Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters
Abstract
:1. Introduction
2. Previous Works on Characterization of NPO, WPO and WPOME
3. Materials and Methods
3.1. Collection of Materials, NPO and WPO
3.2. Production of WPOME
3.3. Determination of Physicochemical Properties of Samples
3.4. Determination of Fatty Acid Profile of Samples
3.5. Characterization of Samples
4. Results and Discussions
4.1. Physicochemical Properties of Samples
4.2. Fatty Acid Composition of Samples
4.3. H and 13C NMR Characterization of Samples
5. Conclusions
- The density, congealing temperature, acid value, pH, iodine value and kinematic viscosity are altered by the frying and contamination during usage. While frying reduces the density and the pH of the palm oil, the congealing temperature and kinematic temperature of WPO are higher than that of the NPO. The density, kinematic viscosity and acid value of FAME are lower than that of their feedstocks.
- The 1H and 13C NMR spectrum of investigated samples were observed to occur in nine signals of significant intensity, as mentioned in the literature.
- The proton spectra of 1H and 13C NMR for NPO, WPOFC and WPOSC are similar, the intensity of the NPO is, however, different from the proton spectra of the WPO samples.
- The 13C NMR spectrum exhibits the presence of ester carbonyl carbon (C=O) in WPOMEFC and WPOMESC, peculiar to ester, at chemical shift 174.8–174.9 ppm confirms the transesterification process carried out on the WPO samples.
- 1H and 13C NMR reinforce the suitability of WPO as feedstock for FAME synthesis.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Energy-Related Carbon Dioxide Emissions Worldwide from 1975 to 2021 (in Billion Metric Tons). Available online: https://www.statista.com/statistics/526002/energy-related-carbon-dioxide-emissions-worldwide/ (accessed on 23 July 2021).
- Energy Consumption by the Numbers. Available online: https://www.capp.ca/energy/world-energy-needs/ (accessed on 23 July 2021).
- BStatistical Review of World Energy 2021 70th Edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 23 July 2021).
- IEA. The Latest Trends in Energy and Emissions in 2018. In Global Energy & CO2 Status Report 2018. Available online: https://webstore.iea.org/global-energy-co2-status-report-2018 (accessed on 23 July 2021).
- Ndiaye, M.; Arhaliass, A.; Legrand, J.; Roelens, G.; Kerihuel, A. Reuse of waste animal fat in biodiesel: Biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renew. Energy 2020, 145, 1073–1079. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Chandran, D. Compatibility of diesel engine materials with biodiesel fuel. Renew. Energy 2020, 147, 89–99. [Google Scholar] [CrossRef]
- Yildiz, I.; Açıkkalp, E.; Caliskan, H.; Mori, K. Environmental pollution cost analyses of biodiesel and diesel fuels for a diesel engine. J. Environ. Manag. 2019, 243, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Tullis, P. How the world got hooked on palm oil. In The Guardian; Guardian Media Group: London, UK, 2019; Available online: https://www.theguardian.com/news/2019/feb/19/palm-oil-ingredient-biscuits-shampoo-environmental (accessed on 23 July 2021).
- Thushari, I.; Babel, S.; Samart, C. Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renew. Energy 2019, 134, 125–134. [Google Scholar] [CrossRef]
- Resul, M.F.M.G.; Ghazi, T.I.M.; Idris, A. Kinetic study of jatropha biolubricant from transesterification of jatropha curcas oil with trimethylolpropane: Effects of temperature. Ind. Crop. Prod. 2012, 38, 87–92. [Google Scholar] [CrossRef]
- Nor, N.M.; Derawi, D.; Salimon, J. Synthesis of palm oil fatty acid and trimethylolpropane based ester for biolubricant base stocks. AIP Conf. Proc. 2018, 1940, 020095. [Google Scholar] [CrossRef]
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int. J. Low-Carbon Technol. 2019, 14, 417–425. [Google Scholar] [CrossRef]
- Atabani, A.E.; Shobana, S.; Mohammed, M.N.; Uğuz, G.; Kumar, G.; Arvindnarayan, S.; Aslam, M.; Al-Muhtaseb, A.H. Integrated valorization of waste cooking oil and spent coffee grounds for biodiesel production: Blending with higher alcohols, FT–IR, TGA, DSC and NMR characterizations. Fuel 2019, 244, 419–430. [Google Scholar] [CrossRef]
