Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils
Abstract
:1. Introduction
2. Experimental Setup and Procedure
2.1. Equipment and Data Collection Procedure
2.2. Fluids
2.3. Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, D.-H.; Lee, K.-J.; Kim, Y.-H. The caracteristics of condensation in brazed plate heat exchangers with different chevron angles. J. Korean Phys. Soc. 2003, 43, 66–73. [Google Scholar]
- Nikhil, G.J.; Shailendra, M.L. Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A review. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 110–115. [Google Scholar]
- Jin, S.; Hrnjak, P. Effect of end plates on heat transfer of plate heat exchanger. Int. J. Heat Mass Transf. 2017, 108, 740–748. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jacobi, A.; Liu, W. Heat transfer correlations for single-phase flow in plate heat exchangers based on experimental data. Appl. Therm. Eng. 2017, 113, 1547–1557. [Google Scholar] [CrossRef]
- Gulenoglu, G.; Akturk, F.; Aradag, S.; Uzol, N.S.; Kakaci, S. Experimental comparison of performances of three different plates for gasketed plate heat exchangers. Int. J. Therm.Sci. 2014, 75, 249–256. [Google Scholar] [CrossRef]
- Yildiz, A.; Ersoz, M.A. Theoretical and experimental thermodynamic analyses of a chevron type heat exchanger. Renew. Sustain. Energ. Rev. 2015, 42, 240–253. [Google Scholar] [CrossRef]
- Hu, Z.; He, X.; Ye, L.; Yang, M.; Qin, G. Full-scale research on heat transfer and pressure drop of high flux plate heat exchanger. Appl. Therm. Eng. 2017, 118, 585–592. [Google Scholar] [CrossRef]
- Eimaaty, T.M.A.; Kabeel, A.E.; Mahgoub, M. Corrugated plate heat exchanger review. Renew. Sust. Energ. Rev. 2017, 70, 852–860. [Google Scholar] [CrossRef]
- Bobbili, P.R.; Sunden, B.; Das, S.K. An experimental investigation of the port flow maldistribution in small and large plate package heat exchangers. Appl. Therm. Eng. 2006, 26, 1919–1926. [Google Scholar] [CrossRef]
- Wang, L.; Sunden, B. Optimal design of plate heat exchangers with and without pressure drop specifications. Appl. Therm. Eng. 2003, 23, 295–311. [Google Scholar] [CrossRef]
- Gut, J.A.W.; Pinto, J.M. Modeling of Plate Heat Exchangers with Generalized Configurations. Int. J. Heat Mass Transf. 2003, 46, 2571–2585. [Google Scholar] [CrossRef]
- Al-Zahrani, S.; Islam, M.S.; Saha, S.C. Comparison of flow resistance and port maldistribution between novel and conventional plate heat exchangers. Int. Comm. Heat Mass Transf. 2021, 123, 105200. [Google Scholar] [CrossRef]
- Muley, A.; Manglik, R.M. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger. ASME J. Heat Transf. 1999, 121, 110–117. [Google Scholar] [CrossRef]
- Wanniarachchi, A.S.; Ratnam, U.; Tilton, B.E.; Dutta-Roy, K. Approximate Correlations for Chevron-Type Plate Heat Exchangers. In Proceedings of the ASME National Heat Transfer Conference, Portland, OR, USA, 5–9 August 1995; Volume 314, pp. 145–151. [Google Scholar]
