Short- and Medium-Wave Infrared Drying of Cantaloupe (Cucumis melon L.) Slices: Drying Kinetics and Process Parameter Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cantaloupe Slices SMIR Drying
2.3. Drying Characteristic Analysis
2.3.1. Calculation of Moisture Ratio and Drying Rate
2.3.2. Calculation of Effective Moisture Diffusivity and Activation Energy
2.4. Quality Parameters
2.4.1. Color
2.4.2. Hardness
2.4.3. Vitamin C Content
2.5. Experimental Design
2.6. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics and Modelling
3.2. Effective Moisture Diffusivities and Activation Energy
3.3. Response Surface Methodology Optimization of Cantaloupe Slices
3.3.1. Influence of Variables on the Color of Cantaloupe Slices
3.3.2. Influence of Variables on the Hardness of the Cantaloupe Slices
3.3.3. Influence of Variables on the Vitamin C Content of the Cantaloupe Slices
3.4. Optimization and Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, X.; Hu, R.; Zhao, J.H.; Peng, Y.; Ni, Y.Y. Evaluation of the effects of different thawing methods on texture, colour and ascorbic acid retention of frozen hami melon (Cucumis melo var. saccharinus). Int. J. Food Sci. Technol. 2015, 50, 1116–1122. [Google Scholar] [CrossRef]
- Li, T.S.; Rabiha, S.; Yaya, R.; Shazini, R. Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocoll. 2021, 116, 106492. [Google Scholar] [CrossRef]
- Martiñon, M.E.; Moreira, R.G.; Castell-Perez, M.E.; Gomes, C. Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4 °C. Food Sci. Technol. 2014, 56, 341–350. [Google Scholar] [CrossRef]
- Salahi, M.R.; Mohebbi, M.; Taghizadeh, M. Development of cantaloupe (Cucumis melo) pulp powder using foam-mat drying method: Effects of drying conditions on microstructural of mat and physicochemical properties of powder. Dry. Technol. 2017, 35, 1897–1908. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, G.; Li, X.; Zhao, Y.; Lei, D.; Ding, G.; Ambrose, K.; Liu, Y. Combined medium- and short-wave infrared and hot air impingement drying of sponge gourd (Luffa cylindrical) slices. J. Food Eng. 2020, 284, 110043. [Google Scholar] [CrossRef]
- Pawar, S.B.; Pratape, V.M. Fundamentals of infrared heating and its application in drying of food materials: A review. J. Food Process Eng. 2017, 40, e12308. [Google Scholar] [CrossRef]
- Chen, Q.; Song, H.; Bi, J.; Chen, R.; Liu, X.; Wu, X.; Hou, H. Multi-objective optimization and quality evaluation of short- and medium-wave infrared radiation dried carrot slices. Int. J. Food Eng. 2019, 15, 20180234. [Google Scholar] [CrossRef]
- Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation. Food Sci. Technol. 2015, 64, 759–766. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, Q.; Bi, J.; Zeng, M.; Wu, X. Drying characteristics and quality of kiwifruit slices with/without osmotic dehydration under short- and medium-wave infrared radiation drying. Int. J. Food Eng. 2017, 13, 1–15. [Google Scholar] [CrossRef]
- Bi, J.; Chen, Q.; Zhou, Y.; Liu, X.; Wu, X.; Chen, R. Optimization of short- and medium-wave infrared drying and quality evaluation of jujube powder. Food Bioprocess Technol. 2014, 7, 2375–2387. [Google Scholar] [CrossRef]
- Cao, Z.-Z.; Zhou, L.Y.; Bi, J.F.; Yi, J.Y.; Chen, Q.Q.; Wu, X.Y.; Zheng, J.K.; Li, S.R. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): A comparative study. J. Sci. Food Agric. 2016, 96, 3596–3603. [Google Scholar] [CrossRef]
- Alaei, B.; Dibagar, N.; Chayjan, R.A.; Kaveh, M.; Taghinezhad, E. The effect of short and medium infrared radiation on some drying and quality characteristics of quince slices under vacuum condition. Qual. Assur. Saf. Crops Foods. 2018, 10, 371–381. [Google Scholar] [CrossRef]