- Mohammed, M.; Atabani, A.; Uguz, G.; Lay, C.H.; Kumar, G.; Al-Samaraae, R. Characterization of hemp (Cannabis sativa L.) biodiesel blends with euro diesel, butanol and diethyl ether using FT-IR, UV–Vis, TGA and DSC techniques. Waste Biomass Valorization 2020, 11, 1097–1113. [Google Scholar] [CrossRef]
- García-Álvarez, L.; Busto, J.H.; Peregrina, J.M.; Avenoza, A.; Oteo, J.A. Applications of 1H Nuclear Magnetic Resonance Spectroscopy in Clinical Microbiology, Applications of Molecular Spectroscopy to Current Research. In Chemical and Biological Sciences; Stauffer, M.T., Ed.; IntechOpen: London, UK, 2016; pp. 28–291. [Google Scholar] [CrossRef] [Green Version]
- Dutra, E.D.; de Lima, T.A.; de Oliveira Souza, J.L.; Silva, J.G.V.; da Silva Aquino, K.A.; da Silva Aquino, F.; Ramos, C.S.; Menezes, R.S.C. Characterization of fat and biodiesel from mango seeds using 1 H NMR spectroscopy. Biomass Convers. Biorefin. 2018, 8, 135–141. [Google Scholar] [CrossRef]
- Awogbemi, O.; Onuh, E.I.; Komolafe, C.A. Thermal Degradation and Spectroscopic study of Neat Palm Oil, Waste Palm Oil, and Waste Palm Oil Methyl Ester. IOP Conf. Ser. Earth Environ. Sci. 2019, 331, 012032. [Google Scholar] [CrossRef]
- Ullah, Z.; Bustam, M.A.; Man, Z. Characterization of waste palm cooking oil for biodiesel production. Int. J. Chem. Eng. Appl. 2014, 5, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Kara, K.; Ouanji, F.; Lotfi, E.M.; Mahi, M.E.; Kacimi, M.; Ziyad, M. Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt. J. Pet. 2018, 27, 249–255. [Google Scholar] [CrossRef]
- Santos, J.S.; Escher, G.B.; da Silva Pereira, J.M.; Marinho, M.T.; Prado-Silva, L.; Sant’Ana, A.S.; Dutra, L.M.; Barison, A.; Granato, D. 1H NMR combined with chemometrics tools for rapid characterization of edible oils and their biological properties. Ind. Crop. Prod. 2018, 116, 191–200. [Google Scholar] [CrossRef]
- Fernandez, J.; Hariram, V.; Seralathan, S.; Harikrishnan, S.; Premkumar, T.M. Biodiesel Production from Pongamia Pinnata and its Characterization using GC-MS, NMR and FT-IR Spectral Studies. Int. J. Veh. Struct. Syst. 2018, 10, 453–457. [Google Scholar] [CrossRef]
- Ng, M.H.; Yung, C.L. Nuclear magnetic resonance spectroscopic characterisation of palm biodiesel and its blends. Fuel 2019, 257, 116008. [Google Scholar] [CrossRef]
- Jeyalakshmi, P. Characterization of Simarouba glauca seed oil biodiesel. J. Therm. Anal. Calorim. 2019, 136, 267–280. [Google Scholar] [CrossRef]
- Chopra, A.; Tewari, A.; Vatsala, S.; Kumar, R.; Sarpal, A.; Basu, B. Determination of polyunsaturated fatty esters (PUFA) in biodiesel by GC/GC–MS and 1 H-NMR Techniques. J. Am. Oil Chem. Soc. 2011, 88, 1285–1296. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Sedeeq, S.H.; Al-Layla, N.M. Transesterification of non-edible seed oil for biodiesel production: Characterization and analysis of biodiesel. Energy Sources A Recovery Util. Environ. Eff. 2019, 41, 892–901. [Google Scholar] [CrossRef]
- Awogbemi, O.; Inambao, F.L.; Onuh, E.I. Development and Characterization of Chicken Eggshell waste as Potential Catalyst for Biodiesel Production. Int. J. Mech. Eng. Technol. 2018, 9, 1329–1346. [Google Scholar]
- Awogbemi, O.; Kallon, D.V.V.; Aigbodion, V.S. Trends in the development and utilization of agricultural wastes as heterogeneous catalyst for biodiesel production. J. Energy Inst. 2021, 98, 244–258. [Google Scholar] [CrossRef]
- Awogbemi, O.; Inambao, F.; Onuh, E.I. Modelling and Optimization of Synthesis of Waste Sunflower Methyl Ester by Taguchi Approach. In Proceedings of the Lecture Notes in Engineering and Computer Science, World Congress on Engineering, London, UK, 3–5 July 2019; Ao, S.I., Gelman, L., Hukins, D.W.L., Hunter, A., Korsunsky, A.M., Eds.; pp. 137–143. [Google Scholar]
- Use of pH Meter. Available online: https://www.webserver.mbi.ufl.edu/~rowland/protocols/phmeter.pdf (accessed on 17 March 2021).