- Warnakulasuriya, F.S.K.; Worek, W.M. Heat transfer and pressure drop properties of high viscous solutions in plate heat exchangers. Int. J. Heat Mass Transf. 2008, 51, 52–67. [Google Scholar] [CrossRef]
- Naik, V.R.; Matawala, V.K. Experimental Investigation of Single Phase Chevron Type Gasket Plate Heat Exchanger. Int. J. Eng. Adv. Technol. 2013, 2, 362–369. [Google Scholar]
- Akturk, F.; Gulben, G.; Aradag, S.; Uzol, N.S.; Kakac, S. Experimental Investigation of the Characteristics of a Chevron Type Gasketed-Plate Heat Exchanger. In Proceedings of the 6th International Advanced Technologies Symposium (IATS’11), Elazig, Turkey, 16–18 May 2011. [Google Scholar]
- Kakac, S.; Liu, H. Heat Exchangers. Selection, Rating and Thermal Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Zhong, Y.; Deng, K.; Zhao, S.; Hu, J.; Zhong, Y.; Li, Q.; Wu, Z.; Lu, Z.H.; Wen, Q. Experimental and Numerical Study on Hydraulic Performance of Chevron Brazed Plate Heat Exchanger at Low Reynolds Number. Processes 2020, 8, 1076. [Google Scholar] [CrossRef]
- Arsenyeva, O.; Tovazhnyansky, L.; Kapustenko, P.; Khavin, G. Mathematical Modelling and Optimal Design of Plate-and-Frame Heat Exchangers. Chem. Eng. Trans. 2009, 18, 791–796. [Google Scholar] [CrossRef]
- Martin, H. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chem. Eng. Process Process. Intensif. 1996, 35, 301–310. [Google Scholar] [CrossRef]
- Dović, D.; Palm, B.; Švaić, S. Generalized correlations for predicting heat transfer and pressure drop in plate heat exchanger channels of arbitrary geometry. Int. J. Heat Mass Transf. 2009, 52, 4553–4563. [Google Scholar] [CrossRef]
- Piper, M.; Zibart, A.; Kenig, E.Y. New design equations for turbulent forced convection heat transfer and pressure loss in pillow-plate channels. Int. J. Sci. 2017, 120, 459–468. [Google Scholar] [CrossRef]
- Oniţă, N.; Ivan, E. Calculations in the Food Industry. Handbook (Memorator Pentru Calcule în Industria Alimentară); Mirton: Timişoara, Romania, 2006. (In Romanian) [Google Scholar]
- Ražnjević, K. Handbook of Thermodynamic Tables and Charts; Hemisphere Pub. Corp.: Washington, DC, USA, 1976. [Google Scholar]
- Neagu, A.A.; Koncsag, C.I.; Barbulescu, A.; Botez, E. Calculation methods for gasket plate heat exchangers used in vegetable oil manufacture. Comp. Study Rev. Chim. 2015, 66, 1504–1508. [Google Scholar]
- Holzbecher, E. Numerical Solutions for the Lévêque Problem of Boundary Layer Mass or Heat Flux. In Proceedings of the European COMSOL Conference, Hannover, Germany, 4–6 November 2008; Available online: https://www.comsol.ch/paper/download/37491/Holzbecher.pdf (accessed on 20 December 2021).
- Muley, A.; Manglik, R.M.; Metwally, H.M. Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger. ASME J. Heat Transf. 1999, 121, 1011–1017. [Google Scholar] [CrossRef]
- Okada, K.; Ono, M.; Tomimura, T.; Okuma, T.; Konno, H.; Ohtani, S. Design and heat transfer characteristics of new plate heat exchanger. Heat Trans. Jpn. Res. 1972, 1, 90–95. [Google Scholar]