- Royen, M.J.; Noori, A.W.; Haydary, J. Experimental study and mathematical modeling of convective thin-layer drying of apple slices. Processes 2020, 8, 1562. [Google Scholar] [CrossRef]
- Selvi, K.Ç.; Kabutey, A.; Gürkan, A.K.G.; David, H.; Kurhan, S.; Kloucek, P. The effect of infrared drying on color, projected area, drying time, and total phenolic content of rose (Rose electron) petals. Plants 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farcuh, M.; Copes, B.; Le-Navenec, G.; Marroquin, J.; Jaunet, T.; Chi-Ham, C.; Cantu, D.; Bradford, K.J.; Van, D.A. Texture diversity in melon (Cucumis melo L.): Sensory and physical assessments. Postharvest Biol. Technol. 2020, 159, 111024. [Google Scholar] [CrossRef]
- Fundo, J.F.; Miller, F.A.; Mandro, G.F.; Tremarin, A.; Brando, T.R.S.; Silva, C.L.M. UV-C light processing of Cantaloupe melon juice: Evaluation of the impact on microbiological, and some quality characteristics, during refrigerated storage. Food Sci. Technol. 2019, 103, 247–252. [Google Scholar] [CrossRef]
- Tan, S.L.; Rabiha, S.; Yaya, R.; Shazini, R. Physical, chemical, microbiological properties and shelf life kinetic of spray-dried cantaloupe juice powder during storage. Food Sci. Technol. 2021, 140, 110597. [Google Scholar] [CrossRef]
- Solval, K.M.; Sundararajan, S.; Alfaro, L.; Sathivel, S. Development of cantaloupe (Cucumis melo) juice powders using spray drying technology. Food Sci. Technol. 2012, 46, 287–293. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Communities: Arlington, VA, USA, 1995. [Google Scholar]
- Cunha, R.; Brandão, S.; Medeiros, R.; Júnior, E.; Silva, J.; Azoubel, P. Effect of ethanol pretreatment on melon convective drying. Food Chem. 2020, 333, 127502. [Google Scholar] [CrossRef]
- Netto, J.; Honorato, F.; Azoubel, P.; Kurozawa, L.; Barbin, D. Evaluation of melon drying using hyperspectral imaging technique in the near infrared region. Food Sci. Technol. 2021, 143, 111092. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.M. Process optimization of intermediate-wave infrared drying: Screening by Plackett-Burman; comparison of Box-Behnken and central composite design and evaluation: A case study. Ind. Crops Prod. 2021, 162, 113287. [Google Scholar] [CrossRef]
- Doymaz, I. Infrared drying of kiwifruit slices. Int. J. Green Energy 2018, 15, 622–628. [Google Scholar] [CrossRef]
- Ferreira, J.; Queiroz, A.; Figueirêdo, R.; Silva, W.; Gomes, J.; Santos, D.; Silva, H.; Rocha, A.; Paiva, A.; Chaves, A.; et al. Utilization of Cumbeba (Tacinga inamoena) Residue: Drying Kinetics and Effect of Process Conditions on Antioxidant Bioactive Compounds. Foods 2021, 10, 788. [Google Scholar] [CrossRef] [PubMed]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Modelling the mid-infrared drying of sweet potato: Kinetics, mass and heat transfer parameters, and energy consumption. Heat Mass Transf. 2018, 54, 2917–2933. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Yang, W.X.; Zhang, Q.; Zheng, Z.A.; Wu, M.; Xiao, H.W. Hot air impingement drying kinetics and quality attributes of orange peel. J. Food Processing Preserv. 2020, 44, e14294. [Google Scholar] [CrossRef]
- Pekke, M.A.; Pan, Z.L.; Atungulu, G.G.; Smith, G.; Thompson, J.F. Drying characteristics and quality of bananas under infrared radiation heating. Int. J. Agric. Biol. Eng. 2013, 6, 58–70. [Google Scholar]
