.60



	9
	Green hydrogen
	0.22745
	90.70



	10
	Personalized medicine
	0.447675
	94.41



	11
	Plasmonic materials
	2.45425
	95.53



	12
	Quantum sensing
	1.8588
	97.55



	13
	Social robots
	0.82
	92.17



	14
	Spatial computing
	2.295025
	94.50



	15
	Virtual patients
	2.4056
	92.62



	16
	Whole-genome synthesis
	0.0077
	89.36
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Table 4. Keywords extracted based on TF-IDF.
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(a) Keywords of Plasmonic Materials




	
Word

	
TF

	
DF

	
TF_IDF




	
Layer

	
355

	
103

	
442.77




	
Material

	
353

	
124

	
375.36




	
Surface

	
326

	
130

	
331.36




	
Structure

	
158

	
49

	
312.78




	
Peg

	
133

	
36

	
303.34




	
Light

	
194

	
78

	
295.31




	
Optical

	
158

	
59

	
283.97




	
Region

	
108

	
26

	
280.35




	
Waveguide

	
126

	
50

	
246.94




	
Plasmonic

	
206

	
111

	
241.67




	
Metal

	
105

	
39

	
231.29




	
Devices

	
166

	
91

	
227.40




	
Transducer

	
186

	
106

	
226.70




	
Least

	
179

	
102

	
224.99




	
Positioned

	
109

	
46

	
222.52




	
Magnetic

	
105

	
43

	
221.28




	
Portion

	
114

	
51

	
221.21




	
Substrate

	
150

	
84

	
217.35




	
Nft

	
109

	
50

	
213.62




	
Dielectric

	
102

	
44

	
212.67




	
Nearfield

	
100

	
48

	
199.98




	
Oxide

	
69

	
21

	
193.24




	
Configured

	
105

	
59

	
188.72




	
Device

	
115

	
74

	
181.03




	
Field

	
131

	
90

	
180.88




	
Film

	
70

	
29

	
174.33




	
Thereof

	
73

	
33

	
172.67




	
Conductive

	
70

	
30

	
172.04




	
Electromagnetic

	
66

	
26

	
171.32




	
(b) Keywords of Quantum Sensing




	
Word

	
TF

	
DF

	
TF_IDF




	
Layer

	
203

	
45

	
369.53




	
Material

	
285

	
93

	
315.12




	
Light

	
181

	
54

	
297.14




	
Quantum

	
152

	
42

	
286.94




	
Diamond

	
150

	
41

	
286.70




	
Optical

	
180

	
59

	
279.83




	
Magnetic

	
171

	
67

	
244.44




	
Spin

	
80

	
13

	
240.79




	
Field

	
122

	
47

	
216.89




	
Excitation

	
97

	
32

	
208.79




	
Device

	
183

	
90

	
208.27




	
Semiconductor

	
132

	
58

	
207.43




	
Nanometers

	
48

	
4

	
193.90




	
Configured

	
124

	
59

	
192.77




	
Signal

	
102

	
42

	
192.55




	
Region

	
72

	
20

	
187.52




	
Substrate

	
105

	
49

	
182.38




	
Source

	
98

	
44

	
180.55




	
Surface

	
90

	
41

	
172.02




	
Frequency

	
83

	
39

	
162.69




	
Defect

	
61

	
19

	
161.85




	
Diode

	
55

	
14

	
161.75




	
Detector

	
97

	
56

	
155.77




	
System

	
87

	
53

	
144.42




	
Sensor

	
61

	
26

	
143.54




	
Magnetooptical

	
46

	
12

	
141.87




	
Unit

	
41

	
8

	
141.52




	
Micro

	
44

	
11

	
139.22




	
Array

	
57

	
25

	
136.28








TF, term frequency; DF, document frequency; TF_IDF, term frequency-inverse document frequency.
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Table 5. Rate of increase and prediction accuracy of the predicted number of Science Citation Index (SCI) papers by technology.
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	No.
	Technology
	Rate of Increase
	Accuracy (%)





	1
	Advanced food tracking and packaging
	0.039575
	84.32



	2
	AI-led molecular design
	0.022825
	91.39



	3
	Algorithms for quantum computers
	0.013575
	82.32



	4
	Augmented reality
	78.9371
	81.91



	5
	Bioplastics for a circular economy
	2.066675
	94.70



	6
	Breath sensors diagnose disease
	0.015575
	74.27



	7
	Collaborative telepresence
	−0.23878
	92.32



	8
	Decarbonization rises
	−0.04815
	88.86



	9
	Digital medicine
	39.60455
	85.55



	10
	Disordered proteins as drug targets
	0.003725
	76.20



	11
	DNA data for storage
	−0.31628
	91.49



	12
	Electric aviation
	3.43585
	76.81



	13
	Electroceuticals
	0.094375
	90.43



	14
	Gene drive
	0.116
	81.29



	15
	Green ammonia
	1.25715
	94.31



	16
	Green hydrogen
	2.0026
	92.00



	17
	Implantable drug-making cells
	0.0007
	73.12



	18
	Lower-carbon cement
	0.158525
	84.36



	19
	Microneedles for painless injections and tests
	0.0023
	73.42



	20
	More capable digital helpers
	0.33175
	89.39



	21
	On-demand drug manufacturing
	0.0144
	88.04



	22
	Personalized medicine
	1.216357
	88.90



	23
	Plasmonic materials
	6.9311
	84.02



	24
	Quantum sensing
	5.735575
	71.52



	25
	Safer nuclear reactors
	−0.0415
	84.85



	26
	Smarter fertilizers can reduce environmental contamination
	−0.16527
	95.13



	27
	Social robots
	9.46255
	76.76



	28
	Spatial computing
	71.04438
	70.20



	29
	Tiny lenses for miniature devices
	0.097625
	75.01



	30
	Utility-scale storage of renewable energy
	−0.29128
	93.85



	31
	Virtual patients
	34.59743
	93.26



	32
	Whole-genome synthesis
	0.053025
	87.81
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Table 6. Technologies predicted to grow in both number of patents and Science Citation Index (SCI) papers.






Table 6. Technologies predicted to grow in both number of patents and Science Citation Index (SCI) papers.





	Technology
	Rate of Increase

(SCI Papers)
	Rate of Increase

(Patents)





	Augmented reality
	78.9371
	106.8433



	Spatial computing
	71.04438
	2.295025



	Digital medicine
	39.60455
	0.2259



	Virtual patients
	34.59743
	2.4056



	Social robots
	9.46255
	0.82



	Plasmonic materials
	6.9311
	2.45425



	Quantum sensing
	5.735575
	1.8588



	Electric aviation
	3.43585
	0.037975



	Green hydrogen
	2.0026
	0.22745



	Personalized medicine
	1.216357
	0.447675



	Gene drive
	0.116
	0.092075



	Electroceuticals
	0.094375
	0.40255



	Whole-genome synthesis
	0.053025
	0.0077
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