- BS EN 14214:2012+A2:2019 (2019) Liquid Petroleum Products. Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications. Requirements and Test Methods. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030217517 (accessed on 17 March 2021).
- Bockisch, M. Fats and Oils Handbook (Nahrungsfette und Öle), 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 803–808. [Google Scholar]
- Meng, C.E.; Zakaria, A.; Bakar, S.A.; Kheng, E.S.; Norali, A.N.; Nasir, N.F.M.; Fhan, K.S.; Majid, M.S.A.; Yee, L.K.; Jamir, M.R.M. Dielectric and Colorimetric Analysis on Thermal Degradation of Cooking Oil. In Intelligent Manufacturing and Mechatronics. Lecture Notes in Mechanical Engineering; Bahari, M.S., Harun, A., Zainal, A.Z., Hamidon, R., Zakaria, S., Eds.; Springer: Singapore, 2021; pp. 747–759. [Google Scholar]
- Jindapon, W.; Ngamcharussrivichai, C. Heterogeneously catalyzed transesterification of palm oil with methanol to produce biodiesel over calcined dolomite: The role of magnesium oxide. Energy Convers. Manag. 2018, 171, 1311–1321. [Google Scholar] [CrossRef]
- Cárdenas, J.; Orjuela, A.; Sánchez, D.L.; Narváez, P.C.; Katryniok, B.; Clark, J. Pre-treatment of used cooking oils for the production of green chemicals: A review. J. Clean Prod. 2021, 289, 125129. [Google Scholar] [CrossRef]
- Hossain, M.N.; Siddik Bhuyan, M.S.; Alam, A.H.; Seo, Y.C. Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO2/SBA-15 Super Acid Catalyst under Sub-Critical Conditions. Energies 2018, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Kadapure, S.A.; Kirti, P.; Singh, S.; Kokatnur, S.; Hiremath, N.; Variar, A.; Shaikh, S.; Chittaragi, R. Studies on process optimization of biodiesel production from waste cooking and palm oil. Int. J. Sustain. Eng. 2018, 11, 167–172. [Google Scholar] [CrossRef]
- Maneerung, T.; Kawi, S.; Dai, Y.; Wang, C.H. Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Convers. Manag. 2016, 123, 487–497. [Google Scholar] [CrossRef]
- Zein, Y.M.; Anal, A.K.; Prasetyoko, D.; Qoniah, I. Biodiesel Production from Waste Palm Oil Catalyzed by Hierarchical ZSM-5 Supported Calcium Oxide. Indones. J. Chem. 2016, 16, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.P.; Nguyen, H.H.M.; Nguyen, D.T.; Nguyen, H.L.; Huynh, T.M. Optimization of biodiesel production from waste cooking oil using static mixer technology in Vietnam. Biofuels 2018, 9, 567–574. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Hunter, H.N.; Fang, Z.; Dalai, A.K.; Kozinski, J.A. Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem. Eng. Sci. 2019, 195, 935–945. [Google Scholar] [CrossRef]
- De Graaf, R.A. In Vivo NMR Spectroscopy: Principles and Techniques, 3rd ed.; John Wiley & Sons: West Sussex, UK, 2019; pp. 17–21. [Google Scholar]
- Nachid, N.; Ouanji, F.; Kacimi, M.; Liotta, L.F.; Ziyad, M. Biodiesel from moroccan waste frying oil: The optimization of transesterification parameters impact of biodiesel on the petrodiesel lubricity and combustion. Int. J. Green Energy 2015, 12, 865–872. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Madhu, D.; Liu, Y.; Yaakob, Z. Fast synthesis of high quality biodiesel from ‘waste fish oil’ by single step transesterification. Biofuel Res. J. 2014, 1, 78–80. [Google Scholar] [CrossRef]
- Shancita, I.; Masjuki, H.; Kalam, M.; Reham, S.; Shahir, S. Comparative analysis on property improvement using Fourier Transform Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR)(1H and 13C) spectra of various biodiesel blended fuels. Energy Fuels 2016, 30, 4790–4805. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Stamford, CT, USA, 2014; pp. 107–108. [Google Scholar]