- Supmoon, N.; Noomhorm, A. Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Dry. Technol. 2013, 31, 24–31. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; Official Method 967.21; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Sadeghi, E.; Movagharnejad, K.; Haghighi, A.A. Parameters optimization and quality evaluation of mechanical properties of infrared radiation thin layer drying of pumpkin samples. J. Food Process Eng. 2020, 43, e13309. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Szumny, A. Optimization and prediction of the drying and quality of turnip slices by convective-infrared dryer under various pretreatments by RSM and ANFIS methods. Foods 2021, 10, 284. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The effectiveness of combined infrared and hot-air drying strategies for sweet potato. J. Food Eng. 2019, 241, 75–87. [Google Scholar] [CrossRef]
- Deng, L.; Yang, X.; Mujumdar, A.S.; Zhao, J.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.; Xiao, H.W. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Wu, B.G.; Ma, H.L.; Qu, W.J.; Wang, B.; Zhang, X.; Wang, P.L.; Wang, J.; Atungulu, G.G.; Pan, Z. Catalytic infrared and hot air dehydration of carrot slices. J. Food Process Eng. 2014, 37, 111–121. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Duan, X.; Ren, G. Prediction model for moisture content in cantaloupe slices using LF-NMR and different drying methods. Trans. Chin. Soc. Agric. Eng. 2021, 37, 304–312. [Google Scholar] [CrossRef]
- Xiao, H.W.; Pang, C.L.; Wang, L.H.; Bai, J.W.; Yang, W.X.; Gao, Z.J. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosyst. Eng. 2010, 105, 233–240. [Google Scholar] [CrossRef]
- Fakhreddin, S.C.; Maryam, S. Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums. Int. J. Fruit Sci. 2021, 21, 519–527. [Google Scholar] [CrossRef]
- Delfiya, D.S.A.; Prashob, K.; Murali, S.; Alfiya, P.V.; Samuel, M.P.; Pandiselvam, R. Drying kinetics of food materials in infrared radiation drying: A review. J. Food Process Eng. 2021, 1, e13810. [Google Scholar] [CrossRef]
- Darvishi, H.; Najafi, G.; Hosainpour, A.; Khodaei, J.; Aazdbakht, M. Far-infrared drying characteristics of mushroom slices. Chem. Prod. Process Modeling 2013, 8, 107–117. [Google Scholar] [CrossRef]
- Chayjan, R.A.; Kaveh, M.; Khayati, S. Modeling some Drying Characteristics of Sour Cherry (Prunus cerasus L.) under Infrared Radiation Using Mathematical Models and Artificial Neural Networks. Agric. Eng. Int. CIGR J. 2014, 16, 265–279. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/2552 (accessed on 1 January 2022).
- Alaei, B.; Chayjan, R.A. Drying characteristics of pomegranate arils under near infrared-vacuum conditions. J. Food Processing Preserv. 2015, 39, 469–479. [Google Scholar] [CrossRef]
- Ghavidelan, M.A.; Chayjan, R.A. Modeling engineering characteristics of hazelnut kernel during infrared fluidized bed drying. J. Food Meas. Charact. 2017, 11, 460–478. [Google Scholar] [CrossRef]
- Sadeghi, E.; Movagharnejad, K.; Haghighi, A.A. Mathematical modeling of infrared radiation thin-layer drying of pumpkin samples under natural and forced convection. J. Food Processing Preserv. 2019, 43, e14229. [Google Scholar] [CrossRef]
- Fatemeh, J.; Kamyar, M.; Ebrahim, S. Infrared drying effects on the quality of eggplant slices and process optimization using response surface methodology. Food Chem. 2020, 333, 127423. [Google Scholar] [CrossRef]
- Wang, J.; Law, C.L.; Nema, P.K.; Zhao, J.H.; Liu, Z.L.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. J. Food Eng. 2018, 224, 129–138. [Google Scholar] [CrossRef]