- Shah, R.K. Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry. Int. J. Heat Mass Transf. 1975, 18, 849–862. [Google Scholar] [CrossRef]
- Heavner, R.L.; Kumar, H.; Wanniarachchi, A.S. Performance of an Industrial Plate Heat Exchanger: Effect of Chevron Angle. AIChE Symposium Series; American Institute of Chemical Engineers: New York, NY, USA, 1993; Volume 89, pp. 262–267. [Google Scholar]
Geometrical Characteristics of Chevron Plates | Symbol | Heat Exchanger #1 | Heat Exchanger #2 | Heat Exchanger #3 | Heat Exchanger #4 |
---|---|---|---|---|---|
Technological role | - | Oil pre-heating | Cooler | Cooler | Cooler |
Fluids | RO—raw oil BO—bleached oil WO—winterised oil | RO/BO | RO/water | BO/water | WO/water |
Vertical distance between centres of ports | Lv | 1070 (mm) | 1070 (mm | 1070 (mm) | 1070 (mm) |
Plate length between ports | Lp | 858 (mm) | 858 (mm) | 858 (mm) | 858 (mm) |
Plate width | Lw | 450 (mm) | 450 (mm) | 450 (mm) | 450 (mm) |
Horizontal length between centres of ports | Lh | 238 (mm) | 238 (mm) | 238 (mm) | 238 (mm) |
Port diameter | Dp | 212 (mm) | 212 (mm) | 212 (mm) | 212 (mm) |
Plate thickness | δ | 0.6 (mm) | 0.6 (mm) | 0.6 (mm) | 0.6 (mm) |
Plate pitch | p | 3.08 (mm) | 3.17 (mm) | 3.14 (mm) | 3.14 (mm) |
Corrugation depth (amplitude of sinusoidal duct) | b | 2.48 (mm) | 2.57 (mm) | 2.54 (mm) | 2.55 (mm) |
Surface enlargement factor | φ | 1.17 | 1.17 | 1.17 | 1.17 |
Hydraulic diameter (=2 b/φ) | dh | 4.24 (mm) | 4.396 (mm) | 4.34 (mm) | 4.5 (mm) |
Channel cross-sectional free flow area | Ach | 1.116 × 10−3 (m2) | 1.116 × 10−3 (m2) | 1.144 × 10−3 (m2) | 1.145 × 10−3 (m2) |
Heat transfer area for a plate | A1 | 0.4517 (m2) | 0.4517 (m2) | 0.4517 (m2) | 0.4517 (m2) |
Heat transfer total area | Ae | 18.2 (m2) | 11.2 (m2) | 9.2 (m2) | 19.7 (m2) |
Total number of plates | Nt | 57 | 35 | 28 | 63 |
Effective heat transfer number of plates | Ne | 55 | 53 | 26 | 60 |
Number of fluid passes | Np | 2 | 1 | 1 | 1 |
Number of channels for one pass | Ncp | 14 | 17 | 13.5 | 31 |
Corrugation inclination angle relative to vertical direction | β | 30° | 30° | 30° | 30° |
HE # | Fluid | Temperature in (1) and out (2) of Hot (h) and Cold (c) Fluid, °C | Average Temperature of the Fluid, °C | Average Temperature at the Wall, °C |
---|---|---|---|---|
1 | RO | 60.5 | 69 | |
BO | 77.5 | |||
2 | RO | 63.5 | 48.5 | |
Water | 33.5 | |||
3 | BO | 52.5 | 42.7 | |
Water | 32.8 | |||
4 | WO | 75 | 55 | |
Water | 35 |
Campaign/Oil | Oil Type | Equation | Coefficient of Determination, R2 |
---|---|---|---|
I/SO1 | RO | y = −0.0128 × x + 0.9308 | 0.9917 |
BO | y = −0.0125 × x + 0.9296 | 0.9925 | |
WO | y = −0.0125 × x + 0.9296 | 0.9935 | |
II/SO2 | RO | y = −0.0122 × x + 0.9290 | 0.9905 |
BO | y = −0.0126 × x + 0.9292 | 0.9935 | |
WO | y = −0.0124 × x + 0.9293 | 0.9903 | |
III/RO | RO | y = −0.0125 × x + 0.9289 | 0.9937 |
BO | y = −0.0124 × x + 0.9281 | 0.9907 | |
WO | y = −0.0126 × x + 0.9289 | 0.9929 |
Campaign/Oil | Oil Type | Equation | Coefficient of Determination, R2 |