- Kara, K.; Ouanji, F.; El Mahi, M.; Lotfi, E.M.; Kacimi, M.; Mahfoud, Z. Biodiesel synthesis from vegetable oil using eggshell waste as a heterogeneous catalyst. Biofuels 2019, 12, 1083–1089. [Google Scholar] [CrossRef]
- Ouanji, F.; Khachani, M.; Boualag, M.; Kacimi, M.; Ziyad, M. Large-scale biodiesel production from Moroccan used frying oil. Int. J. Hydrogen Energy 2016, 41, 21022–21029. [Google Scholar] [CrossRef]
- Tariq, M.; Ali, S.; Ahmad, F.; Ahmad, M.; Zafar, M.; Khalid, N.; Khan, M.A. Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Process. Technol. 2011, 92, 336–341. [Google Scholar] [CrossRef]
Food Items Fried with Oil | Duration of Usage (Days) | Color | Quantity (Liters) | Notation |
---|---|---|---|---|
Fish and chips | 14 | Dark yellow | 5 | WPOFC |
Sausage and chips | 14 | Dark yellow | 5 | WPOSC |
Parameter | Specification |
---|---|
Sample name | Food fried with oil |
Samples | WPOSC and WPOFC |
Process | Transesterification |
Catalyst | CaO |
Catalyst to oil ratio | 1% w/w |
Catalyst particle size | 75 µm |
Reaction time | 90 min |
Reaction temperature | 60 °C |
Stirring speed | 1200 rpm |
Alcohol | Methanol (99.5%; Analytical grade) |
Methanol to oil ratio | 6:1 |
Adsorbent | Magnesol (Analytical grade) |
Property | Unit | Equipment | Equipment Accuracy | Standard Method | Ref. |
---|---|---|---|---|---|
Density @ 15 °C | Kg/m3 | Density meter | ±0.001 g/qcm | ASTM D 1298 | [31] |
Kinematic viscosity @ 40 °C | mm2/s | Viscometer | ±1% | ASTM D445 | [31] |
Acid value | mgKOH/g | Titration | - | AOCS Ca 4a-40 | [32] |
Iodine value | gI2/100g | Titration | - | AOCS Cd 1B-87 | [32] |
Properties | NPO | WPOFC | WPOSC | WPOMEFC | WPOMESC | ASTM D6751 | EN 14214 |
---|---|---|---|---|---|---|---|
pH | 6.34 | 5.73 | 6.19 | - | - | - | - |
Density @ 15 °C (kg/m3) | 919.5 | 904.3 | 913.4 | 865 | 875 | 880 | 860-900 |
Kinematic Viscosity @ 40 °C (mm2/s) | 27.96 | 44.25 | 38.41 | 4.5 | 3.8 | 1.9-6 | 3.5-5 |
Iodine value (cg/g) | - | 81.7 | 54.2 | 72.5 | 52.3 | - | 120 max |
Acid value (mg KOH/g) | - | 0.66 | 1.13 | 0.28 | 0.42 | 0.8 max | 0.5 max |
Fatty Acid | Formular | Samples | ||||
---|---|---|---|---|---|---|
NPO | WPOFC | WPOSC | WPOMEFC | WPOMESC | ||
Pelargonic | C9:0 | - | - | - | 1.1 | - |
Capric | C10:0 | 5.92 | - | - | - | - |
Caproleic | C10:1 | - | - | - | 5.62 | 25.37 |
Lauric | C12:0 | - | - | - | 3.47 | - |
Palmitic | C16:0 | - | 36.13 | 54.75 | 23.72 | 16.52 |
Stearic | C18:0 | 13.72 | 1.54 | - | - | - |
Oleic | C18:1 | - | 58.57 | 7.9 | 63.96 | 20.35 |
Linoleic | C18:2 | 52.55 | 3.76 | 37.35 | - | 37.75 |
Behenic | C22:0 | - | - | - | 2.13 | - |
Brassidic | C22:1 | 27.81 | - | - | - | - |
Saturated FA (%) | 19.64 | 37.67 | 54.75 | 30.42 | 16.52 | |
Monounsaturated FA (%) | 27.81 | 58.57 | 7.9 | 69.58 | 45.72 | |
Polyunsaturated FA (%) | 52.55 | 3.76 | 37.35 | - | 37.75 | |
Total FA (%) | 99.97 | 100 | 100 | 100 | 99.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awogbemi, O.; Kallon, D.V.V.; Aigbodion, V.S.; Mzozoyana, V. Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters. Processes 2022, 10, 11. https://doi.org/10.3390/pr10010011
Awogbemi O, Kallon DVV, Aigbodion VS, Mzozoyana V. Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters. Processes. 2022; 10(1):11. https://doi.org/10.3390/pr10010011
Chicago/Turabian StyleAwogbemi, Omojola, Daramy Vandi Von Kallon, Victor Sunday Aigbodion, and Vuyisa Mzozoyana. 2022. "Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters" Processes 10, no. 1: 11. https://doi.org/10.3390/pr10010011
APA StyleAwogbemi, O., Kallon, D. V. V., Aigbodion, V. S., & Mzozoyana, V. (2022). Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters. Processes, 10(1), 11. https://doi.org/10.3390/pr10010011