- Fang, S.Z.; Wang, Z.F.; Hu, X.S.; Datta, A.K. Hot-air drying of whole fruit Chinese jujube (Zizyphus jujuba Miller): Physicochemical properties of dried products. Int. J. Food Sci. Technol. 2009, 44, 1415–1421. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food and Bioproducts Processing. Trans. Inst. Chem. Eng. 2011, 89, 504–513. [Google Scholar] [CrossRef]
- Thuwapanichayanan, R.; Prachayawarakorn, S.; Kunwisawa, J.; Soponronnarit, S. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. Food Sci. Technol. 2011, 44, 1502–1510. [Google Scholar] [CrossRef]
- Pei, Y.S.; Li, Z.F.; Song, C.F.; Li, J.; Song, F.H.; Zhu, G.Y.; Liu, M.B. Effects of combined infrared and hot-air drying on ginsenosides and sensory properties of ginseng root slices (Panax ginseng Meyer). J. Food Processing Preserv. 2020, 44, e14312. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, B.; Guo, X.; Ding, F.; Pan, Z.; Ma, H. Effects of power ultrasound enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. Food Sci. Technol. 2020, 126, 109312. [Google Scholar] [CrossRef]
- Zahoor, I.; Khan, M.A. Microwave assisted fluidized bed drying of red bell pepper: Drying kinetics and optimization of process conditions using statistical models and response surface methodology. Sci. Hortic. 2021, 286, 110209. [Google Scholar] [CrossRef]
- Zielinska, M.; Markowski, M. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 196, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
Model Number | Model Name | Model Equation | Reference |
---|---|---|---|
1 | Newton model | [13] | |
2 | Page model | ) | [23] |
3 | Henderson and Pabis model | ) | [24] |
4 | Midilli and others model | bt | [25] |
5 | Two-term exponential model | t) | [8] |
Model Number | Model Parameters | RMSE | |||
---|---|---|---|---|---|
1 | 55 | k = 0.807 | 0.999 | 0.008 | 10−5 |
60 | k = 1.120 | 0.997 | 0.015 | 10−4 | |
65 | k = 1.368 | 0.997 | 0.018 | 10−4 | |
2 | 55 | k = 0.821, n = 1.015 | 0.999 | 0.006 | 10−5 |
60 | k = 1.109, n = 1.099 | 0.999 | 0.009 | 10−5 | |
65 | k = 1.383, n = 1.118 | 0.999 | 0.011 | 10−4 | |
3 | 55 | a = 1.006, k = 0.831 | 0.999 | 0.008 | 10−5 |
60 | a = 1.021, k = 1.142 | 0.998 | 0.014 | 10−5 | |
65 | a = 1.020, k = 1.394 | 0.997 | 0.017 | 10−4 | |
4 | 55 | 10−4, k = 0.812 | 0.999 | 0.008 | 10−5 |
60 | 10−4, k = 1.141 | 0.998 | 0.015 | 10−5 | |
65 | 10−4, k = 1.389 | 0.997 | 0.018 | 10−4 | |
5 | 55 | = 0.831 | 0.999 | 0.006 | 10−5 |
60 | = 1.381 | 0.999 | 0.009 | 10−5 | |
65 | = 1.394 | 0.997 | 0.018 | 10−4 |
Products | References | |
---|---|---|
Cantaloupes slices | 31.84 | Present work |
mushroom slices | 21.85 | Darvishi et al. [39] |
Sour cherry | 30.31–41.68 | Chayjan, Kaveh, and Khayati. [40] |
Pomegranate arils | 30.80–37.48 | Alaei and Chayjan. [41] |
Red pepper | 42.67 | Cao et al. [11] |
Kiwifruit slices | 27.44 | Lyu et al. [9] |
Hazelnut kernel | 33.02–50.22 | Ghavidelan and Chayjan. [42] |
Sweet potato slices | 12.83–34.64 | Onwude et al. [25] |
Pumpkin slices | 18.59–36.88 | Sadeghi, Movagharnejad and Haghighi. [43] |
Run | Variables (Original and Coded Values) | Responses | |||||
---|---|---|---|---|---|---|---|
1 | 55 (−1) | 5 (−1) | 120 (0) | 0.26 | 0.03 | 0.70 | 2.27 |
2 | 65 (1) | 5 (−1) | 120 (0) | 0.25 | 0.06 | 0.46 | 2.99 |
3 | 55 (−1) | 9 (1) | 120 (0) | 0.27 | 0.20 | 0.50 | 3.14 |
4 | 65 (1) | 9 (1) | 120 (0) | 0.29 | 0.35 | 0.61 | 4.54 |
5 | 55 (−1) | 7 (0) | 80 (−1) | 0.29 | 0.25 | 0.57 | 3.33 |
6 | 65 (1) | 7 (0) | 80 (−1) | 0.29 | 0.10 | 0.74 | 2.50 |
7 | 55 (−1) | 7 (0) | 160 (1) | 0.25 | 0.13 | 0.57 | 2.48 |