---|---|---|---|
I/SO1 | RO | y = 68.283 × x−1.307 | 0.9959 |
BO | y = 66.491 × x−1.277 | 0.9966 | |
WO | y = 68.338 × x−1.312 | 0.9958 | |
II/SO2 | RO | y = 65.051 × x−1.359 | 0.9991 |
BO | y = 59.649 × x−1.226 | 0.9995 | |
WO | y = 66.409 × x−1.298 | 0.9958 | |
III/RO | RO | y = 71.710 × x−1.325 | 0.9959 |
BO | y = 68.285 × x−1.229 | 0.9964 | |
WO | y = 71.061 × x−1.322 | 0.9952 |
Campaign | HE # | Fluids | Total Mass Flow Rate, kg/s | Re | Nu | Pr |
---|---|---|---|---|---|---|
Sunflower oil I ρ (20 °C) = 919.1 kg/m3 μ (20 °C) = 0.0662 Pa × s | 1 | RO | 1.74/2.05/2.46/2.71 | 53/62/75/82 | 19.3/21.6/24.3/25.9 | 206.8 |
BO | 2.14/2.52/3.03/3.34 | 27/32/39/43 | 24.5/27.2/30.6/32.9 | 125.1 | ||
2 | RO | 1.74/2.05/2.46/2.71 | 25/29/35/39 | 15.5/17.3/19.5/20.9 | 191.5 | |
Water | 5.25/6.20/7.43/8.21 | 1546/1782/2154/2386 | 74.2/85.7/98.1/106.5 | 5.2 | ||
3 | BO | 1.94/2.19/2.49/2.78 | 30/34/39/43 | 17.7/19.3/20.9/22.4 | 260.6 | |
Water | 2.55/2.85/3.27/3.62 | 921/1038/1179/1305 | 58.4/63.3/68.9/73.7 | 5.3 | ||
4 | WO | 1.74/2.05/2.46/2.71 | 18/21/26/28 | 11.7/12.8/14.4/15.3 | 135.8 | |
Water | 6.02/7.11/8.52/9.41 | 979/1154/1379/1528 | 63.8/71.1/80.1/85.7 | 5.0 | ||
Sunflower oil II ρ (20 °C) = 918.1 kg/m3 μ (20 °C) = 0.0650 Pa × s | 1 | RO | 1.74/2.05/2.46/2.71 | 58/68/81/90 | 20.3/22.7/25.6/27.3 | 170.7 |
BO | 2.14/2.52/3.03/3.34 | 33/39/47/52 | 24.2/27.0/30.5/32.6 | 136.6 | ||
2 | RO | 1.74/2.05/2.46/2.71 | 29/35/42/46 | 16.6/18.6/20.9/22.4 | 160.1 | |
Water | 5.25/6.20/7.43/8.21 | 1526/1801/2160/2385 | 74.5/86.0/98.4/107 | 5.2 | ||
3 | BO | 1.94/2.19/2.49/2.78 | 25/28/32/35 | 19.1/20.7/22.6/24.1 | 213.6 | |
Water | 2.55/2.85/3.27/3.62 | 919/1038/1179/1304 | 58.4/63.3/68.9/73.7 | 5.3 | ||
4 | WO | 1.74/2.05/2.46/2.71 | 19/23/27/30 | 11.6/12.9/14.6/15.6 | 144.6 | |
Water | 6.02/7.11/8.52/9.41 | 979/1156/1386/1530 | 63.8/71.2/80.3/85.9 | 5.0 | ||
Rapeseed oil ρ (20 °C) = 919.1 kg/m3 μ (20 °C) = 0.0694 Pa × s | 1 | RO | 2.72 | 45 | 25.9 | 195.9 |
BO | 3.35 | 72 | 31.2 | 156.2 | ||
2 | RO | 2.72 | 40 | 21.4 | 184.4 | |
Water | 8.23 | 2391 | 112.6 | 5.2 | ||
3 | BO | 2.76 | 38 | 23.0 | 244.0 | |
Water | 3.62 | 1306 | 73.7 | 5.3 | ||
4 | WO | 2.72 | 27 | 15.3 | 149.6 | |
Water | 9.44 | 1533 | 85.9 | 5.0 |
HE # | Fluids | Total Massflow Rate, kg/s | Resine | Nusine,exp | Nusine,calc | Relative Error, % |
---|---|---|---|---|---|---|
Sunflower oil I ρ (20 °C) = 919.1 kg/m3, μ (20 °C) = 1.0662 Pa × s | ||||||
1 | RO | 1.74/2.05/2.46/2.71 | 13/15/18/20 | 7.6/8.5/9.6/10.2 | 8.5/9.1/9.9/10.4 | 10.0/6.3/3.2/1.4 |
BO | 2.14/2.52/3.03/3.34 | 27/31/38/42 | 9.7/10.8/12.1/13.0 | 9.4/10.2/11.2/11.8 | −2.8/−5.3/−7.9/−10.1 | |
2 | RO | 1.74/2.05/2.46/2.71 | 11/13/16/18 | 6.1/6.8/7.7/8.2 | 7.1/7.7/8.3/8.7 | 14.4/11.3/7.8/5.5 |
Water | 5.25/6.20/7.43/8.21 | 701/808/977/1082 | 29.3/33.8/38.7/42.0 | 27.5/30.5/35.0/37.7 | −6.3/−10.7/−10.4/−11.3 | |
3 | BO | 1.94/2.19/2.49/2.78 | 11/13/15/15 | 7.0/7.6/7.9/8.3 | 6.7/7.1/7.4/7.4 | −5.0/−8.5/−5.7/−11.5 |