8 | 65 (1) | 7 (0) | 160 (1) | 0.24 | 0.11 | 0.71 | 3.24 |
9 | 60 (0) | 5 (−1) | 80 (−1) | 0.25 | 0.07 | 0.69 | 3.59 |
10 | 60 (0) | 9 (1) | 80 (−1) | 0.36 | 0.13 | 0.67 | 3.54 |
11 | 60 (0) | 5 (−1) | 160 (1) | 0.31 | 0.04 | 0.80 | 3.36 |
12 | 60 (0) | 9 (1) | 160 (1) | 0.30 | 0.06 | 0.45 | 2.19 |
13 | 60 (0) | 7 (0) | 120 (0) | 0.34 | 0.15 | 0.77 | 1.85 |
14 | 60 (0) | 7 (0) | 120 (0) | 0.36 | 0.11 | 0.43 | 2.19 |
15 | 60 (0) | 7 (0) | 120 (0) | 0.25 | 0.02 | 0.59 | 3.26 |
16 | 60 (0) | 7 (0) | 120 (0) | 0.32 | 0.14 | 0.65 | 2.56 |
17 | 60(0) | 7 (0) | 120 (0) | 0.27 | 0.04 | 0.70 | 1.91 |
Source | df | df | df | df | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | |||||
Model | 9 | 12.81 | 0.0014 ** | 9 | 15.19 | 0.0008 ** | 9 | 45.33 | <0.0001 ** | 9 | 36.44 | <0.0001 ** |
1 | 26.75 | 0.0013 ** | 1 | 44.07 | <0.0003 ** | 1 | 9.72 | 0.0169 * | 1 | 86.77 | <0.0001 ** | |
1 | 27.20 | 0.0012 ** | 1 | 33.15 | 0.0007 ** | 1 | 369.06 | <0.0001 ** | 1 | 7.24 | 0.0310 * | |
1 | 4.39 | 0.0744 | 1 | 0.94 | 0.3646 | 1 | 21.34 | 0.0024 ** | 1 | 15.01 | 0.0061 ** | |
1 | 10.14 | 0.0154 * | 1 | 1.30 | 0.2911 | 1 | 3.98 | 0.0861 | 1 | 1.04 | 0.3408 | |
1 | 0.19 | 0.6746 | 1 | 0.53 | 0.4892 | 1 | 0.013 | 0.9118 | 1 | 0.34 | 0.5767 | |
1 | 2.39 | 0.1663 | 1 | 0.088 | 0.7750 | 1 | 0.20 | 0.6697 | 1 | 0.40 | 0.5462 | |
1 | 33.26 | 0.0007 ** | 1 | 15.35 | 0.0058 ** | 1 | 0.73 | 0.4226 | 1 | 101.96 | <0.0001 ** | |
1 | 7.18 | 0.0316 * | 1 | 27.79 | 0.0012 ** | 1 | 0.40 | 0.5484 | 1 | 43.59 | 0.0003 ** | |
1 | 3.56 | 0.1011 | 1 | 14.80 | 0.0063 ** | 1 | 2.73 | 0.1423 | 1 | 49.84 | 0.0002 ** | |
Lack of Fit | 3 | 1.55 | 0.3325 | 3 | 0.11 | 0.9489 | 3 | 0.73 | 0.5844 | 3 | 0.90 | 0.5168 |
C.V. (%) | 1.69 | 7.96 | 2.91 | 2.12 | ||||||||
0.9427 | 0.9513 | 0.9831 | 0.9791 | |||||||||
0.8691 | 0.8887 | 0.9614 | 0.9522 |
Name | Goal | Lower Limit | Upper Limit | Importance |
---|---|---|---|---|
) | In range | 55 | 65 | 3 |
Slice thickness (mm) | In range | 5 | 9 | 3 |
Radiation distance (mm) | In range | 80 | 160 | 3 |
L value | Maximize | 53.53 | 65.86 | 4 |
Minimize | 8.06 | 20.03 | 4 | |
Hardness (N) | Minimize | 9.12 | 15.58 | 3 |
Vitamin C content (mg/100 g) | Maximize | 86.31 | 115.87 | 5 |
Optimum condition | 58.18 | 5.88 | 87.74 | 65.86 | 8.48 | 10.17 | 111.25 |
Verification test | 58.2 | 6 | 90 | 65.580.27 | 8.570.13 | 10.490.67 | 106.582.35 |
Error (%) | - | - | - | 0.43 | 1.06 | 3.15 | 4.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, A.; Zheng, X.; Xiao, H.; Yao, X.; Liu, D.; Li, X.; Li, Y. Short- and Medium-Wave Infrared Drying of Cantaloupe (Cucumis melon L.) Slices: Drying Kinetics and Process Parameter Optimization. Processes 2022, 10, 114. https://doi.org/10.3390/pr10010114
Chang A, Zheng X, Xiao H, Yao X, Liu D, Li X, Li Y. Short- and Medium-Wave Infrared Drying of Cantaloupe (Cucumis melon L.) Slices: Drying Kinetics and Process Parameter Optimization. Processes. 2022; 10(1):114. https://doi.org/10.3390/pr10010114
Chicago/Turabian StyleChang, Antai, Xia Zheng, Hongwei Xiao, Xuedong Yao, Decheng Liu, Xiangyu Li, and Yican Li. 2022. "Short- and Medium-Wave Infrared Drying of Cantaloupe (Cucumis melon L.) Slices: Drying Kinetics and Process Parameter Optimization" Processes 10, no. 1: 114. https://doi.org/10.3390/pr10010114
APA StyleChang, A., Zheng, X., Xiao, H., Yao, X., Liu, D., Li, X., & Li, Y. (2022). Short- and Medium-Wave Infrared Drying of Cantaloupe (Cucumis melon L.) Slices: Drying Kinetics and Process Parameter Optimization. Processes, 10(1), 114. https://doi.org/10.3390/pr10010114