Water | 2.55/2.85/3.27/3.62 | 586/661/752/854 | 23.1/25.0/27.2/29.1 | 23.9/26.0/28.5/31.2 | 3.2/3.8/4.5/6.8 | |
4 | WO | 1.74/2.05/2.46/2.71 | 9/10/12/14 | 4.6/5.1/5.7/6.0 | 5.6/6.0/6.5/6.8 | 17.4/15.7/12.4/10.9 |
Water | 6.02/7.11/8.52/9.41 | 446/525/628/696 | 24.0/27.0/30.5/32.6 | 20.3/22.8/25.9/27.9 | −18.2/−18.1/−17.8/−17.1 | |
Sunflower oil II ρ (20 °C) = 918.1 kg/m3, μ (20 °C) = 0.0650 Pa × s | ||||||
1 | RO | 1.74/2.05/2.46/2.71 | 15/18/21/24 | 7.6/8.5/10.1/10.8 | 8.4/9.1/9.9/10.4 | 4.7/ 1.0/−2.3/−4.2 |
BO | 2.14/2.52/3.03/3.34 | 24/28/34/38 | 9.6/10.7/12.0/12.9 | 9.3/10.0/11.0/11.6 | −3.3/−6.5/−9.8/−11.5 | |
2 | RO | 1.74/2.05/2.46/2.71 | 13/16/19/21 | 6.5/7.3/8.2/8.8 | 7.2/7.8/8.5/8.9 | 9.3/5.9/2.6/0.3 |
Water | 5.25/6.20/7.43/8.21 | 694/820.981/1085 | 29.6/33.9/38.3/42.2 | 27.2/30.7/34.9/37.0 | −8.0/−10.6/−11.0/−13.3 | |
3 | BO | 1.94/2.19/2.49/2.78 | 14/16/18/20 | 7.5/8.2/8.9/9.5 | 8.2/8.6/9.2/9.6 | 8.0/5.4/2.6/0.9 |
Water | 2.55/2.85/3.27/3.62 | 586/661/752/854 | 23.1/25.0/27.2/29.1 | 23.7/25.8/28.3/31.0 | 2.6/3.2/4.0/6.3 | |
4 | WO | 1.74/2.05/2.46/2.71 | 8/10/12/13 | 4.6/5.1/5.8/6.2 | 6.4/6.9/7.4/7.8 | 28.5/25.9/22.5/20.6 |
Water | 6.02/7.11/8.52/9.41 | 446/528/633/698 | 24.0/26.9/30.5/32.6 | 20.2/22.7/22.9/31.0 | −18.8/−18.3/17.8/−17.5 | |
Rapeseed oil I ρ (20 °C) = 919.5 kg/m3, μ (20 °C) = 0.0694 Pa × s | ||||||
1 | RO | 2.72 | 21 | 10.2 | 10.3 | 1.1 |
BO | 3.35 | 32 | 12.3 | 11.4 | −8.2 | |
2 | RO | 2.72 | 18 | 8.4 | 8.8 | 4.8 |
Water | 8.23 | 1137 | 32.3 | 28.2 | 14.7 | |
3 | BO | 2.76 | 17 | 9.1 | 9.6 | 5.5 |
Water | 3.62 | 923 | 29.1 | 33.0 | 11.9 | |
4 | WO | 2.72 | 12 | 6.1 | 6.9 | 12.5 |
Water | 9.44 | 700 | 33.9 | 28 | −21.1 |
SUMMARY OUTPUT | ||||||
---|---|---|---|---|---|---|
Regression Statistics | ||||||
Multiple R | 0.9924 | |||||
R Square | 0.9849 | |||||
Adjusted R Square | 0.9847 | |||||
Standard Error | 0.9093 | |||||
Observations | 72 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression (treatments) | 1 | 3770.1214 | 3770.1214 | 4559.34 | 1.85 × 10−65 | |
Residual (errors) | 70 | 57.8830 | 0.8269 | |||
Total | 71 | 3828.0 | ||||
Coefficients | Standard Error | t Stat | p-value | Lower 95% | Upper 95% | |
Intercept | 1.3305 | 0.1364 | 9.75 | 1.11 × 10−14 | 1.0585 | 1.6026 |
X Variable 1 | 0.0195 | 0.0003 | 67.52 | 1.85 × 10−65 | 0.0189 | 0.0201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, A.-A.; Koncsag, C.I. Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils. Processes 2022, 10, 102. https://doi.org/10.3390/pr10010102
Neagu A-A, Koncsag CI. Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils. Processes. 2022; 10(1):102. https://doi.org/10.3390/pr10010102
Chicago/Turabian StyleNeagu, Anișoara-Arleziana, and Claudia Irina Koncsag. 2022. "Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils" Processes 10, no. 1: 102. https://doi.org/10.3390/pr10010102
APA StyleNeagu, A. -A., & Koncsag, C. I. (2022). Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils. Processes, 10(1), 102. https://doi.org/10.3390/pr10010102